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Abstract : A modal wavelet transform, which overcomes the intrinsic data number limitation of
power of two to conventional wavelet transform, has been applied to analysis of axial and eddy
pseudo velocity fields, standard PIV velocity field and experimental PIV measurement. The
modal wavelet transform is compared with the discrete wavelet transform in order to select the
optimum basis function among Neumann, Dirichlet and Green function types basis functions.
Consequently, it is verified that Neumann type function is the best basis because the correlation
of Neumann type basis function is higher and the root mean square is lower than the other basis
functions. Also, the decomposition vector patterns by Neumann type are similar to that by
conventional Daubechies basis function of 4th order.

Keywords : Modal wavelet transform, Discrete wavelet transform, PIV, Image analysis, Wavelet
basis.

1. Introduction

PIV (Particle Image Velocimetry) is utilized widely and generally as an measurement technology for
visualizing the velocity distribution of fluid flow (Christensen et al., 2005; Kim et al., 2004). From the
obtained velocity distribution by the PIV, the more accurate analysis is also performed by extracting
the features of the more detailed flow structure, or removing the noise. The continuous wavelet
transform (Farge, 1992) has been utilized as a method of the noise removal and a method of
extracting the features of the detailed flow field from a PIV image. For example, Camussi (2002)
performed characteristic extraction of eddy structure by using the continuous wavelet transform
based on the Mexican hat function for a PIV velocity distribution of a jet. Schram et al. (2004)
performed characteristic extraction of eddy structure by using the continuous wavelet transform
based on the Maar function for a PIV velocity distribution of back step flow. Ozsoy et al. (2005)
performed characteristic extraction of eddy structure by using the continuous wavelet transform
based on Maar function for a PIV velocity distribution of a cavity flow. However, the velocity field
cannot be analyzed in a multiresolution level since this continuous wavelet transform is not an
orthonormal. Therefore, recently the discrete wavelet transform that can perform multiresolution
analysis at each frequency has been developed (Hernandes et al., 1996). For example, Li et al. (1999)
removed the noise and extract the flow structure by using discrete wavelet analysis based on the
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Daubechie function for the concentration jet image, whereas Weng et al. (2001) removed the noise by
using the discrete wavelet transform that based on the Mallat function for the PIV velocity
distribution. Li et al. (2002) performed the characteristic extraction by using the discrete wavelet
transform for a PIV velocity distribution of lobbed jet.

As mentioned in the above, wavelet transform is very effective to extract characteristic of
detailed flow structure from a PIV velocity distribution. However, there is a disadvantage that it is
impossible to use the discrete wavelet transform if the number of the analyzed data is not power of
two. In order to solve this disadvantage, Saito (2002) made the basis function by the modal matrix
obtained from the governing equation of an image, and proposed a new wavelet transform, called
modal wavelet transform. The modal wavelet was applied to the electromagnetic field analysis even
if the number of data is not power of two (Endo et al., 2002).

In this study, the effectiveness of the modal wavelet transform in comparison with the discrete
wavelet transform is evaluated. A modal wavelet transform and a discrete wavelet transform are
conducted to pseudo, standard and experimental vector PIV images of 16 pixel x16 pixel. It aims to
select the most effective basis function of the modal wavelet transform in comparing each basis
function from the result of integrated multiresolution.

2. Theory of Modal Wavelet Transform

2.1 Derivation of Basic Equation

The Poisson equation is assumed as the governing equation of image by Saito (2002):

eViU =—c. o))
Where ¢ is a middle parameter of the image, U1is the scalar potential and o is the source densities of
the image of Laplace operator. Because scalar potential U of a pixel in the Eq. (1) is continuous
quantity, it can be discretized by the differential calculus system and integral calculus system. As
differential calculus system, the finite three points difference method that assumed a pixel position a
node is used. When each image pixel is described for the scalar potential U related to the space
differential calculus, the Eq. (2) can be obtained:

v2p - U  Usp=2U+Ussi ©
ox? »?
where xisanode (x=1, 2, ..., -1, n) and Ais the distance between nodes. When the Eq. (2) is shown
in one dimensional matrix of the image data, the Eq. (1) can be written as
LU =8 (3)

When this Eq. (3) is applied to the two dimensional image data, the Eq. (3) can be shown as the Eq.
(4):

