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The nonlinear magnetodynamic fields in a saturable reactor are calculated by the method of
magnetic circuits, taking into account the eddy currents.
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u induced voltage [V] At stepwidth [sec]
V¢{} volume of region taking per- u =f(H), permeability as func-
meability u ) tion of magnetic field in-
W =[N, 1.1.1}. winding matrix tensity H
w magnetic field energy [J] D ={d, P> @3, du}, magnetic
Z =D+ (d/dr)L, magnetic im- flux vector
pedance matrix ¢ magnetic flux {Wb]

a parameter of the finite
difference method

Superscripts 1, 2, 3, 4 refer to the permeabilities @, p@. u®. u™: and t refers to the
transpose of a matrix; and c refers to transformed quantities.

Subscripts i, i1, i*1/2, j, jx1, j+=1/2 refer to the positions x. x,*h. x;*h/2, y;, vy, * g,
y; £ g/2; t, t + At, t + At/2 indicate the time ¢, t + At, t + At/2: and 1. 2. 3. 4. 5 refer to the first,
second, third, fourth, fifth elements of a saturable reactor. respectively.

Moreover, abcd, eb and bf denote the contour lines.

1. Introduction

The calculation of magnetic fields is of the utmost importance in the design of electromag-
netic devices (e.g. transformers and electrical rotating machines). Because of the nonlinear
magnetization characteristic of iron, it is extremely difficult to develop an analytical method
for finding the magnetic fields in electromagnetic devices.

Conventional design methods for electromagnetic devices are based to a considerable extent
on classical magnetic circuit theory and experience. Therefore. these design methods are
incapable of determining the dynamic performance of electromagnetic devices.

With the development of modern computers. numerical methods became available to
calculate the magnetic fields of electromagnetic devices. taking into account the nonlinear
magnetization characteristic of iron. The numerical methods are fundamentally divided into
two classes: (1) the finite difference method. which replaces partial derivatives by divided
differences, and (2) the finite element method. which is based on variational formulations
[1-{71.

The author has reported that the method of magnetic circuits developed for a two- or
three-dimensional space is one of the finite difference schemes in nonlinear magnetostatic field
problems [8], [9].

The purpose of the present paper is to develop the method of magnetic circuits as a means
of calculating three-dimensional magnetodvnamic fields in a saturable reactor, taking into
account the eddy currents.

2. Fundamental equations

2.1. Fundamental equations based on magnetic circuits

Consider the region bounded by the contour abcd in fig. la. It is possible to write the



Y. Saito, Three-dimensional analysis of magnetodynamic fields in a saturable reactor 291

(a)

(b}

X

Fig. 1. Magnetic circuit. (a) general mesh point, (b) modified representation.
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(c)

@ Y

Fig. 1. Magnetic circuits. (c) circuit representation (F;;, Fi.1, denote the magnetomotive forces), (d) details of circuit.

fundamental relation between the magnetic field intensity H and current density j;; as

Hdl=| j,nda, 49

abcd Sij

where d/ denotes the infinitesimally small distance along the contour abecd, da is the
infinitesimally small area, S;; is the surface area bounded by the contour abecd, and n is the
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unit normal vector on the infinitesimally small area da. Moreover, the subscripts i, j refer to
the mesh point in fig. 1a. The right-hand term in eq. (1) is equivalent to the current i;; through
the surface S;;, viz.

j,‘,jn da = l',',j. (2)

In order to apply the method of magnetic circuits to the region bounded by the contour
abcd in fig. 1a, it is assumed that the current i;; in eq. (2) is not uniformly distributed on the
surface S;; but concentrated on the conductor with infinitesimally small cross-sectional area
located at the mesh point (i, j) in fig. 1a. Similarly, it is assumed that the currents in the other
regions in fig. la are concentrated on the conductors with infinitesimally small cross-sectional
area located at each of their mesh points.

