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This paper describes about the physical and mathematical backgrounds of the pilot point
solutions on the sampled pattern matching method. Most of the inverse problem in

electromagnetic fields reduces to solving for a following integral equation:
X= .[ GYdV,

where X,Y,G and V are the known field vector, unknown source vector, Green's function or
its space derivative and volume containing the unknown source vector, respectively. Because
of the difficulty to evaluate the exact solution vector Y from the locally measured field of X,
our sampled pattern matching method assumes that the magnitude of a source vector in each
position can be represented by the space occupying rate of unit source vector. This means that
the large and small source vectors are represented by the large and small number of unit source
vectors in the problem region V', respectively. Physically, this transformation corresponds to
the pulse width modulation technique in the power electronic engineering. Mathematically, this

transformation is that the original governing equation is assumed to be modified
XM - fG“”&dP
P

where superscript [N] refers to the normalized quantities. Also, & and P are the vector delta
function representing the source vector Y and (|G|/|X|)V, respectively. A methodology to

decide the existence of the vector delta function is one of the key tdeas of the sampled pattern
matching method.
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1. INTRODUCTION

With the developments of modern digital computers, numerical methods, e.g., finite element,
finite difference and boundary element methods, for the regular problems have been developed
and spread as one of the most effective analyzing tools for the engineering as well as physical
science. As a result, we are currently available various commercially based packages for the
regular problem analysis. When we employ the existing numerical approaches for the inverse
problems, a large number of try and error iterations should be carried out. This spurs the
development of the methodology for the inverse problems.

Further, development of the high sensitive magnetic field measurement device based on the
superconducting quantum effect, i.e., SQUID flux meter, stimulates the establishment of the
inverse analysis methodology, because the human heart and brain diagnosis from the local \
magnetic field measurement essentially require the solution of the inverse problems.

Previously, we have proposed the sampled pattern matching (SPM) method for the inverse
problems in the electromagnetic fields. Successful results were obtained by our SPM method
for the medical as well as non-destructive testing applications. Particularly, we have succeeded
in searching for the Wolf-Parkinson-White (WPW) syndromes from the magnetocardiograms,
and the plural defects in the conductive materials [1-8]. i

This paper describes about the physical and mathematical backgrounds of the pilot point
solutions on the SPM solution procedure. A key idea of the SPM method is that the magnitude
of a source vector in each position is assumed to be represented by the space occupying rate of
unit source vectors. This means that the large and small source vectors are transformed into
the large and small number of unit source vectors in the problem region, respectively.
Physically, this transformation corresponds to the pulse width modulation (PWM) technique in
the power electronic engineering. Mathematically, this transformation is that the solution of
the inverse problems is assumed to be represented by a combination of the vector delta
functions. A simple example shows the concrete process of the SPM method. )

2. INVERSE PROBLEMS IN ELECTROMAGNETIC FIELDS !

2.1. Classification of the inverse problems

Before to move on a general case, let us consider a simple magnetostatic field as a starting
point. Assuming the Coulomb gauge, a governing equation for the magnetostatic field system
is t
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(l)v’A --J, (1)
7

where A, J; and p are the magnetic vector potential, source current density and magnetic

permeability, respectively. This equation can be modified by introducing the magnetic
permeability of air pu, as

(EL)VA::::EG)—(EL)]“ @

‘where J, is an equivalent current density caused by medium discontinuity. Imposing a

homogeneous open boundary condition to (2), we have
A= JGqust +JGqudea (3)
14 vV

where G is a Green's function. It must be noted that the equivalent current density J, is a

function of the vector potential A, also this vector potential A is a function of the source
current density J;. Thereby, we have

I = {5, @
Likewise any electromagnetic fields can be reduced to solving for a following type integral
equation:
x-jGstV+jGY,dV, )
14 14

;

where X,Y;,Y; and G are the field vector, field source, equivalent field source caused by
medium discontinuity and Green's function or its space derivative, respectively. Similar
reason to those of (4), following relationship is held:

Y, =/ (Ys). ©)

a)Inverse parameter problems At first, let us consider a problem that a part vector AX, of
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the entire field vector X and field source Y, are given, then we have to evaluate a medium
parameter in the problem region. From (5), it is obvious that the field vector X is caused by the
two input field sources Yy and Y, i.e,,

X, + X, = [GYsdV +[GYaV, )
4 14

where the field vectors X, and X correspond to the first and second terms on the right,
respectively. From (5) and (7), it is possible to obtain a following relationship:

AX, = AX, - AX,
- [oY,av, (8)
| 4

where AX, is a part vector of X in (7) and AXj is a part vector of X; for which is calculated
from the given field source Yy imposing no medium discontinuous condition. The problem
governed by (8) is called the inverse parameter (IP) problems. Because of (6), if a set of
reasonable part vectors AX, is given by scanning the field source Y;, then this IP problem can
be solved uniquely. Most of the non-destructive testing for defect identification in the metallic

materials is reduced into this type IP problem [5-7].
b) Inverse source problems Secondly, let us consider a problem that a part vector AX of the

entire field vector X in (5) is given and there is no medium discontinuity, then we have to
evaluate the field source Y. No medium discontinuity means no equivalent field source Y in

