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ABSTRACT: We apply the generalized vector sampled pattern matching
(GVSPM) method to an inverse parameter problem. For the inverse parameter
problems, it is possible to obtain a unique solution when measuring the fields
ideally, such as the computed tomography (CT). However, most of the inverse
problems are reduced into solving for an ill-posed system of equations whose
solution is not uniquely determined. The GVSPM introduced in this paper
enable us to select the physically existing solution among possible ones.

1 INTRODUCTION

In 1917, Radon gave the mathematical background of computed tomography (CT). If the
projection of the object that exists in a plane is obtained, the form of the object can be
reconstructed. This is the fundamental idea of tomography, and it was applied to X-ray CT
or Magnetic Resonance Imaging (MRI). More similar methods of tomography are
extensively developed for the medicine field. Instead of the light projection, X-ray CT
employs X-ray absorption rate when X-rays are irradiated at an object, and also, MR1
employs the absorption rate of the microwave. Because in both cases absorption rate of
X-ray or microwave is used directly, the mathematical basis is also clear. Therefore, it has
been developed comparatively early and used for practical use [1].

Electrical impedance tomography (EIT) utilizes surface electrical potential distribution
of around target when injecting electrical current to the object. Final target of EIT is to
‘obtain conductivity distribution of the object as a tomography. In case of the X-ray or MRI
tomography, X-ray and microwave go straight to the object so that information of object
can be expressed in a simple mathematically relation. However, in case of EIT, the surface
electrical potential distribution of the object caused by injecting current could be obtained
as a solution of Laplace equation. This leads EIT to a functional tomography depending on
the medium parameter as well as boundary condition. EIT device itself can be composed in
the quite simple mechanical as well as electrical structures. Because of its functional nature,
the EIT is essential to evaluate a solution of the Laplace equation with unknown medium
parameter [2]. This means that realization of EIT necessaries a solution of an inverse
parameter problem.

In this paper, we examine an inverse parameter problem for which the resistance
distribution is evaluated from the nodal voltages when injecting the currents to the planar
electrical circuits in order to carry out the basic development of EIT.

This paper consists of five chapters and the first chapter is a foreword. The second
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chapter discusses the lumped electrical circuit model of EIT. The third chapter is
generalized vector sampled pattern matching method that are one of the ways to solve ill
posed liner system of equations encountered in the EIT problem. The fourth chapter is a
simulation that employs a lumped electrical circuit model. Also, experimental verification
is demonstrated. The fifth chapter is a summary.

2 Lumped electrical circuit model of EIT
For simplicity, let us consider an electrical circuit model instead of the practical EIT. As a

concrete example of electrical circuit model, we consider a simple electrical circuit shown
in Fig. 1.

Fig.1. Electrical circuit with 5 nodes, 8 resistances.

In Fig.l, v,v...vs and g1, 22'gs are the nodal electric potentials when injecting an
electric current to the circuits and electrical conductances comprising the circuit.

Injecting an electric current / to the nodes between 1 and 3 yields a following nodal
equations.

(vl —v2)gl +(v1 _va)ga +(v1 —Vs)gs =1,

(Vz _vl)gl TV,8; + (vz "Vs)gs =0,

V282~ V&3 —Vs& =1, M)
(v,, —-v3)g3 +(V4 'Vl)g4 +(v4 "Vs)gs =0,

(Vs -—V,)g5 +(V5 ‘vz)gs +Vsgy + (vs _V4)g3 =0.

(1) can be rewritten a matrix form as

&
v-v, 0 0 vy-v, v-v, 0 0 0 1% !
vy vmy, 0 0 0 w-v, 0 0 [®]0
0 -v v, 0 0 0 = o0 |51
0 0 wvow v—v, 0 0 0 v-v[%|]0 @
0 0 0 0 v-v v-v, v, vy | & 0
&
_gxa

or
X=Y.

(2) is an ill posed linear system of equation in order to evaluate the solution vector X with
order 8, while we have 5 equations [4].
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3 GENERALIZED VECTOR SAMPLED PATTERN MATCHING METHOD

3.1 Formulation

Let us consider a linear system of equations:
Y =CX, 3)

where Y and X denote the n-th order current- and m-th order conductance- vectors,
respectively. C is an n by m voltage matrix. (3) can be rewritten by

Y=ix,.C,,

i=1
X:[xl X, . xm]T, (4)
c=[c, ¢, . C,l

Normalization of (4) gives the following relationship:

X— Y Qi or Y'=C'X' ’ 5
M2 N C] ’ ®

where the prime (’) denotes the normalized quantities. (5) means that the normalized input
vector Y’ is obtained as a linear combination of the weighted solutions x,|C}/|Y], =1, 2,...,
m, with the normalized column vectors C/|C{, i= 1, 2,..., m. It should be noted that the
solution X could be obtained when an inner product between Y’ and C’X’ becomes 1. This
is the key idea of the GVSPM method.

3.2 Objective Function
Define a function f derived from an angle between the input vector Y and CX® given in
terms of the k-th iterative solution X , as given by

y cx® . cx®
f(X(lc))zM.lCXml =Y.lC'X'“‘)f' (6)

Then the solution X%® is obtained when the function AX®) converges to
Fx®)>1. ™

This is the objective function of the GVSPM solution.