Due to the nonlinear magnetization characteristic of iron, the permeability u at each
position takes different value with respect to the position. Therefore, it is assumed that the
region which encloses these mesh points in fig. 1a is divided into four subdivisions in each of
which the permeability 4 may have a distinct value.

With these assumptions the magnetic fields in fig. 1a may be calculated for a modified form
in the region as shown in fig. 1b. This means that the calculation can be carried out by the
method of magnetic circuits, taking into account the nonlinear magnetization characteristic of
iron.

In fig. 1b let i, div1j, dio1j, bijr1, Pij—1 denote the loop magnetic fluxes enclosing each of
their mesh points, and let Ri.y5, Ri_12, Rjv12, Rj-12 denote the magnetic resistances around
the mesh point (i, j); then the left-hand term in eq. (1) is formally written as

Rivipp(bij — div1j) + Ricipp(bij — dio1y) + Rivip(dij — i)
Ry~ du)= [ HdL 3)

where the loop magnetic fluxes ¢, dir1j, Pi1j, bij+1, Pij—1 are taken positive in the clockwise
direction as shown in fig. 1c.

By means of eqs. (1)-(3) it is possible to represent the magnetic circuit equation as
Risiplij = divi )+ Riap iy — dica ) + Risapo(dij — bijun)
+ Ri-1obij — dij-1) = by 4)
However, under the dynamic conditions the current i;; in eq. (4) has to include the effect of
time variation. Therefore, the current i;; is divided into two components: One is the eddy

current due to the rate of change of the magnetic flux ¢;; in time ¢, and the other is produced
by the externally impressed voltage e;;, that is

Iy = ?1] [e:; — (d/dt)bi,], ©)
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where d/dt denotes the time derivative, and r;; is the electric resistance defined in the direction
of z-axis in fig. 1a.

When eq. (5) is substituted into eq. (4), then we can formally obtain the magnetic circuit
equation in the dynamic state as

Riv1p(di; — in1) + Riip(diy — 1) + Rivaaij — bijer)
+ Ri1ohij — iy 1) = r,l—J [e;; — (d/dD)d,]. (6)

As shown in fig. 1d, the magnetic resistances Ri.i», Ri 12, Rivi2, Rio12 in eq. (6) are
respectively decomposed into four magnetic resistances by the difference of permeabilities (see
fig. 1b).

The magnetic resistance is generally defined by

length of the flux path
[ permeability ][ cross-sectional area ]
of the material | normal to the flux path

magnetic resistance =

()

Some examples of magnetic resistance with typical shapes are listed in table 1. By the
definition of eq. (7) it is possible to calculate the magnetic resistances R, R,s in table 1.
However, eq. (7) is not directly applicable to calculate the magnetic resistances R.s, R,5, R:c,
R, because the length of the flux path or cross-sectional area normal to the flux path differs
according to the positions. Therefore, for the second example in table 1 it is assumed that the
magnetic resistance R,g is composed of a large number of parallel-connected small magnetic
resistances that are similar in shape to the magnetic resistance R, . Also, it is assumed that the
magnetic resistance R,y in table 1 is composed of a large number of series-connected small
magnetic resistances that are similar in shape to the magnetic resistance R,,. When the
number of parallel- or series-connected magnetic resistances reach infinity, the calculations of
magnetic resistances R,p, R,s reduce to the evaluation of Riemann integrals (see [9]).
Similarly, the magnetic resistances R,c, R,c in table 1 are obtained by making assumptions
similar to those used in calculating of R,g, R;s.

The electric resistance is generally defined by

length of the current path (8)
[ conductivity ][ cross-sectional area ]
of the material || normal to the current path

electric resistance =

By comparing eq. (7) with eq. (8), it is found that the parameter which depends on the shape
is common eq. (7) to eq. (8). Thereby, the electric resistances which are similar in shape listed
in table 1 are obtained by making assumptions similar to those used in calculating of magnetic
resistances R,s, R,s, R.c, R,c.