(5). This leads to a following governing equation:

AX, = [GY,aV. ©)

The problem governed by (9) is called the inverse source (IS) problems. Because of the
lack of information, it is difficult to evaluate a unique solution Y for this problem. But most

of the valuable inverse problems to be solved become this type IS problem. Also, the IP
problem without reasonable information is fallen into this type problem. Thus, we have to
attack the inverse source problem.

2.2. Sampled pattern matching method
A key idea of the SPM method is that the magnitude of a source vector in each position is
assumed to be represented by the space occupying rate of unit source vectors. This means that
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the large and small source vectors are transformed into the large and small number of unit
source vectors in the problem region, respectively. Physically, this transformation corresponds
to the PWM technique in the power electronic engineering. Mathematically, this
transformation is that the solution of the inverse problems is assumed to be represented by a

combination of the unit vector delta functions.

a) Physical concept of the SPM method As shown in Fig. 1, the fields are spreading from

ELD MEASURING SPACE
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FIELD SOURCE DISTRIBUTING SPACE

Figure 1. Schematic diagram of an inverse source

problem.

the field source distributing space and only
the limited local fields can be measured.
Since we are given only a part vector AX, of
the entire field vector X in (9), it is difficult
to obtain an exact field source Yg. Thus, we
try to represent the source vector pattern in
terms of a combination of unit pulse. Figures
2(a) and 2(b) show an example of original
field source pattern and its PWM
representation, respectively.

Consideration of Fig.2 suggests that the

PWM representation makes it possible to transform the amplitude of original field source into
the concentrating ratio of the unit pulse in position. This means that it is impossible to evaluate
the amplitude of field source but possible to evaluate the position of unit pulse from the known

field vector AX.
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Figure 2. An example of the PWM representation of the field source Y; pattern.(a) Original
field source pattern Y, and (b) its PWM representation.
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(a) Original field pattern. (b) Field pattern by PWM source.

Figure 3. Originally given field pattern of AX, and those by PWM field source. (a) Originally
given field pattern of AX,, and (b) the field pattern given by the PWM field source. "'
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Figure 4. Improvement by increasing the number of pulses. (a) PWM field source
representation, and (b) field pattern caused by the PWM field source employing twice number
of pulses to the Figs. 2(b) and 3(b).

Probably every one will has a question about a difference between the originally given field
AX, and those given by the PWM field source. Figures 3(a) and 3(b) show the originally given
field vector pattern of AX, and those given by the PWM field source, respectively. As a result
of Fig. 3, it is revealed that the field can be reproduced not only by the original field source Y;
in Fig. 2(a) but also by the PWM field source in Fig. 2(b). Also, every one would like to know
the result when increasing the number of pulses in Fig. 2(b). Figure 4(a) and 4(b) show the
PWM field source and its field pattern employing twice number of pulses (200) to those of
Figs. 2(b). Obviously, the field pattern in Fig. 4(b) is fairly improved comparing with those of
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(a) Inverted field source pattern (b) Inverted field source pattern

from 20 field points. from 40 field points,

Figure 5. Inverted field source patterns. (a) Field source pattern inverted from 20 field
measured points, and (b) field source pattern inverted from 40 field measured points.

Fig. 3(b).

Finally, is it possible to invert from the PWM field source pattern to the original field source
pattern 7 Answer of this question is yes but only approximately possible. This is because the
governing equation (9) never yield a unique solution. Figure 5 shows the inverted field source
patterns. Left- and right-side results were inverted from 20 and 40 field measured points,
respectively. Comparison the results in Fig. 5 with the exact field source pattern in Fig. 2(a)
suggests that the number of field measured points [i.e., the order of field vector AX, in (9)]

reflects to the accuracy of the inverted results.

b) Mathematical background As shown above, our SPM method transforms the original
field distribution Yy in Fig. 2(a) into the PWM field source pattern P in Fig. 2(b) using the
given field AX,. This transformation is carried out in a following way. At first, the governing
equation (9) is assumed to be modified into

AXWM o j G™aqp, (10)

P

where superscript [N] refers to the normalized quantities. Also,  and P are the vector delta
function representing the source vector Y and (|G|/|AX, |}V, respectively.

