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ABSTRACT: This paper proposes the modal-wavelet transform as one of the
orthogonal wavelet transforms. The theoretical background and its application
are described. The bases of modal-wavelet transform are derived from modal
analysis of the potential field equations. Namely, the principal idea is that a
numerical data set is regarded as a potential field. A modal matrix, constituting
characteristic vectors, derived from discretized Poisson’s equation enables us
to carry out an orthogonal transformation like the discrete wavelets. The mo-
dal-wavelets based on the differential equation modeling yield efficient multi-
resolution analysis. Applying its 3-dimensional analysis to a weather satellite
infrared animation divides it into background and cloud moving images.

1 INTRODUCTION

The spread of high performance and reasonably priced computers has yielded a large
scale Internet community as well as information resources. Data handling technologies
based on the digital computers are of main importance to realize more efficient networking
and computing. Discrete wavelet transform (WT) becomes a deterministic methodology to
handle the digital signals and images, e.g., compressing data quantity, extracting their char-
acteristics, etc [1]. Moreover, their applications to electromagnetic field calculation, solv-
ing for forward and inverse problems, have been investigated and spurred to faster calcula-
tion algorithm [2-3]. The conventional WT, however, sometimes suffers from limitation on
subject data length which must be to the power of 2. Thereby, the applications depend on
employed wavelet basis, and need an enormous memory installation for implementation.
The principal purpose of this paper is to describe a new approach as the basis for more effi-
cient wavelet analysis.

This paper proposes the modal-wavelet transform (MWT) as one of the WTs. The
bases of MWT are derived from a modal analysis of the field of equations. Regarding a
numerical data set as a potential field leads to a partial-differential-equation-based data
modeling, i.e., the data set can be represented by Poisson’s equations. Then, the modal
analysis of the discretized Poisson’s equation gives a modal matrix constituting characteris-
tic vectors. The modal matrix enables us orthogonal transformation in the same way as WT.
MWT uses this matrix as a wavelet basis. Because of the differential equation based mod-
eling, MWT yields an optimal basis to the subject data length.

As an application, we demonstrate an animation analysis. The multi-resolution analy-
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sis of the animation frame axis classifies an animation into static and dynamic images. As a
result, it reveals that MWT performs good computation efficiency in terms of memory us-
age.

2 MODAL-WAVELET TRANSFORM
2.1 Data representation by partial differential equations

To derive a new wavelet basis we consider a data modeling approach based on the
classical field theory. Namely, a numerical data set is assumed to be a potential field. Ac-
cording to the field theory, a scalar field # caused by source density o can be represented by
the Poisson equation:

Viu=-0o. Q)
Discretization of Eq.(1) by numerical methods derives the following system of equations:
LU=f )

where f and U denote an input vector corresponding to the source density ¢ and a solution
vector representing the scalar field # in Eq.(1), respectively; L denotes a coefficient matrix
corresponding to the Laplacian operator in Eq.(1). As an example, let each of pixel values
in Fig.1(a) be a scalar potential, then the Laplacian operation to Fig.1(a) yields the source
density distribution in Fig.1(b). Solving for Eq.(2) with the source density as vector f ex-
actly reproduces the original image as shown in Fig.1(c). Therefore, our partial differential
equation based modeling is capable of representing numerical data sets [4].

(a) Original image (b) Source density (c) Recovered image from
(128x128 pixels) (128x128 pixels) Fig. 1(b)
Fig. 1. Image recovery from the source density by means of Poisson’s equation

2.2 Modal-wavelet transform

As is well known, the matrix L in Eq.(2), derived by available discretizing methods,
e.g., finite elements and finite differences, becomes a symmetrical as well as a positive
definite matrix. In case when the vector U in Eq.(2) has g elements, it is possible to obtain
the characteristic values 4, i=1,2,...,4, of the matrix L and their respective characteristic
vectors v;, i=1,2,...,9. The matrix composed of the characteristic vectors v, i=1,2,...,9 as
its columns is called modal matrix:
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M =(vl vV, . vq). (3)
Because of the orthogonality, it holds the following relationship:
T
MM, =1, Q)

where the superscript T refers to a matrix transpose and J; is a g x ¢ unit matrix. The modal
matrix derived from the coefficient matrix of Laplacian operator has the same nature as
those of the conventional WT matrices. Moreover, a linear combination of the characteris-
tic vectors is possible to express the value distribution in a data set. Thus, MWT employs
this modal matrix as WT matrices.

2.3 Modal-wavelet transform matrix and basis

The simplest MWT matrix is derived from the system matrix of the one-dimensional
Laplacian operation with equi-meshed 3 points finite difference approximation. In the pre-
sent paper, the matrix L in Eq.(2) is realized by

Vz azu _
uzax—z=Ur—l_2Ux+Ux+l’ x=12,..9. %)

Then, applying the Jacobi method yields modal matrix A,. Therefore, the dimension of
matrix M, depends on the number of subdivisions of Eq.(5). This means it is possible to
obtain an optimal basis to the subject data.