3.3 Ireration Algorithm
Let X’@ be an initial solution vector given by
XO=cTy, ®
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then the first deviation vector AY*V is obtained as

Clx’(o)
(1) _ w1
AY" =Y —_[c'x'<°> , ©9)

when the deviation AY’ becomes zero vector, the ob(;"ective function (7) is automatically
satisfied. Modification by the deviation vector AY’*" gives the k-th iterative solution
vector X*® | namely,

Xl(k) = Xr(k—l)+C|T AYn(k-l)

CvT CI )X|(k—l) (10)

= C'T Y'+[1m - m

where I, denotes a m by m unit matrix.
3.4 Convergence Condition

The convergence condition of the GVSPM iterative strategy is that the modulus of all
characteristic values of state transition matrix in (10) must be less than 1. The state
transition matrix S is given by

cr e cre
S L.~ g =1 ] - an

Since the vector Y’ is normalized, (11) can be rewritten by
S=1 -C"C. 12

Let A be the characteristic value of the state transition matrix S, then the determinant of
symmetrical matrix is obtained:

A & . &,
ar-s=® * o a3)
elm Em - A

It is obvious that the modula of off-diagonal elements in (13) take less than 1 because of
the normalized column vectors of matrix C’°, namely,

& 1<, i=1.2,..,m,j=1,2,....m. (14)
Suppose the modulus characteristic value | 1 | takes more than 1. Then the column

vectors in (13) become linear independent because of (14). In such a case, the determinant
in (13) is not zero so that the condition | 4 | < 1 should be satisfied.
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Thus, it is proofed that the GVSPM is always carried out on stable iteration [3].

4 Simulation and Experiment

4.1 Simulation

3

0 10 20 30 40

Fig.2. A simulation model. Fig.3. Assumed conductance distribution.

As a simulation example, let us consider an electric circuit model shown in Fig.2, where
Fig.3 gives its conductance distribution.

When an electric current is injected to the nodes between 1 and 3 in Fig.2, application of
the GVSPM to this inverse parameter problem yields the conductance distribution shown
in Fig.4. In Figs. 3 and 4, the light and dark tones are corresponding to the high and small
values, respectively. ’
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Fig.4. Conductance distribution evaluated from a system having

8 X 12 system matrix.

Obviously, the result in Fig.4 is not corresponding to those of Fig.3. This means that
information provided by single electrical current injection is not enough to obtain the
physically existing solution, even if the GVSPM is capable of obtaining a solution vector

of any ill-posed system of equations.
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Fig.5. Conductance distribution evaluated from a system

having 16 X 12 system matrix.

When we independently set the nodes between 1 and 3 and between 2 and 3 for current
injections, we have 16 equations and 12 unknowns. Namely, we solve an ill posed liner
system of equations whose system matrix is 16 X 12. Fig.5 shows the conductance
distribution evaluated from a system having 16 X 12 system matrix. Comparing Figs.3 with
5, it is obvious that GVSPM has yields the physically existing conductance distribution.

Thus, it has been revealed that conductance distribution tomography is theoretically
possible by increasing response information to the object.

4.2 Experimental verification

Fig.6 shows the electric circuit used for the experiment. Fig.7 shows a conductance
distribution of the tested electric circuit in Fig.6.

3Q
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Fig.6. The circuit used for the Fig.7. Conductance distribution used for the
experiment. experiment.

After numbering the nodes in Fig.6 or 7 in much the same way as Fig.2, we have
measured the nodal electric voltages when injecting the currents. Table 1lists the measured
nodal electric voltages while the node 5 has been selected as a reference point.

In this experiment, we have evaluated the solution of a linear system of equations having
96 X 40 system matrix by GVSPM method to obtain conductance distribution. Fig.8 shows
the evaluated conductance distribution, which does not correspond exactly compared with
those of Fig.7. However, it is observed that the tendency of conductance distribution in
Fig.8 is similar to those of Fig.7.

-102 -




Table 1. Pair of electrodes and nodal electric voltages.

voltage[vljelectrode 5-4electrode 5-Jelectrode 5-2electrode 5-1
v 0.188 0.227 0.275 0.356
v2 0.225 0.281 0.355 0.261
v3 0.267 0.352 0.234 0.184
v4 0.334 0.178 0.125 0.094
v5 0.000 0.000 0.000 0.000
v6 0.070 0.077 0.083 0.098
v] 0.114 0.130 0.148 0.181
v8 0.153 0.178 0.209 0.256
v9 0.184 0.222 0.253 0.291
v1i0 0.217 0.261 0.289 0.247
vil 0.244 0.278 0.216 0.181
vli2 0.244 0.178 0.141 0.114
vi3 0.094 0.077 0.070 0.660
vi4 0.094 0.097 0.100 0.114
vi5 0.120 0.134 0.152 0.181
vib 0.155 0.178 0.206 0.244
vl?7 0.183 0.214 0.239 0.255
vig 0.209 0.242 0.250 0.230
vi9 0.223 0.238 0.209 0.181
v20 0.206 0.178 0.148 0.130
v21 0.133 0.117 0.106 0.102
v22 0.116 0.117 0.120 0.130
v23 0.130 0.142 0.156 0.180
v24 0.156 0.178 0.200 0.230
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Fig.8 Conductance distribution evaluated from
a system having 96 X 40 system matrix.

5 Conclusion

In this paper, we have examined an inverse parameter problem along with the GVSPM
method as the first stage of EIT development.

As a result, we have succeeded in obtaining a reasonable result in simulation. However,
practical experiment has shown that the tendency of evaluated conductance distribution is
similar to those of tested one, but not possible to obtain the exact conductance distribution
because of noise include in measured electric nodal voltages.
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