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ABSTRACT
We first reviewed the new progress of wavelet analysis in experimental fluid mechanics. As multiscale

identification techniques, we then presented two new applications of wavelets in experimental fluid
mechanics. Finally, we state several perspectives and point out where new methods need to be developed in
order to improve our understanding of turbulent structure.
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1. INTRODUCTION
The early works on wavelets were in the 1980’s by

Morlet, Grossmann, Meyer, Daubechies, Mallat, and
others. Now, wavelets have become pervasive in several
diverse areas such as mathematics, physics, digital
signal processing, image processing, computer graphics,
geophysics, astrophysics, fluid mechanics, biomedical
engineering, medicine, and others. New tools are
available for efficient data compression, image analysis,
and signal processing, and there is a great deal of
activity in developing wavelet methods for use in these
fields. The application of the wavelets appearing in the
area of fluid mechanics started from 1988. Until now,
numerous papers on this topic have been published
rapidly, and succeeded in demonstrating the rich
potentials. These researches can be roughly divided into
two groups: (1) identifying the turbulent or eddy
structure by the wavelet analysis of experimental data
and simulation data; (2) developing turbulence modeling
and numerical methods using wavelet bases. It is
impossible to write a review about all topics. In this
paper we focus on how to extract the multi-scale
turbulent structures based on wavelet analysis of the
experimental data. Many reports on application of
wavelet analysis in experimental fluid mechanics have
been summarized by Li (1). Here we only describe some
literature published from 1998 at the time of submission.

We first review the applications of continuous
wavelet transform. In order to identify coherent structure
of turbulent shear flow, Li (1) developed wavelet
correlation method based on the continuous wavelet
transform. For detecting Reynolds stress reversals
phenomenon in frequency space, Li (2) also proposed

several new definitions of the wavelet-based statistical
turbulent quantities. The secondary flow structures of a
turbulent bounded jet in both Fourier and physical
spaces were revealed based on the wavelet cross
spectrum function by Li et al. (3). Recently, Bonnet et al.
(4) summarized the one-dimensional continuous wavelet
transform as one of coherent stricture education methods
in their study.

On the other hand, the researches on applications of
discrete wavelet transform were also active. Staszewski
et al. (5) analyzed coherent structures in the wind
fluctuations using the discrete wavelet transform. Li et
al. (6) developed a new procedure to evaluating coherent
structures in the dimension of time and scale based on
the discrete wavelet transform of velocity signals. Li et
al. (7) also successfully extracted the multiresolution
turbulent structures using the turbulent image analysis of
the two-dimensional orthogonal wavelet transform.

Recently, there is a new application in the image
processing of fluid measurement. Li et al. (8) developed
an application of wavelet image compression technique
to PIV for improving spatial resolution and reliability,

Our paper is organized as follows. We first present
two main applications of wavelets in experimental fluid
mechanics as multiscale techniques. Finally, we state
several perspectives and point out where new methods
need to be developed in order to improve our
understanding of turbulent structure.

2. MULTIRESOLUTION ANALYSIS OF
VELOCITY VECTORS

It is well known fact that the turbulent near-wake of
a circular cylinder has a high degree of organization and
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Figure 1 Experimental arrangement

is dominated by spanwise vorticity. It is therefore
attractive for the purpose of identifying turbulent
organized structures and clarifying their contribution to
turbulent transfer process. Most existing techniques, e.g.
the vorticity-based scheme, and the scheme based on
critical points, focused on large-scale structures, i.e.
Karman vortices. It is difficult for these techniques to
deduce intermediate-scale structures. This results in a
lack of experimental data of the intermediate-scale
structures; our knowledge is incomplete of turbulent
structures of various scales. This subsequently affects
our understanding of dynamics of turbulence, for
intermediate-scale structures such as rib structures play
an important role in turbulent transfer process. In this
study, orthogonal wavelet transform has been used to
analyze the velocity data of the turbulent near-wake of a
circular cylinder. The purpose of investigation was to
visualize the turbulent structures of various scales and
provide both qualitative and quantitative information on

the intermediate-scale and relatively small-scale
structures in the near-wake of a circular cylinder.