In the Laplace partial differential equations, two types of boundary conditions should
be considered, i.e., the Dirichlet- and Neumann- type boundary conditions. Fig.2 illustrates
the typical MWT matrices. As shown in Figs.3 and 4, the bases of the Dirichlet- and Neu-
mann- type boundary conditions become odd- and even- functions, respectively. The bases
of MWT look like sinusoidal functions, however, the bases are not composed of single fre-
quency component. Moreover, the elements constituting the transform matrices never be-
come the complex numbers like in the Fourier transform.

Columns

(a) Dinchlet type boundary condition (b) Neumann type boundary condition
Fig. 2. Modal-wavelet matrices (64 x 64)
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Fig. 3. Elements of row vectors in the matrix shown in Fig.2(a)
and their Fourier amplitude spectrum
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Fig. 4. Elements of row vectors in the matrix shown in Fig.2(b)
and their Fourier amplitude spectrum

3 APPLICATION TO ANIMATION ANALYSIS

3.1 Infrared animation of weather satellite

Fig.5 shows some frames of an infrared animation produced by weather satellite Hi-
mawari [5]. Applying MWT to this animation, separation of static and dynamic images is
demonstrated. The animation used in this example is composed of 22 frames captured from
18:00 Aug. 10th to 15:00 Aug. 11th in 2000. Fig.5 indicates the generation process of ty-
phoon No. 9 in 2000.

; i,:‘ ) Qg " rﬁ “A Yy R
(d) At 6:00, Aug. 11,2000  (e) At 10:00, Aug. 11,2000  (f) At 14:00, Aug. 11, 20
Fig. 5. Frames of infrared animation by weather satellite Himawari (256x193 pixels)
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3.2 3-dimensional modal-wavelet transform

In order to apply MWT to the animation in Fig.5, the 3-dimensional MWT is essential
to carry out. Namely, applying MWT to horizontal-, vertical- and frame- axes of the anima-
tion carries out animation analysis. Let us consider the animation S, having m x n pixels
and / frames. Then, its transpose rules are expressed by

[Slmn ]T = S [Smnl ]T = Snlm ’ [Snlm ]T = Slmn - (6)

mnl >

The 3-dimensional MWT gives the modal-wavelet spectrum Spp "

5., =P loa s T T ™)

where M, M,, and M, are the / by /-, m by m- and n by n- MWT matrices, respectively. And
then, inverse MWT recovers the original animation S;:

T T a
S =M,T{M,,,T{M,,T[S,m} } } : (8)

Since a linear combination of weighted spectrum represents the original animation S,
animation of each level can be generated by means of Eq.(8).

3.3 Separation of static and dynamic images

As shown in Figs.2(b) and 4(a), the lowest level of bases derived from Neumann type
boundary condition is a constant term. This means that the multi-resolution analysis to the
frame axis is capable of extracting the static term of animation when the Neumann type
MWT matrix is employed. In much the same way, the dynamic term of animation can be
extracted.

Figs.6 and 7 show the results of the multi-resolution analysis to the frame axis. Fig.6
is generated by means of Eq.(8) with only the lowest level of spectrum. In this case, the
generated result has some frames, but all of frames are just the same as Fig.6. Thus, it sug-
gests the extraction of background image and static air pressure distribution. On the other
hand, Fig.7 shows dynamic term of animation generated by means of Eq.(8) without the
lowest level of spectrum.

Fig. 6. Extracted static image (256 x 193 pixels)
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(d) At 6:00, Aug. 11,2000  (e) At 10:00, Aug. 11,2000 () At 14:00, Aug. 11, 2000
Fig. 7. Frames of extracted dynamic image (256 x 193 pixels)

3.4 Comparison with conventional wavelets

In the conventional WT, the data length /, m and » must be to the power of 2. In this
animation analysis, the animation shown in Fig.5 has 256 x 193 pixels and 22 frames. If we
carry out the same analysis with conventional WT, then /, m and »n expressed in Section 3.2
become 32, 256 and 256, respectively. In case of MWT, /, m and n are 22, 256 and 193,
respectively. MWT accomplishes efficient analysis in terms of memory consumption.

4 CONCLUSIONS

We have proposed MWT and shown its application to animation analysis. Data repre-
sentation by partial differential equations yields MWT bases optimal to subject data. Ap-
plication to animation analysis has demonstrated separating static and dynamic images with
high efficiency compared with conventional WT. As shown above, our MWT approach has
versatile capability not only to information resource handling but also smart computing.
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