Discretizing (10), we have
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AXIM - 3 APG!
P Z i~ (11)

= DP,

where m denotes a number of subdivisions of the field source existing space. Denoting n as a
number of field measured points (i.e., the order of vector AX,), D becomes a n by m
rectangular system matrix composed by the column vectors G!"(i = 1,2,,m), and P is a m-th
order PWM field source vector whose element is AP, (i =1,2,-,m). In order to evaluate the

vector P in a least squares sense, multiplication of D" to the both sides of (11) yields

D'AX™ = DDP, (12)
or
P-|D"D[ DT AXY. (13)

From (13), it seems to be able to evaluate the solution vector P. But, this is practically
difficult, because the column vectors G!*'(i = 1,2,,m) constituting the system matrix D are
not linear independent. In the other words, the elements of matrix D have been obtained by
discretizing the same continuous function G, so that the matrix D™D becomes a singular
matrix. Thus, it is difficult to evaluate the vector P by means of the conventional least squares
fit.

Consideration of the matrix D" D in (12) reveals that the diagonal elements take 1 but the
other elements are always less than 1 because each of the column vectors GI¥'(7 = 1,2,,,m) in
D is normalized. Thereby, the matrix D" D may be regarded a unit matrix with order m. This
assumption means that (12) yields an approximate solution of P, which coincides with those of

a factor analysis. Further consideration of (12) suggests that the elements in (12) take the
values between -1 and 1. Namely, the elements AP, ,(i =12, -,m) in the vector P are

Tn
AR, -—A—x—‘i—&, i=1,2,°,m, (14)

AX, |G,

where the elements AP, (i=12, .,m) of P are called the pattern matching figures.

Since we have to decide the existence of vector delta function & in (10) by the least squares
sense, the SPM method assumes that only one element taking the maximum pattern matching
figure in (12) have a unit vector delta function. If the AP, takes the maximum, then this point A
is the first pilot point and its associated pattern vector G, is called the first pilot pattern. To

decide the second pilot point, let us assume that (11) is modified to
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v o ) b &d
AX}" = 3 AP[G, +G ] as)

=D'P',

where D’ and P' are the n by m-1 rectangular matrix and vector with order m-1. Similar to the
first pilot point searching process, the second pilot point is decided as the maximum element of

[D] X «[D] D'P'. (16)

Continuing the similar processes of (11)-(16) until the peak value of pattern matching figure
is obtained, the field source Yy is transformed into the PWM field source pattern P. This
transformation is called the SPM transformation. Also, obtained solution is called the pilot
point solution or PWM solution.

It must be noted here that the SPM transformation can be carried out in the two different
ways. One is the adding process of a unit vector delta function starting the zero field source
condition [AP, = 0,(i =1,2,-,m)], and the other is the deleting process of a unit vector delta
function starting the full field source condition [AP, = 1,(i = 1,2,-,m)]. Practical examples of
the PWM solutions shown in Figs. 2(b) and 4(a) were evaluated by the deleting process,
because the deleting process yielded a larger peak pattern matching figure. Figures 6(a) and
6(b) show the convergence of the pattern matching figures for the adding and deleting
processes, respectively. The maximum pattern matching figures for the adding and deleting
processes were 0.982 and 0.999, respectively.
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(a) Adding process. (b) Deleting process.

Figure 6. Convergence of the pattern matching figure. Vertical and horizontal axes are the
pattern matching figure and number of pilot points, respectively. (a) Adding process and (b)
deleting process.
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Figure 7. Post-processed spectrum solutions by the second order least squares fit. Solid and
thin lines refer to the exact and evaluated field source patterns, respectively. (a) Field source
pattern inverted from 20 field measured points, and (b) field source pattern inverted from 40
field measured points.

The field pattern AX,' caused by the PWM solution P is simply evaluated by substituting the
PWM solution P into Eq. (11). Practically evaluated examples of the field patterns AX,' were
shown in Figs. 3(b) and 4(b).

The inversion from the PWM solution P to the original field source pattern S is carried out
by

S =D[X,'TM. . (17

The solution S given by (17) is called the spectrum solution whose examples have been shown

in Figs. 5(a) and 5(b). Further, it is obvious that the spectrum solutions S in Figs. 5(a) and 5(b)
can be fitted by the second order function of position. Figures 7(a) and 7(b) show the second
order least squares fit of the spectrum solutions in Figs. 5(a) and 5(b), respectively. From Fig.
7, it is observed that increasing the number of field measured points improves the solution.

3. CONCLUSION

As shown above, this paper has clarified the physical as well as mathematical backgrounds of
our SPM method. As a result, the SPM method is a nonlinear transformation method based on
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the least squares fit. Thus, the SPM method makes it possible to evaluate an approximate
solution of the inverse source problems.
The SPM solution process is summarized as follows.

1. Evaluate the PWM solution pattern P based on the approximate least squares sense.
2. Evaluate the field pattern AX,' from the PWM solution P.

3. Evaluate the spectrum solution S by the approximate least squares sense.

4. Post processing the spectrum solution.

Implementation of above SPM process is easily carried out by the Mathematica. All of the
examples shown in this paper were implemented by the Mathematica.
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