Experiments were carried out in an open return low
turbulence wind tunnel with a 2.4 m long working
section (0.35 m x 0.35 m). A circular cylinder (d =12.5
mm) was installed in the mid-plane and spanned the full
width of the working section. Measurements were made
at x/d=20 (x is the streamwise distance downstream of
the cylinder) and Red (≡U∞d/ν, where U∞ is the free
stream velocity and ν the kinematic viscosity) =5600.
Using two orthogonal arrays, each comprising eight X-
wires (Figure 1), velocity fluctuations u, v in the (x, y)-
plane and u, w in the (x, z)-plane were obtained
simultaneously with a sampling frequency 3.5 kHz. The
nominal spacing between X-wires was about 5 mm. The
duration of signals was about 38 s. More details of the
data have been given in Zhou & Antonia (9).

The bottom plate of Fig. 2 presents the measured
velocity vectors in the (x, y)-plane within the range

10/0 ≤≤ dx  and 4220 .d/y. −≤≤− , where x/d=-

tUc/d (Uc=0.875 U∞ is the convection velocity of large-
scale structures) and y/d are the normalized abscissa and
ordinate scales, respectively. Four vortex-like structures
can be seen.

The velocity vectors were decomposed using
discrete wavelet transform with Daubechies’ orthogonal
wavelet bases of N =20. The decomposed components
of the velocity vectors are given in plate from the top to
the third for wavelets levels of 4, 6 and 7 which
correspond to a central frequency of f =109, 437 and
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Figure 2 Multiresolution velocity vectors of wake flow



874 Hz, respectively. Three large-scale structures can be
clearly observed in the top plate. They are the
uppermost and energy-containing structures, i.e. Karman
vortices, and correspond to the vortices appearing in the
measured velocity vectors. In the second plate several
vortex-like structures of intermediate scales are clearly
identifiable. These structures gain energy from the large-
scale structures and then pass it on to relatively small-
scale structures. As the wavelet level is increased to 7
(the third plate), a number of smaller-scale structures are
identifiable. These small structures seem to be unsteady
and have different strength. Note that it is difficult to
identify the intermediate-scale and relatively small-scale
structures in the measured velocity vectors (the bottom
plate). Although preliminary, the results presented here
demonstrate that the orthogonal wavelet transform
technique can be used effectively for decomposition and
analysis of multi-scale turbulent structures.

3. MULTIRESOLUTION ANALYSIS OF
TURBULENT IMAGE

Mallat and Meyer formulated the theory of
multiresolution analysis in the fall of 1986, in order to
provide a natural framework for the understanding and
construction of wavelet bases. The goal of the
multiresolution analysis is to get a representation of a
function that is written in a parsimonious manner as a
sum of its essential components. That is, a parsimonious
representation of a function will preserve the interesting
features of the original function, but will express the
function in terms of a relatively small set of coefficients.
Thus overcoming limitations of the two-dimensional
continuous wavelet transform that cannot reconstruct the
original function. In this paper, we focus on
multiresolution analysis of multi-scale turbulent
structure. It is well known that an image often includes
too much information for real time vision processing.
Multiresolution algorithm process less image data by
selecting the relevant details that are necessary to
perform a particular recognition task. Coarse to fine
searches processes first a low-resolution image and
zoom selectively into finer scales information.
Multiresolution analysis is the result of a two-step
process. Images are first decomposed into wavelet
components and their wavelet spectrums are obtained.
Reconstruction or inverse discrete wavelet transform is
then done at each scale, and image components are
obtained in wavelet space. Although there are several
families of orthonormal wavelet basis that construct the
wavelet space, we use the Daubechies family with index
N=20 that is not only orthonormal, but also have
smoothness and compact support.

