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INTRODUCTION

A knowledge of the magnetic fields in electromagnetic devices is of the ut-
most importance to the designer. With the development of digital computers,
the numerical methods are being extensively used to calculate the magnetic
fields in electromagnetic devices. The numerical method can be classified
into two main groups:. One is the finite difference method, which replaces
partial derivatives by divided differences; the other is the finite element
method which is based on variational formulations (e. g., Refs [1- 4]) .In ad-

dition to these methods, this chapter proposes ‘the magnetlc circuit method,
which does not require the approxlmate descrlptlon of -a solutlon but permits
great - freedom with respect to the- geometrlcal dlSpOSltlon and size of discrete

elements- [5,6]. The method described-in this paper is deduced by applying the
magnetic circuit theory to the small discretized elements; therefore, the.

boundary conditions which arise in magnetic field problems are automatically
satisfied. Moreover, the theory of magnetic' circuits is based on the discre-
tization of physical quantities, so that the magnetic fluxes instead of mag-
netic potentials are directly evaluated.

'To elucidate the effects of the eddy currents and the magnetic satura-
tion in an iron core, this paper examines the magnetlc fields of a simple
saturable reactor as an example. - :

THEORY OF MAGNETIC CIRCUITS IN TWO-DIMENSIONAL FIELDS

When we consider the magnetlc field_ region .shown .in Fig. l(a), we'can: -+ i -s
obtain the relation between magnetic field: 1nten51ty Habcda and current den-

51ty J, . as

i.J , :
f Hdl = [ J, .nda.- eY
abcda s, T3
-]

where dl denotes the infinitesimally small distance along the contour abcda,
and n is the unit normal vector on the .infinitesimally small area da. More-
over, the subscripts i,j refer to the mesh point in Fig. 1l(a). The magnetic
field intensity H, magnetlc flux density B, and magnetic flux ¢ are generally
related by ’



H=2 (2)
U

p=-2 (3)

where AS and p denote respectively the surface area normal to the flux path
and the permeability of the material.
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Fig. 1 Discretizatiqn-of two~-dimensional fields

Denoting the loop magnetic fluxes ¢l '¢1+l J'¢1 J+1° ‘enclosing each of
thelr mesh p01nts in Fig. 1(&), by means o% Eqs..(2) and (3), it is p0551ble
to write the left-hand term in- ‘Eq:; (1) -as-

aL R N a1

[HAL = (6, ~¢, . ) T —=Sa(p, ~p, ) f
abcda 103 1730 uAS; g9 e To3-10 g wAS (19
d ‘ a :
- . a1 . a1
(b, =b.. 0 L == s -e. ) = (a)
i,j "i+l,3 < uASi+(l/2) i,j "i,j+1 d pASj+(1/2Y,

where Asl+(l/2)'ASj+(l/2) denote the. surface_area normal to the loop magnetlc
fluxes. Equation (4) means that the magnetlc fleld 1nten51ty Hibcda as well as
magnetic flux densities around the mesh point (i,j) in Fig. 1(a) may take
different values with respect to the positions but the magnetic flux which
takes the paths along the contours ab,bc,cd,da may take a constant value. In
Eq. (4), the terms which depend on the geometrical shape as well as permea-
bility of the material are known as the magnetic resistances. The magnetic
resistance calculation with various geometrical shapes is:described in detail’



in Ref. [5]. Due to the nonlinear magnetization characteristic of iron, the
permeability H at each position takes a Aifferent value with respect to the
position. Therefore, it is assumed that the region which encloses each of the
mesh points in Fig. 1(a) may have a distinct value. Thereby, the magnetic
fields in the region containing iron may be calculated as if this region is
composed of different materials by the diffsrsnce of permeability. At the
interfaces of different materials, the tangential component of magnetic field
intensity as well as the normal component of magnetic flux density must be
continuous. In order to satisfy these boundary conditions, it is assumed that
the magnetic resistances in Eq. (4) are calculated on the subdivisions shown
in Fig. 1(b). This means that the current densities Ji,eri+l 3.91, j+l in
Fig. 1l(a) are not uniformly distributed on the surfaces S s 1+l j, 51
but concentrated on the conductors with infinitesimally sma l cross- sectlonal
.areas located at each of their mesh points (i,j),(i#l,j),(i,3j*1), because it
is difficult to calculate the magnetic resistance of the subdivision includ-
ing the current density.