In the region containing air the permeability u is constant. However, in the region
containing iron the permeability x depends on the magnetic field intensity H at each position,
that is
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Table 1. Examples of magnetic resistances

B
RxA = /.LAC
Row = 1 ___A-B
¥B = D fc dx ~ uCD log(A/B)
=)o B¥{(A—B)/Cix
_ dx _ C
Rwn="D) B+{A—B)Cix uD(A—B) 8AB)
2D
Rn= 1A+ B)YC
dx=A4Ax=C/m
Rec= 1 -
TP G +{(C—G)D}x o [E+{(A—E)/D}x] P
M)y EFF+{(A—-B+F~E)Dix 8| F+{B—F)/Dix

R _EJ' dx
““ 1 Jo [G+{(C-G)D&][E+F+{(A+B—E-F)D}x]

dx = Ax = D/m

Note: Practical calculations of R:g, Rys, Ric, Ryc were carried out by means of the numerical integration method
for the sake of generality.

n = f(H), ©)
where f(H) denotes a function of H. By considering figs. 1b—1d, the magnetic field intensities

H,, and H,, are calculated by means of the magnetic field energy relation. The magnetic field
energy stored in the shadowed portion in fig. 1b is

1 & 2

=3 Mfﬁ)(H o+ H) Vi) =5 [R M {R o Ilz@) (¢ — qb,-ﬂ,j)}
+ RWI- _J___R : 10
J R(1)+R(2) (d’z; i,jfl) s ( )

where V{7 denotes the volume of the region taking the permeability !} in fig. 1b. The
magnetic resistances R, R, RY,, R®, and the loop magnetic fluxes ¢, i1, bi; 1 are
shown in figs. 1c and 1d.
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By means of eq. (10) it is possible to obtain the magnetic field intensities Hep, Hyys as

R} 2

He, = LOVD RO+ 112(3) (ij — Pir1))s (11)
R} R(

Hy = “)V“)R“H-RQ) (¢ij — dij-1)- (12)

When egs. (11) and (12) are substituted into eq. (9), then we can formally obtain the
permeability u{} of the shadowed portion in fig. 1b as a function of the magnetic fluxes and
the permeabilities.

The permeabilities of the other portions in fig. 1b can be obtained in a similar manner.

2.2. Magnetic circuits of a saturable reactor

Most electromagnetic devices consist of the conducting wires wound around an iron core. A
typical example of these electromagnetic devices is a saturable reactor as shown in fig. 2a.

At the time when the exciting current is flowing through the coil of the saturable reactor in
fig. 2a, in order to minimize the magnetic field energy stored in the saturable reactor, the eddy
currents in the iron core flow in a direction opposite to the exciting currents. On the other
hand, the magnetic flux which passes through the path parallel to the current-carrying coil can
be neglected; therefore, it is preferable to consider the solid element as shown in fig. 2b. The
permeability of this solid element is determined from the magnetic field intensities in the
tangential direction and in the radial direction. Also, the central portion of the solid element
in fig. 2b is one of the elements, and the permeability of this element becomes a function of
the magnetic field intensity in the tangential direction because the magnetic resistance in the
radial direction reaches an infinitely large value. The magnetic resistances in fig. 2b correspond
to those in table 1.

EXCITING COIL

SEARCH COIL A /

SEARCH COIL B \

SEARCH COIL C

Fig. 2a. Magnetic circuit of a saturable reactor: schematic diagram of a saturable reactor.
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SUBDIVIDED ELEMENT

Fig. 2b. Magnetic circuit of a saturable reactor: solid element and its subdivided elements.

The saturable reactor shown in fig. 2a is subdivided in much the same way as the solid
element shown in fig. 2b, taking into account the region containing air; thus for a saturable
reactor the calculation of three-dimensional magnetic fields can be carried out in a two-
dimensional coordinate system (which consists of the tangential and radial directions) without
committing any appreciable error.