Lo’ =8 (4)
Tindicates the transpose matrix. Because the image Uhas the nx X nypixel in the row and column,
is the symmetric matrix of the row nx and the column n, with a characteristic of normal value as the
Laprashian and the coefficient matrix, Sis an image of the source density with the pixel of nx X n;. As
a boundary condition of coefficient matrix Z, the condition is shown in two types which are the
Diricret and the Neumann types. On the other hand, because the boundary value problem of liner
differential equation is changed to an integral equation by using the Green function, the Eq. (1) can

be given as

U= é [e(r)odr (5)

Because the Green function g () in the Eq. (5) becomes infinite when the function is g (0), the
minimum distance is assumed to zi,; = 1, and the initial condition is assumed to the Eq. (6).

1 (izj) , g=1 (=) (6)

g = —
1,7

Here, 7 and ;j indicate the distance between the source (=1, 2, ..., m1, n) and the reference (j =
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1,2,...,m-1,n). When the Eq. (6) is discritized and expressed in matrix, the equation can be shown as

U=GS ,G'U=8 @)
When an image is nx X ny pixel in the row and column, G"! is the symmetric matrix of the row nr and
the column ny, and the coefficient matrix that has the characteristic of a normal value. In addition,
when this Eq. (7) is applied to the two dimensional image data and displayed in the matrix, this
equation can be shown in:

clveH? =8 ®)
The discrete wavelet transform that is represented by typical Daubechies basis function has a
characteristic shown as

wiw =1 ©
where Wis the orthonormal basis function. /is the unit matrix having the same order as the basis
function W. When the scalar potential /has “a” element, there are “a”orthonormal eigen value A;(7=
1,2, ..., n-1, n) because the coefficient matrix L and G are positive definite symmetric matrix, And
there are eigen vector vi(i=1, 2, ..., n-1, n) corresponding to the eigen value A;. Here, this eigen vector
is a column vector. The modal matrix W ecan be shown as

W= [V] V2 o Va-g Va] » Vi= [VI;] Vig - Vi,a]T (10)
Here, because the modal matrix Win the Eq. (10) is the orthonormal system, it has a characteristic
shown in Eq. (9).

The modal matrix W consisting of the eigen vector as the column vector can be used as the
basis function of the discrete wavelet transform. The wavelet transform that uses this modal matrix
as a basis function is called a modal wavelet transform (Saito, 2002). In the basis function of the
modal wavelet transform, there are three types of the Neumann type, the Dirichlet type calculated
by the differential calculus system of the Eq. (4), and the Green function type calculated by the
integral calculus system of the Eq. (7) . The basis functions to nx X n, = 16 pixel x 16 pixel are shown
in Figs. 1(a)-(c). The typical discrete Daubechies basis function of 4th order is shown in Fig. 1(d).
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Fig. 1. Basis Functions of modal wavelets.

2.2 Characteristics of Basis Function and Multiresolution

The characteristics of the modal wavelet transform are examined by the Fourier transform for the
wave shape of the basis function. The Fourier spectrum of the modal wavelet basis function is shown
in Figs. 2(a)-(c), and the Fourier spectrum of typical discrete Daubechies basis functions of 4th order
is shown in Fig. 2(d). The Fourier spectrum of typical discrete wavelet transform decreases the peak
position and it changes to the high frequency when its level increases. On the other hand, the Fourier
spectrum of the modal wavelet transform dose not decrease the peak position and it changes to a
higher frequency when its level increases. In addition, the resolution between the level of modal
wavelet is more than that of typical discrete wavelet. Table 1 shows the relationship of the peak
frequency at each level by the Fourier transform. These levels are equivalent to each peak frequency
1/16, 2/16, 4/16, and 8/16 pixel from Table 1.