Experiments were carried out in liquid-phase
turbulent-jet flows, and images of slices, which relied on
laser-induced fluorescence digital-imaging techniques,
through the three-dimensional scalar filed of round
momentum-driven turbulent jets were obtained.
Transverse sections in the far field of the jet, at
downstream position z/d=275 (jet-nozzle diameter d is
2.54mm), were recorded on a cryogenically cooled

Figure 3 Original image of a turbulent jet

Figure 4 Multiresolution images of a turbulent jet

1024x1024 pixels CCD camera. The measured image of
the jet-fluid concentration with Re=4.5x103 at
downstream position z/d=275 is shown in Fig.3. More
details have been given in Catrakis and Dimotakis (10).

This original image is decomposed into six wavelet
spaces based on the two-dimensional orthonormal
wavelet transform, and results of image components
with six levels are shown in Fig.4. The top column,
going from the second image of left to right,
corresponds to levels 1, 2 and 3. The bottom column,
going from left to right, corresponds to levels 4, 5 and 6.
The sum of six image components can reconstruct the
original image.

In Fig.4, false-colors have been assigned to the
scalar values of wavelet transform, and the highest
concentration is displayed as a deep red and the lowest



as purple. Blue in each signifies the zero value. These
images provide further evident of multi-scale structures
in turbulent jet and may easily extract important scales
that dominate the flow structure. From the image for the
lowest level 1, which corresponds to the broader scale of
a=43.0~107.5mm, the interior of the flow may be
identified by the blue line. A large peak that contains
three peaks can be clearly observed near the center of
jet. By comparing the original image, these peaks imply
that a large-scale structure consists of three vortices.
They are the uppermost and energy-containing vortices.
With the broader scale of a=14.3~43.0mm, as shown in
the image of the level 2, a lot of stronger peaks mainly
appear in the edge of flow region, and correspond to the
positions of vortices at this scale range. These vortices
are more active in the shear layer and dominate the
turbulent mixing process, which are referred to as the
coherent structure of the problem. These vortices gain
the energy from the large-scale vortices and then transit
it to the smaller-scale vortices. As decreasing scale to
a=7.2~14.3mm at levels 3, peaks mainly concentrate on
islands or lakes (as described in Catrakis and Dimotakis
(10)) of the flow region edge. The distribution of peaks
indicates that vortices also undertake the turbulent
mixing process within this scale range in this region.
When the broader scale reaching to a=3.6~7.2mm, as
shown in the image of the level 4, edges of vortex within
this scale range can be clearly observed. As increasing
resolution to a=1.8~3.6mm, a finer approximation of the
original image can be obtained at level 5. A clear
distribution of vortex edges with smaller-scale can be
observed, which is the “zoom-in” the image of the level
4. That is an important feature of multiresolution
analysis. The image of level 6 describes the distribution
of fine streamlines with the broader scale of
a=0.8~1.8mm. Edges of the smallest-scale vortex in this
problem can be observed everywhere in the interior of
the flow. This means that the smallest-scale vortices
exist in the whole flow field. From above results, it is
can say that the edges of the vortices at different
resolutions or scales and the coherent structure may be
easily extracted by wavelet multiresolution analysis.

To sum up the major characterististics of flow
structure, three types of flow structure, which are the
large-scale structure near the center of jet, coherent
structure in the shear layer and the small-scale vortices
in the whole flow field, are of most significance and
dominate the turbulent structure in jet.

4. CONCLUSION
The important feature of wavelet technique is to

extract the instantaneous information from fluid field.
We believe that the wavelets may become standard tool
for the identification of multi-scale turbulent flow. To
achieve this aim, one of important work is develop a

better interpretation of wavelet results, i.e., we should
associate wavelet results with turbulent structure.

In the near future one of challenging work is to
characterize the three-dimensional flow structure by
utilizing wavelets with the development of flow
measurement technology.

As an application in the image processing of fluid
measurement technology, wavelets will also be a
promising technique.
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