For simplicity, it is preferable to consider a concrete example. Therefore, the saturable
reactor shown in fig. 2a is subdivided into three parts in the radial direction and two parts in
the tangential direction. Moreover, it is assumed that no magnetic flux flows out of a region
which is not taken into account by the calculation of magnetic fields. Fig. 2c shows the
magnetic circuit of this example.

The magnetic system of equations is preferably expressed in matrix notation involving the
externally impressed magnetomotive force vector F and the magnetic flux vector @. With Z
denoting the magnetic impedance matrix, the magnetic system of equations in fig. 2¢ is given
by means of eq. (6):

F=2Z®. (13)

The externally impressed magnetomotive force vector F, which is a column matrix of order
4, is composed of the winding matrix W, the electrical conductance matrix G and the
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Fig. 2c. Magnetic circuit of a saturable reactor: an example of a circuit.
externally impressed voltage vector E, that is
N,
F=WGE={""¢,0,0,0}, (14)
1

where Ni, r; and e, denote respectively the number of turns in the exciting coil, the electric
resistance of exciting coil and the externally impressed voltage. The above matrices and vector
are given by

W=[N,1,1,1], (15)
¢=[000 ) 16)
r r’r

E ={e,,0,0,0}, 17)
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where r; and r, are respectively the electric resistances of the iron core related to the loop
magnetic flux ¢; and to the loop magnetic flux ¢, in fig. 2c.

The magnetic impedance matrix Z is a linear combination of the magnetic resistance matrix
D and the coefficient matrix L:

Z =D+ (d/dr)L. (18)

The matrix D is a square matrix of order 4 involving the magnetic resistances R,, R;, R., R,
R., R;, R,, R, of the magnetic circuits shown in fig. 2¢, viz.

R1 _R12 _Rc O

R2 O _'Rf
D= R3 —R34 . (19)
R,
symmetric
where
R1:Ra+Rb+RC,
R2:Ra +Rb+Rf,
R;=R.+R,+R.+R,,
R.=R,+R.+R +R, (20)
R12 = Ra + Rb,
R34 = Rd + Re.

The coefficient matrix L is composed of the winding matrix W and the electrical conduc-
tance matrix G, that is

- N2 11
L=wew=|"2 0,4 —J. 1)
1

rr

By considering eqs. (13)~(21) and fig. 2c, it is found that the loop magnetic flux ¢5 must be
taken into account in the calculation of magnetic fields to satisfy the condition of a minimum
number of network equations [10]. Therefore, the loop magnetic flux ¢s in fig. 2¢ can be added
by use of the relationship (see appendix)

o 100 0 —1 j’,;

—_ tdhc : ¢2 . O 1 O O —1 c
@ = C'P°, e s 1= 1001 0 -1 ig , .(22)

bq 00 0 1 -1 o

where @° is the new magnetic flux vector and C is the magnetic flux connection matrix
(superscript t denotes the transpose of the matrix, and ¢ refers to transformed quantities).
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Then the new magnetic system of equations is given by
Fe = Z<dr, (23)

where

FC =CF:{&6170’030’-——N_161}7
r ry

Z¢ = CZC' = D¢ + (d/d1)Le,

R1 _R12 "‘RC 0 0
R, 0 -R O
D =CDC" = R; —-Ris —R; ,
symmetric R, —R,

NG, Nt ]

n
0

L= CLC' = (24)

SN o
= o o <
|
l

symmetric e e S
r r r4—J

L

The induced voltage vector U in electrical circuits depends on the rate of change of the
linkage flux in time ¢, that is

U ={u,, us, us, up = WC'(d/dt)d-. (25)

The vector of current I, which consists of the exciting current i, and the eddy currents i, is,

I4, is given in terms of the externally impressed voltage vector E, the induced voltage vector U
and the electrical conductance matrix G, viz.

I ={iy, s, is, is} = G(E — U). , (26)

By means of eqs. (23)~(26) it is possible to obtain the magnetodynamic fields, induced
voltages and eddy currents in a saturable reactor.