When Uis a two dimensional vector velocity data, the x component is Uy, and the y component
is Uy, each modal wavelet transform can be expressed by
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Se=wow? , s,=wu,w"
The inverse modal wavelet transform can be given by the Eq. (12):
Ue=wrsw , U, =w'sw (12)

Because the modal wavelet transform is the orthonormal transform, the multiresolution analysis can
be expressed by

U, =WIlsw=wlslw+wlsZw+ - +wlsrw+wlsiw (13)
U, =WTs w=wlsiw+wlsiw+ +wisr'w+wlsiw (14)

(11)

Where W7S Wand W7S,! W show the level 1 that is the lowest frequency, and W75y Wand WS W

show the level n that is the highest frequency level. Based on the Eqgs. (13) and (14), the integrated
multiresolution is defined as

Integrated Level 2= WIS W+ WISZAW , WIS/ W+ WISZW (15)
Integrated Level 3= WTS W + WTS2W + WTS AW | WIS W + WTS2W + WTS 2W (16)
Integrated Level n= WIS/ W+ -+ WISaW, WISAW+ -+ WIS W amn

The Neumann, the Diricret and the Green function types shown in Fig. 1 are used for the basis
function in the modal wavelet transform. The Daubechies basis function of 4th order is used as a
typical discrete wavelet transform. The integrated multiresolution were carried out by using Eq. (17)
as a method of comparing these basis functions. The correlation coefficient C* and the root mean
square RMSL and RMS/~ of the x and y components are calculated by the result of the integrated

multiresolution. L shows the number of integrated resolution level of the integrated multiresolution.
CL RMS " and RMS/ can be defend as
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Where, Lrl'cwlILshOWS the (7, j ) value of L integrated level image decomposed by the integrated
multiresolution, U7'#in shows the (7, /) value of an original PIV image which consist of T7and U’ n«
and nyare the space resolution in xand y directions. 7and jshow the pixel value of the image in the x
and the y directions, n. and 1, show the numbers of pixels of the image in the x and y directions. In
this study, ny = 16,12, =16 and L =1 to 16.
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Fig. 2. Fourier spectrum of modal wavelet transform.
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Table 1. Relationship between wavelet level and peak frequency.
Peak frequency of Fourier

Neumann, Dirichlet, Green Functions Daubechies function of 4thorder transform [1/Pixell
Level 1 Level 1 1/16
Level 2, 3 Level 2 2/16
Level 4, 5 - 3/16
Level 6, 7 Level 3 4/16
Level 8, 9 - 5/16
Level 10, 11 - 6/16
Level 12, 13 - 7716
Level 14, 15, 16 Level 4 8/16

3. Comparison of Basis Functions by Pseudo Velocity Field
3.1 Multiresolution Analysis of Axial Flow

A pseudo velocity field of axial flow is shown in Fig. 3 based on the followin equation:

U=U+U' (20)
In the figure, velocity fluctuation U are added to uniform axial flow Uin the ydirection. The uniform
axial flow in the direction of y is the 16 pixel x 16 pixel vector image whose x component defined as
0.0, y component as 1.0. The x and y components are the 16 X 16 vector image that is random real
number in 0.0 from 0.25. The basis functions in the modal wavelet transform are compared by
CLEMSL and EMS~A. The multiresolution based on Neumann, Diricret, Green function types and
Daubechies basis function of 4th order are shown in Figs. 4(a) - (d). These results indicate the levels 1
and 3 in the modal wavelet multiresolution and the levels 1 and 2 in the Daubechies basis function of
4th order representation. Each basis function extracts dominant flow pattern from the low frequency
to the high frequency components. When it is examined in detail in the Neumann type of Fig. 4(a)
and Daubechies basis function of 4th order of Fig. 4(d), the main component is extracted in the level
1; moreover, the small values are noticed at the level 3 in Fig. 4(a-2) and level 2 in Fig. 4(d-2). On the
other hand, in the Diricret type of Fig. 4(b) and the Green function type of Fig. 4(c), it is noticed that
the main component is not extracted at the level 1. In addition, at the level 3, it is evident that there
exists a component that the former pseudo velocity field is not supposed to have.

