International Journal of Wavelets, Multiresolution :

and Information Processing World Scientific
Vol. 4, No. 2 (2006) 263271

© World Scientific Publishing Company

www.worldscientific.com

DATA HANDLING METHODOLOGY FOR DISCRETE
WAVELETS AND ITS APPLICATIONS TO THE
DYNAMIC VECTOR FIELDS

SAWA MATSUYAMA
Computational Science Research Center, Hosei University
8-7-2, Kafino-cho, Koganei-shi, Tokyo 184-8584, Japan
sawa@k.hoses.ac.jp

SHIHO MATSUYAMA
Weathermap Co. Litd.,
3-13-4, Akasaka, Minato-ku, Tokyo 107-0052, Japan
smatsuyemaO@ueathermap. co.jp

YOSHIFURU SAITO
Department of Electrical & Electronic Engineering, Hosei University 3-7-2
Kajino-cho, Koganei-shi, Tokyo 184-8584, Japan
ysaitoh@ysaitoh.k.hoset.ac.jp

A discrete wavelet transform is one of the effective methodologies for compressing the
image data and extracting the major characteristics from various data, but it always
requires a number of target data composed of a power of 2. To overcome this difficulty
without losing any original data information, we propose here a novel approach based
on the Fourier transform, The key idea is simple but effective because it keeps all of
the frequency components comprising the target data exactly. The raw data is firstly
transformed to the Fourier coefficients by Fourier transform. Then, the inverse Fourier
transform makes it possible to the number of data comprising a power of 2. We have
applied this interpolation for the wind vector image data, and we have tried to compress
the data by the multiresolution analysis by using the three-dimensional discrete wavelet
transform. Several examples demonstrate the usefulness of our new method to work out
the graphical communication tools.
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1. Introduction

Major applications of the wavelet transform are both wave form analysis and image
data compression.! One of the distinguished properties of the wavelet transform is
extraction of major dominant factors from raw data. This method is available to
analyze scalar data as a noise reduction method. In addition, the multiresolution
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analysis by the wavelets transform is suitable to compress data for transmission
of the signal by removing random noise. However, one of the problem of the dis-
crete wavelet transform is a restriction that the number of data should be in the
power of 2.2 Previously, we used to cut the number of data or otherwise add zero
elements.?4 Therefore, part of the data obtained by field observations or laboratory
experiments are not frequently applied for the wavelet transform. The cutting of
the number of data means the lost the characteristic data, and the a.ddmg of zero
elements means changing the characteristic data:

Any raw data can be represented in terms of the Fourier series, then the Fourier
transform method proposed in this paper makes it possible to arrange the number
of data inkeeping frequency characteristics of the raw data for the discrete wavelets
analysis. To demonstrate the usefulness of our methodology, we apply our method
to the wind vector image data. As a result, it is verified that our method never lose
the characteristics of original data on applying three-dimensional discrete wavelets
transform.

2. Interpolation of One-Dimensional Periodic Data

In this chapter, we apply our Fourier transform method to a simple one-dimensional
data in order to verify the validity of our approach.

2.1.. Sample data
At first, we define a periodic function expressed as follows:

f(t) = cos(2t) - cos(Bt + -}) + cos(6t — %) + sin(t) — sin(4t - %) + sin(18t).
' (2.1)

The discrete sampling data are obtained from Eq. (2.1) at an interval of 2r/n, ie.
t=0,2n/n,...,2n(n — 1)/n and n = 128, and shown in Fig. 1.
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Fig. 1. - Sample data calculated by Eq. (2.1), (t =0,2n/n,...,2n(n = 1)/n,n = 128),
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2.2. Fourier transform of sample data

We apply a Fourier transform of the sample data shown in Fig. 1. Figure 2 shows
the Fourier spectra of the sample data. Fourier spectrum reveals the peaks at fre-
quency of 2,3,4,6 in cosine waves, and at frequency of 1,3,4,6,18 in sine waves,
as expected. ~

2.3. Interpolation of the sample data 7
In general, a function, f(t), can be expanded in discrete real Fourier series as follows:

£(t) = —= ( +§a, (2””) :Yﬂb, m(2”")) (2.2)

r=1 r=1

where n is the number of discrete data. The value at arbitrary time, t = ¢, is
obtained as the sum of sine and cosine waves in Eq. (2.2). When the discrete data
are interpolated for satisfying the number of data of a power of 2 by using the
Fourier transform technique, the new data set has also the same Fourier coefficients
as the original discrete data before the interpolation.