Under the dynamic condition, the current Ii,5. which is flowing on the
conductor with infinitesimally small cross-sectional area located at the mesh
point (i,j) in Fig. 1(a), is divided into two components: one is the eddy
current due to the rate of change of magnetic flux $i,5 in time t; the other
is produced by the externally impressed voltage Ei,j, that is,

Ii,j = é.Ji.,jnda =_ (l/ri,j) [Ei'j—(d/dt)q‘:i'j] (5)
T . 1,]

where d/dt denotes the time derivative, and ri,; is the electric resistance
defined in the direction of z-axis in Fig. 1(a). The electric resistances
with various geometrical shapes are calculated in much the same way as the
magnetic resistance, since the ‘definitiodn .of ‘electri¢ .resistance with respect
to the geometrical shape is similar to the definition of magnetic resistance.
For further details, the reader should see Refs. [5-7]. When Egs. (4)
and (5) are substituted into Eg. (1), then we can formally obtain the magnet-

ic circuit equatlon in dynamic state as

@31,57%41, 5 Ree /2t 5,570 50 0B 2 0570, 5 Ri- av2)

1,7

H5 T ) BT R 5) (B (/9000 ] ©

where R1+(l/2) R]+(1/2) denote the magnetic resistances enclosing the mesh
point (i,j) in Fig. 1l(a). Each of these magnetic resistances is divided into
two magnetic resistances by the difference—of permeability (see Fig. 1l(c)).

In the region containing-iron, -the- permeablllty U depends on the magnet-
ic field intensity at each position, viz..

= £(H) B | (7)

where f(H) denotes a function of H. With Vi, j denoting the volume of the
region taking the permeability ¥i,j in Fig. 1(b), the relationship between
the magnetic field energy P, j stored in the region taking the permeability
Ui, j and magnetic field 1nten51ty HEEEHE'along the contour line abcda in- Flg.

l(a) is glven by

‘ 2
8
Fig T/ eReE g @)
The magnetic field enefgy P, ﬁagnetic resistance Rm,'and magnetic flux ¢ are
generally related by-
5
P = (1/2)R ¢" (9)

m



By means of Egs. (7)})-(9), it is possible to obtain the permeability Hi,j as a
function of the magnetic fluxes and of the permezbilities in Fig. 1l(b).

THEORY OF MAGNETIC CIRCUITS IN TEREE-DIMENSIONAL FIELDS

Most electromagnetic devices consist of conducting wires around an .
iron core. Wnen the exciting current is.flowing through .the conducting wire,

eddy currents in the iron core flow in a direction opposite to the exciting
current. The magnetic flux which passes through the path parallel to the
current-carrying coil can be neglected; .therefore, it is preferable to con-
sider the solid element as shown in Fig. 2(a). The permeability of this solid
element is determined from the magnetic field intensities in the radial and
in the tangential directions. Also, the central portion of the solid element
in Fig. 2(a) is one of the solid element; the permeability of this element
becomes a function of magnetic field intensity in the tangential direction,
because the magnetic resistance in the radial direction reaches infinitely

large values.
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Fig. 2 Discretization of three-dimensional fields.

For simplicity, it is preferable to consider a concrete example. One of
the simplest examples of electromagnetic devices is the saturable reactor as
shown in Fig. 2(b). This saturable reactor is.divided into My parts in the
radial direction and M7 parts in the tangential direction, taking into ac-
count the region containing air. Thereby, the magnetic field calculation of
the saturable reactor is reduced to evaluate the M(=MRxMT) loop magnetic
fluxes. Moreover, it is assumed that each of the exciting and search e
coils takes a distinct solid element which -is similar in shape to the solid
element shown in Fig. 2(a), andthat no:magnetic: :flux flows out:of the.:bound-
ary regions. The magnetic system of equations is preferably expressed in ma-
trix notation involving the magnetic flux vector § (the notation — refers to
the vector quantities), externally impressed voltage vector E, magnetic re-
sistance matrix R, electric conductance matrix G, and winding matrix W. By
introducing the relationship between the number of turns of coil and magnet-
ic flux linkage into Eg. (6), the magnetic system of equations is expressed

as



RO = WG[E - (d/dt)Wé] (10)

For notational convenience, let the subscript (1) refer to the quantities
related to the exciting coil; then the magnetic flux vector ¢, which is a
column matrix of order M, is written as

- T

b= (8 6,0 .o 0 (11)

where superscript T refers to the transpose of the matrix. Also, the externally
impressed voltage vector E, electric conductance matrix G, and winding matrix
W are respectively written as