Next, CT calculated from the integrated multiresolution is shown in Fig. 5. As a result, C
obtained from the Neumann type and the Daubechies basis function of 4th order indicates
particularly the high correlation value. This indicates that the full range frequency components are
accurately extracted. On the other hand, CT obtained from the Diricret type and the Green Function
types exhibit low value from the level 1 to 7. This shows that the low frequency component is not
accurately extracted. And RMSt and RMS; calculated by the integrated multiresolution are shown
in Figs. 6(a) and (b). With regard to KMS;L, the Neumann type and Daubechies basis function of 4th
order show the low value. This result indicates that the low frequency component is accurately
extracted. On the other hand, EMS:L in the Diricret type and the Green function type shows that the
high value from the level 1 to 7. With regard to EMS;X the Neumann type and the Daubechies basis
function of 4th order shows low value from the level 1 to 11. This result shows that the low frequency
component is accurately extracted. On the other hand, RMS,* of the Diricret and the Green function
types show the extremely high value from the level 1 to 7. This result shows that the low frequency
component is not accurately extracted. As a result of analyzing pseudo axial flow, the Neumann type
maybe considered as the optimum basis function because the Neumann type has similar
characteristic to Daubechies basis function of 4th order, whereas the Diricret and Green function
types have the lower C and the higher BRMSZ, especially in the low level.
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3.2 Multiresolution Analysis of Eddy

The pseudo velocity field of eddy is assumed as

Fig. 6. RMS of integrated multiresolution of pseudo velocity field.

U=U+U’ R i:[sin%i+cos9—nj] (21)
16 16

where, 7 and jare respectivery x and y pixel position, {’is x and y fluctuation components of the 16
pixel X 16 pixel random noise from 0.0 to 0.25. The 7 distribution is shown in Fig. 7. The
multiresolution results calculated by Neumann type, Diricret type, Green function type and
Daubechies basis function of 4th order are shown in Figs. 8(a) - (d). These figures indicate the levels 1
and 3 of the modal wavelet transform and the levels 1 and 2 of the discrete wavelet transform,
respectively. The low to high frequency components are extracted by the decomposition of the pseudo
eddy for all basis functions. Moreover, The component that the original velocity field dose not have 1s
not shown in the level 1. It is understood that there exists a component that the pseudo eddy is not
supposed to have.

Next, CT calculated from the integrated multiresolution is shown in Fig. 9. Ct obtained from
the Neumann type and the Daubechies basis function of 4th order indicate low correlation from the
level 1 to 7. More than the integrated level 9 in each type C' is almost same RMS - and RMS/*
calculated by Eq. (19) are shown in Figs. 10(a) and (b). RMSL and RMS,. show the similar value
irrespective of the integrated level for all basis functions.
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3.3 Standard PIV Velocity Field

The standard velocity field is shown in Fig. 11. It is calculated by the first and second 2D standard
images that exists in the web site (http://piv. vsj. or.jp/piv/iimage.html) (Okamoto et al., 1997). The
velocity field is the 16 pixel x 16 pixel vectors calculated by PIV correlation method. The
multiresolution results calculated by the Neumann type, the Diricret type, the Green function type
and Daubechies basis function of 4th order are shown in the Figs. 12(a) - (d). These figures typically
show the levels 1 and 3 of the modal wavelet transform and the levels 1 and 2 of the discrete wavelet
transform. On the whole, the standard velocity field can be analyzed from the low to high level, can
be extracted from the low to high frequency. In each basis function, the same component are
extracted for the x direction in the level 1, and in the level 3 of modal wavelet transform or the level 2
of the discrete wavelet transform. Next, (% calculated by integrated multiresolution is shown in Fig.
13. As a result, Neumann type, Green function type and Daubechies basis function of 4th order are
the high values in the integrated low level from the level 1 to 7. This shows that the low frequency
elements were extracted accurately by Neumann type and Green function type. And, RMS:t and
RMS,/% calculated by the integrated multiresolution are shown in Figs. 14 (a) and (b). As for RMS.Z,
the Neumann, the Green function types and Daubechies basis function of 4th order exhibit the low
values from the integrated level 1 to 8. This indicates that the low frequencies are extracted
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accurately. On the other hand, the Diricret type exhibit the high value from the integrated level 3 to 9.