Sample data can be expanded in time series shown in Fig. 2 and values of the
function, f(t), are calculated for any time, ¢ = t. The sample data can be increased
from 128 to 256 by using this real fourier series. Figure 3 shows a comparison of
the interpolated data with calculated data by Eq. (2.1) for n'= 256.
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Fig. 2.. Sample data and its Fourier spectrum. (a) Sample data in Fig. 1; (b) Power spectrum of
Fourier coefficients; (c) Real parts of Fourier coefficients; (d) Imaginary parts of Fourier coefficients.
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Fig.'3. Comparison of the interpolated sample data with calculated data. (a) Interpola;ied data
(data number of 256); (b) Calculated data by Eq. (2.1), (¢t = 0,27/n,...,2x(n = 1)/n,n = 256).

We evaluate a correlation coeflicient between the interpolated data by Fourier
transform and the original sample data calculated by Eq. (2.1), in order to inves-
tigate that the calculated :data-resembles the original sample: data. In this case,
the correlation coefficient is 1.0, so that our interpolating method never change
the nature of original data. Namely, the increase of the interpolated data into the
time series of digital data by the above method does not change the Fourier coeffi-
cients. If the linear interpolation is applied to the time series of digital data; then
Fourier coefficients are naturally different from the coefficients before the interpola-
tion. Therefore, the interpolation method using the Fourier Transform is reasonable
methodology to one-dimensional data.

3. Interpolation of Two-Dimensional Data

We apply our interpolation method to the wind field for meteorological data. The
wind is mainly constituted from the periodic fluctuations in time and space, there-
fore these data will be suitable to the application of the wavelet transform. The
typical period motions in atmosphere are one day, about a week, annual and inter- -
annual periods.

3.1. The wind vector image dala

Figure 4 shows the monthly mean winds at 250 hPa surface on July 1993. The hor-
izontal distribution of the wind is available for the application of the wavelets
transform to vector fields. The data are NCEP/NCAR reanalysis ones with
2.5° x 2.5° grid size (longitude x latitude).

Also, Fig. 4 shows the global wind distribution of summer in the Northern
Hemisphere and of winter in the Southern Hemisphere. The mean speed of the jet -
stream is about 30 m/s in the Northern Hemisphere, while it is 40 to 50m/s in the
Southern Hemisphere in winter. The mean wind velocity at the middle latitude in
the latter dominates over one of the former.

From July to August of 1993, the atmospheric temperature in Japan was abnor-
mally low in comparison with the mean one for 30 years. The characteristics of the
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Fig. 4. Monthly mean wind data on July 1993.

eastward strong wind around the Japan, i.e. the jet stream, located south (37° to
47°N) in the summer of 1993.

The number of data is 73 x 144. So, our previous investigated region was not the
whole earth (the number of data is 64 x 128), but was limited from 75°S to 82.5°N
and 0°E to 42.5°W.%® However, we can interpolate in the wind data by using our
Fourier transform method, and this leads to the studying of the region as the whole
earth.

3.2. Interpolation of the wind data by the Fourier transform

The number of original wind data obtained by the observations was 74x144. Then,
the number of data. is possible to be rearranged to 64 x 128 for the wavelet analysis.
The Fourier spectrum in the two-dimensional field is firstly calculated at each col-
umn and line from the original wind data. The Fourier coefficients at each column
and line are used to interpolate the discrete data in the wind field. As the wind is
a velocity vector, the above method is applied to both north-south and east-west
components of the wind data for the interpolation. Figure 5 shows the interpolated
wind data by our Fourier transform method.

Thus, the Fourier coefficients of the interpolated wind data shown in Fig. 5,
which are obtained by the two-dimensional Fourier transform, agree with the ones
of the original wind data in Fig. 4, except for the high frequency.

4. Application to the Two-Dimensional Wavelets

The wavelets transform is applied to the interpolated wind data shown in Fig. 5.
In this study, the wavelets spectra of wind are calculated under the 20th-order
Daubechies base function in north-south component and the 16th-order Daubechies
base function in east-west component:.5

The inverse wavelets transform also gives the distribution of wind velocity, but
the resolution of the wind field is possible to be changed by the number of data.
We try to show the results of different resolution in Figs. 6 and 7.
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Fig. 5. Interpolated monthly mean wind data on July 1993. The number of data is 64 x 128.
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Fig. 6. Wind vectors recovered from the top 32 X 64 region shown in Fig. 5.
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Fig. 7. Wind vectors recovered from the top 16 x 32 region shown in Fig. 5.