E = [El;o, .. ,0]T (12)
; )

G = diag.[-]]_f % T (13)

- 1 52 ™M

W =.diag.[Nl,l, .. 211 (14)

where rj,rs,ry are respectively the electric resistances related to the loop
magnetic fluxes ¢7,¢5,9y. If one of the magnetic fluxes flows through the
path containing air, the electrical resistance related to this magnetic flux
will reach infinitely large values; Ny denotes the number of turns of the ex-
citing coil. The magnetic resistance matrix R in Eg. (10) is a square matrix
of order M, viz.. -

R = 2 , ' (15)

MME I R
SYMMETRICAL . = R
where the magnetic¢ resistances R11:Ry2:Ro2:Ruym ére easily obtained from the
magnetic circuit in Fig. 2(b). By rearranging Eq. (10), it is possible to
write Eq. (10} as, A

F=2% o B ' - (16)

where F.and 2 are
F = WGE, . , - (17)
2 = (d/dt) WGW+R = (a/dﬁ)L+R_ (18f

When we compare the magnetic circuit-in Fig. 2(b) with Egs. (10)-(18),
then it is found that the loop magnetic flux,¢M+l(shown by dotted line in
Fig. 2(b)) must be taken into account in the calculation of magnetic fluxes
. to satisfy the condition of a minimum number of network equations [8]. Since
the loop magnetic flux ¢y4; in Fig. 2(b) is physically flowing toward the
tangential direction on the center of the radial direction, we can find the
following relationship: ’

| 7= | ~ 9)
where EC is the new transformed magnetic flux vector, CT is the magnetic flux
connection matrix, which is a rectangular matrix with M-rows.and -(M+1)-



columns, and superscript c refers to the transformed quantities. The mag-
netic flux connection matrix C~ is generally written as

10 o0 -1
o1 o . -1

¢’ = - (20)
.. -1

The transformation of a two-dimensional magnetic system of equations into a
three-dimensional magnetic system of equations is carried out by

o o= 2% %°. (21)
—-C C
where F and Z are
F° = CF, ' (22)
T
2° = czc’ = (d/dt)1+ &© (23)

The details of the above transformation are described in Ref. [8-10].
The induced voltage vector U in electric circuits depends on the rate of

change of magnetic flux in time t, that is;
U = we(d/at) " (24)

Moreover, the current vector»l-ié given in terms of the externally impressed
voltage vector E, induced voltage vector U,.and electric .conductance matrix

G, viz.,
I =G(E -0 ' (25)

By means of Egs. (19)-(25), it is possible to obtain the magnetlc fluxes,

induced voltages, and currents 15 the saturable reactor.

NUMERICAL -METHOD -OF SOLUTION

With At denoting the step width, Eq. (21) is discretized in time by the
following finite difference method: '

=c ‘ =T Lo oT
[oF aet (37 a)F,]= (1/86)1° [6ppe™ Op JHIOR 00 F AR O], (26)

where the parameter a can be chosen arbltrarlly, e g., a—O,a—l/2,a l yleld
forward,central, and backward dlfrerences, subscript t and t+At refer to the
time t and t+At, respectively. The magnetic flux-vector ¢fypt+ in Eq. (26) is
evaluated by the iteration method, using a relaxation parameter. The relax-
ation parameter w is sequentially determined in every complete iteration. In
order to determine the most suitable relaxation parameter, it is assumed that
the relaxation parameter ®w is equal to or greater than 1 but smaller than 2
and that the error of the solution’ taklng the maximum absolute Value is

a functlon of the relaxatlon parameter, that is,

1<w<2 (27)
£ = f(w) . (28)

where f£{w) and € denote the function of w and the error ef the solution



taking maximum absolute value, respectively. Denoting w

(K)

parameter used in K-th iteration, the relaxation parameter w
(K+1)th iteration is determined by the Newton Raphson method, viz.,

(K+1) (X)
w w

-
L

(K

)1 /198 /30

w = W

the relaxation
in the

(K+1)

(X)

(29)

However, it is difficult to calculzte the term 9f/9w analytically. Therefore,
this term is replaced by the backward difference: ’

(k-1)

where w

combining E%k+{¥9)

parameter w

[0f/dw] (K)= [f(w

0w = Wu

(K)

)

~-£

(

o B

11/ 1

K)_ (K1)

]

(30)

is the relaxation parameter used in the (K-1)th iteration. By

with Eq.