2
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This implies that the low frequency can not be extracted accurately.
According to the result of analyzing the standard velocity field, the Neumann type and the
Green function type have the same characteristic as typical Daubechies function of 4th order.
Because the Diricret type has the different characteristic in the low level, the optimum basis function
of the modal wavelet transform is the Neumann type or the Green function type.
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Fig. 14. RMS of integrated multiresolution of standard PIV

4. Application to Experimental PIV Vector Field

The experimental setup shown in Fig. 15 1s composed of a vertical pipe, a compressor, a controller of
the compressor, a laser sheet, two CMOS cameras, a pulse generator and a computer. The acrylic
vertical pipe is 600 mm height, the inside diameter is 100 mm. The compressor provides the
compressed air and the smoke including the tracer particles, and the flow rate can be adjusted by the
controller. The light source of the laser sheet is Nd-YAG, and its output is 120 mdJ. The Megaplus
made by Kodak is used as the CMOS camera and its resolution is 1008 pixel x 1018 pixel. To
simultaneously conduct irradiation of the laser sheet and photographing by the CMOS cameras, the
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pulse generator LC880 and the application software Labview were used. And the compressed air
including the smoke were supplied from the vertical pipe bottom at the flow rate of 2.43 X 103 m3/sec
and the mean velocity was about 0.38 m/sec and Reynolds number Re = 2500. The velocity field of
resolution 16 pixel X 16 pixel were obtained from sequential photographs from 1 A¢sec to 180 A¢ sec
by correlation method. The instantaneous velocity field at 30 A¢ sec is shown in Fig. 16 as a
representative.

(' calculated from the integrated multiresolution is shown in Fig. 17. As a result, C? of all
types indicate particular high correlation value. And EMS:L and BEMS,! calculated by the integrated
multiresolution are shown in Figs. 18(a) and (b). As for RMS:~, the Neumann type has the smallest
value. However, the values of the other types are very high irrespective of the integrated level. With
regard to RMS,L, the Neumann type has the smallest value. However, the values of the other types
are very high irrespective of the integrated level. The Neumann type has similar characteristic of
Daubechies basis function of 4th order; whereas, the Diricret type, the Green function type. As a
result of analyzing one example of experimental PIV velocity field, the Neumann type is considered
as the optimum basis function because RMS'is the smallest irrespective of the integrated level.

Laser Sheet

(Nd-YAG 120m1))

Pulse Generator
(LC880)
Camera [
(Megaplus 1008 X 1018)
TS
157 ™,
5 ﬁ —
Camera 2 Computer To 1y
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2oy
Lower _E‘m::t:.:::::::j:::
Palt 'Q':Snlitl:.::lvl:::
Pressurised air & j L sl
Tracer particle 6 v e
Controller 4 |
R ey

0246810121416
x [Pixel]

Compressor

Fig. 15. Experimental setup. Fig. 16. Instantaneous velocity image.
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5. Conclusions

The flow characteristics were extracted from the pseudo and experimental PIV velocity field by the
integrated multiresolution of the modal wavelet transform and the discrete wavelet transform of the
Daubechies function of 4th order. The Neumann, the Diricret and the Green function types are used
for the basis function of the modal wavelet transform. The followings results can be included.
1) By analyzing a pseudo axial velocity field, the Neumann type has the highest correlation of
integrated multiresolution and the lowest root mean square of integrated multiresolution. The
values of the correlation and the root mean square are close to that of the typical Daubechies
basis function of 4th order.
2) When analyzing a pseudo velocity field of eddy, the all basis functions have the similar
values of the correlation and the root mean square of integrated multiresolution.
3) With analyzing a standard PIV velocity field, the Neumann type and Green function type
have the highest value of the correlation and the lowest value of root mean square of the
integrated multiresolution. The values of the correlation and the root mean square are close to
that of the typical Daubechies basis function of 4th order.
4) From the result of analyzing one example of experimental PIV vector field. All types do not
have large difference of the correlation. The Neumann type has the smallest value of root mean
square of the integrated multiresolution. Overall, the optimum of the modal wavelet transform
is the Neumann function.

Acknowledgement

This research was carried out as part of the research activity founded by the Academic frontier
promotion program of MEXT in Japan.
The authors wish to thank Mr. H.Miura of Okamoto Industries Inc. for great help.

References

Camussi, R., Coherent structure identification from wavelet analysis of particle image velocimetry data, Experiments in
Fluids, 32-1 (2002), 76-86.

Christensen, K. 1. and Wu, Y., Visualization and Characterization of Small-Scale Spanwise Vortices in Turbulent Channel
Flow, Journal of Visualization, 8-2 (2005), 177-186.

Endo, H., Marinova, [., Hayano, S., Saito, Y. and Horii, K., Modal-wavelets and their applications, Proceeding of the 2nd Japan,
Australia, New Zealand Joint Seminar on Applications of Electromagnetic Phenomena in Electrical and Mechanical
Systems, (2002), 24-25.