Figures 6 and 7 show a half of level and a quarter of level, respectively, in both
north-south and east-west components of the wind velocity. The resolution of a
half of level implies a reproduction by using the number of data of 1/2 x 1/2 of
the original interpolated data in the inverse wavelet transform, that is, the data



Data Handling Methodology for Discrete Wavelets. and its Applications 269

compression is made for the transform. The resolution of a quarter of level is,
naturally, the data number of 1/4 x 1/4 of the original one.

The magnitudes of omitted high frequency vector data by compression are about
one-fifth smaller than those of the vector shown in Figs. 6 and 7. Saito (1998)
employed a correlation coefficient between the recovered and raw data in order to
confirm the recoverability of data.! '

As the wind is a velocity vector, we will apply a matrix correlation p and define
recovery ratio as follows,

_ (X-Y)
| P IXTIYT
where X and Y are matrices. The matrix correlation calculated by Eq. (4.3) (recov-
ery ratio) is 0.999 in Fig. 6 and 0.993 in Fig. 7. Both results show good recovery.

(4.3)

5. Application of the Three-Dimensional Wavelets

In Sec. 4, the monthly mean data of global wind, i.e. on July 1993, are applied
to the two-dimensional wavelet transform. In this section, we will include the time
variations of the global wind, and treat them as a three-dimensional data. We apply
the three-dimensional wavelets to wind image data, and calculate the compressed
wind image data by means of the multiresolution analysis.

5.1. Method of the three-dimensional vector wavelets

When transpose [ by m by n, three-dimensional matrix, M, is written as

[Mlmn]T = Mmnl, (5.4)
the wavelet transform of three-dimensional matrix, M, is carried out by
S =Wy W W Mima]TI™]T, (5.5)

where S, M, W, ,W,, and W, are the [ by m by n wavelet, [l by m by n original,
m by m, n by n and [ by [ wavelet transformation matrices, respectively. When the
element of matrix, M, is composed of the two-dimensional vector

M=[U+V] (5.6)

the wavelet transform spectrum is carried out by two independent wavelet trans-
forms, i.e.

S =Wy [Wm- Wi Upmn|T|]T]T + [Wa« W Wi Vi 7T (5.7)

5.2. Animation wind vector image

The sequential global wind data for 64 months from March 1992 to October 1994
are regarded as one of the animation wind vector image data. The number of data
is 64 x 64 x 128.
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The wavelet spectra of the wind was calculated under the 8th-order Daubechies
base function in time axis direction, the 20th-order Daubechies base function in
south-north direction and the 16th-order Daubechies base function in east-west
direction.®

The multiresolution analysis gives a time axis direction, east-west direction and
south-north direction. In addition, it prepares the results of the resolution of level
1/2 and level 1/4 of the interpolated original data. The resolution of level 1/2 means
for the wind field to be reproduced by the data number of 1/2 x 1/2 x 1/2 of the
interpolated original data by the inverse wavelet transform. The resolution of level
1/4 is the same as the data number of 1/4 x 1/4 x 1/4 of them.

The reproduced three-dimensional animation-image is obtained by the same
size (64 x 64 x 128) as the original ones. We cannot show the animation of the
three-dimensional wind, so the result of July 1993 is shown in Figs. 8 and 9.

Figures 8 and 9 show the vector wind data recovered from the 32 x 32 x 64
region and the 16 x 16 x 32 region, respectively.

The magnitudes of omitted high frequency vector data by compression are about
one-third smaller than those of the vector shown in Figs. 8 and 9.
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Fig. 8. Wind vectors recovered from the top 32 x 32 x 64 region shown on July 1993.
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Fig. 9. Wind vectors recovered from the top 16 x 16 x 32 region shown on July 1993.



Data Handling Methodology for Discrete Wavelets and its Applications 271

The matrix correlation calculated by Eq. (4.3), i.e. recovery ratios are 0.984 in
Fig. 8 and 0.967 in Fig. 9, which are very high. Figures 8 and 9 show the wind vector
after compression and removal of the noise data. Its distribution is very similar to
the raw data shown in Fig. 5, and these are the same characteristics in July 1993.

6. Summary

A number of data for a discrete wavelet transform is required to be a power of 2, and
therefore, part of the data obtained by field observations or laboratory experiments
are not frequently applied for the analyses. In this paper, we have shown that the
Fourier transform is a useful methodology to interpolate and extrapolate the data
for increasing or decreasing the number of data for the discrete wavelet analysis.
We have applied this method for the wind vector image data, and we have tried to
compress the data by the multiresolution analysis by the three-dimensional discrete
wavelet transform. Several examples have demonstrated the usefulness of our new
method to work out the graphical communication tools.
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