(30), it is possible to obtain the relaxation
in the (K+1l)th . iteration. If this relaxation parameter does

not satisfy the condition of Eq. (27), then the relaxation parameter w(K+l)

is reduced to satisfy this condition. Moreover, the relaxation parameters for

the first and second iterations are respectively selected to be 1.5 and 1.6

in the calculation d4in this -chapter. As shown in Fig. 3,the magnetic -fluxes are
overrelaxed, but the permeabilities are underrelaxed to suppress the vari-

ation of the elements in the magnetic resistance matrix Ryyae in Eq. (26)
[5,6]. Figure 3 shows the flow chart for this iteration method.
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oo 28Rl
: h 4 v -
READ VARIOUS CONSTANTS ———>=1,4
M=TOTAL NUMBER OF MAGNETIC FLUXES il
E=LIMIT OF DISCREPANCY
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...____J , L STOP
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Fig. 3 Flow chart of the iteration method

By means of the central difference method, the induced voltage vector U
of Eq. (24) and the current vector I of Eg. (25) are respectively given by

’ b} Ay 74 -=C '
Ut+(At/2)=WC (L/AL) (9 9 ) (31)



t*(At/2)—.G(Et*(At/2) Ues (at/2)" (32)

where the subscript t+(At/2) refers to the time t+(At/2).

NUMERICAL. EXAMINATION

Various constants used in the calculation of the saturable reactor shown in.Fig.
2(b) are listed in Table 1. 'In carrying cut the magnetic field calculation of
the saturable reactor, the nonlinear magnetization characteristic of iron is
introduced by linear interpolation [11].

Table 1 Various .Constants Used in the Calculation

Number of subdivisions in the radial direction 8

Number of. . subdivisions .in'.the .tangential direction 12

Limit of discrepancy 0.0001 percent
Inner radius of iron core - 0.025 [m]
Outer radius of iron core ) 0.035 [m]
Thickness of iron core 0.010 [m]
Thickness of exciting coil 0.003. [m]
Thickness of the region containing air 0.017 [m]
Number of turns of exciting coil 100 turns
Number of turns of search coil 25 turns
Electric resistance of exciting coil 1.21 [9]
Conductivity of iron core - ~ 1/80 "11/ufcm]
Externally impressed voltage (step voltage) 5.0 [v]
‘Step width At © 0.0001[sec]

All the initial magnetic fluxes ‘and. currents are set equal to .zero.

For comparison, the transieént magnetic.fluxes were calculated by the
forward difference (a=0), central difference (a=1/2), and backward difference
{a=1) methods. Among the results obtained by each method, the numerical so-
Jutions computed by the backward difference method were somewhat small com-
pared with the results obtained by the central difference method. Likewise,
the forward difference method produced such unstable solutions that this
method became useless. Therefore, in this-chapter, the magnetic field calcu-
lation of the saturable reactor -was- carried-out by using the central differ--
ence-method. The numerical tests-using-various step widths were carried out
and it was found that the solutions using the step width At=0.0001 (sec) had
satisfactory accuracy. In order to perform a good switching operation, a
simple electronic switching circuit utilizing a ' silicon-contrdlled
rectifier was used. Moreover, accuracy of the input step voltage wave form
" was confirmed. The numerical calculation was continued untll ‘the numerical
solutions reached the steady state values. Figure 4(a) shows the relation-
ship between steady state exciting currents and magnetic fluxes together
with the experimental values. The numerical calculations were carried out '::
under six different-step voltages so that the ‘results shown in Fig. 4(a) were
obtained. The experimental values in Fig. 4(a) were obtained by integrating
the induced voltages at the search coils by an electronic'integrator [12].

The transient exciting current and induced voltages at the search coils are
shown in Fig. 4(b), together with~the experimental values. When one con51ders
the results of Fig. 4(b), it is obvious that the magnetodynamic fields in

the saturable reactor are dominated considerably by the eddy currents flowing
through the iron core. '
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Fig. 4 - Comparison of the experimental results with calculated results

‘CONCLUSION

As shown above, this chapter has shown . that the theory of magnetic cir-
cuits is quite effectively applicable to the magnetic field problems in elec-
tromagnetic devices. The influences-of the -magnetic saturation and eddy
currents in the saturable reactor have been clarified by the method of mag-
netic circuits as an example. Moreover, it has been shown that the system of
magnetic circuit’equations is effectively solved by the central difference
method along with the iteration method. The operation count required to . "
obtain the results of Fig. 4(b) was about 10 minutes on the computer FACOM

- 230-45s.
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