Farge, M., Wavelet transforms and their applications to turbulence, Ann Rev Fluid Mech., 24 (1992), 395-457.

Hernandes, E., Weiss, L. G., A First Course on Wavelets, (1996), CRC Press.

Kim, W., Sung, J., Yoo, J. Y. and Lee, M. H., High-definition PIV Analysis on Vortex Shedding in the Cylinder Wake, Journal of
Visualization, 7-1 (2004), 17-24.

Li, H., Hu, H., Kobayvashi, K., Saga, T. and Taniguchi, N., Wavelet Multiresolution Analysis of Stereoscopic Particle-Image
—Velocimetry in Lobed Jet, A.LA.A. J., 40-6 (2002), 1037-1046.

Li, H., Takei, M., Ochi, M., Saito, Y. and Horii, K., Application of Two-dimensional Orthogonal Wavelets to Multiresolution
Image Analysis of a Turbulent Jet, Transactions of the Japan Society for Aeronautical and Space Sciences, 42-137 (1999),
120-127.

Okamoto, K., Nishio, S., Kobayashi, T. and Saga, T., Standard images for particle imaging velocimetry, Proc. PIV-Fukui '97,

- (1997), 229-236.

Ozsoy, E., Rambaud, P. E., Stitou, A. and Riethmuller, L. M., Vortex characteristics in laminar cavity flow at very low mach
number, Experiments in Fluids, 38-2 (2005), 133-145.

Saito, Y., Smart visualized information processing (3) -Image Processing-, The Japan Society of Applied Electromagnetics and
Mechanics, 10 (2002), 170-177 (in Japanese).

Schram, C., Rambaud, P. and Riethmuller, L. M., Wavelet based eddy structure education from a backward tacing step flow
investigated using particle image velocimetry, Fxperiments in Fluids, 36-2 (2004), 233-245.

Weng, G. W., Fan, C. W, Liao, X. G. and Qin, J., Wavelet-based image denoising in (digital) particle image velocimetry, Signal
Processing, 81, (2001), 1503-1512.



Tanaka, K., Takei, M., Saito, Y. and Doh, D. H. 455

Author Profile

I

2
2

Kenji Tanaka' He received his Bachelor degree in Mechanical Engineering in 1986 from Nihon
University, Tokyo Japan. He also received his M.Sc.(Eng.) degree in Mechanical Engineering in 1995
from Nihon University. He has worked for Okamoto Industries, INC. since 1986. His current position is
a manager of cooperate administration. His research interests are Pneumatic conveying and PIV.

Masahiro Takei: He received his M.Sc.(Eng) in Resource Engineering in 1991 from Waseda University,
Tokyo Japan. He also received his Ph.D. in Resource [ingineering in 1995 from Waseda University. He
has worked in Department of Mechanical Engineering, Nihon University, Tokyo Japan as an associate
professor since 1995. His research interests are Computed tomography, Multiphase flow, Image
processing and PIV.

Yoshifuru Saito: He received his|POCIOIbf engineering degree in|El€ctrical | Engineering in 1975 from

Hosei University. He is currently a Professor at Faculty of [ingineering, Houei University. His current
research interests are quantitative Computational Electromagnetics, Computational Inverse Analysis,
Smart Visualized Information Processing, Power Electronics Power Magnetics, Micro Machines and
Computational Literature.

Deog Hee Doh: He received B.A. at Korea Maritime University (KMU) (1985). He finished his M.Sc.
degree at the graduate school of KMU(1988). He received his PhD. degree at the Department of
Mechanical Engineering of the University of Tokyo, Japan in 1995. His graduate works is on the
development of 3D-PTV and simultaneous measurement techniques on temperature and velocity fields
for thermal flows. He worked as an invited researcher for the Advanced Fluid Engineering Research
Center (AFERC) in 1995. He has been working for Korea Maritime University since 1995 at the Division
of Mechanical and Information Engineering. His research interests are to develop spatial measurement
techniques such as 3D-PIVs, 3D-PTVs, micro-/nano-4D-PTVs for nano-/bio- thermal flows,



齋藤兆古
テキストボックス
Doctor

齋藤兆古
テキストボックス
Electrical