2.3. Numerical method of solution

By means of eqs. (23) and (24) it is possible to write the magnetic system of equations as

Le(d/df)dc = —Dd* + Fe, @7)
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With At denoting the stepwidth, the finite difference representation of eq. (27) is given as
Lc(l/At)(¢f+A, - ¢f) = _[an+At¢f+At + (1 - a)Dfdjf] + [aFf+At + (1 - (I)Ff], (28)

where the parameter « can be chosen arbitrarily (e.g. « =0, @ =1/2, « =1 yield forward,
central, backward differences), and subscripts ¢ and ¢+ At refer to the times ¢ and ¢+ At
respectively. By rearrangement, eq. (28) reduces to

START

READ VARIOUS CONSTANTS

M= TOTAL NUMBER OF LOOP
FLUX

E= LIMIT OF DISCREPANCY

o T -
< T,

*
CALCULATE THE FIRST APPROX, [U%K)]

U%sz U%K-lh %([UEK)]*_ U%K-l))

E3
CALCULATE THE FIRST APPROX. [ol%"1)]

¢§K+1)= $%K)+ m({¢%K+l)]*_ ?EK))

ERROR = [pfK*1) o 40K

CALCULATE w»

STOP

Fig. 3. Flow chart of the iteration method.
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[(/ADL® + aD5, 41 ®%, 4 = [(1/ADLS — (1 — @)D D¢ + [aFS, a4+ (1— @)FS). (29)

Since the magnetic circuit equation that takes into account the nonlinear magnetization
characteristic of iron is one of the nonlinear algebraic equations, the calculation of the
magnetic flux vector @5, 4 in eq. (29) reduces to the solution of a system of simultaneous
nonlinear algebraic equations. This system is solved by iteration, using a relaxation parameter,
which is sequentially determined in every complete iteration by the method described in [9].
Fig. 3 shows the flow chart of this iteration method.

By the application of the central difference method to egs. (25) and (26) the induced voltage
vector U, ay, and the current vector I. 4, are given by

U sz = WC' (1 At)( P14, — DY), (30)
It+At/2 = G(Et+At/2 - U:+A:/2), (31)

where the subscript ¢ + A#/2 refers to the time ¢ + A#/2.

3. Numerical solution

Various constants used in the calculation of the saturable reactor shown in fig. 2a are listed
in table 2. Fig. 4 shows the nonlinear magnetization characteristic of iron. In carrying out the
magnetic field calculation of the saturable reactor, the nonlinear magnetization characteristic
of the iron part of the reactor is introduced by linear interpolation [11].

At first, we have to decide the appropriate value of a in eq. (28). For comparison, the
transient magnetic fluxes were calculated by the methods of forward differences (a = 0),
central differences (o = 1/2) and backward differences (& = 1). Among the results obtained by
each method the numerical solutions computed by the backward difference method were
somewhat small compared with the results obtained by the central difference method. On the
contrary, the forward difference method produced so instable solution that this method

Table 2. Various constants used in the calculation

Number of subdivisions in radial direction 8

Number of subdivisions in tangential direction 12

Limit of discrepancy 0.1 percent
Inner radius of iron core 0.025 [m]
Outer radius of iron core 0.035 [m]
Thickness of iron core 0.01 [m]
Thickness of exciting coil 0.003 {m]
Thickness of the region containing air 0.017 [m]
Number of turns of exciting coil 100 turns
Number of turns of search coils 25 turns
Electric resistance of exciting coil 1.21 [Q]
Conductivity of iron core (cast iron) 1/80 [1/p Q) cm]
Externally impressed voltage (step voltage) 50 [V]

All the initial magnetic fluxes and currents are set to be zero.
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Fig. 4. Nonlinear magnetization characteristic of iron (v = B/H).

303

Therefore, in this paper the magnetodynamic field calculations of the
saturable reactor were carried out by means of the central difference method.

Second, numerical tests using various stepwidths were carried out. Typical results of the
tests are summarized in fig. 5. When we consider the results of fig. 5, we can find that the
solutions using the stepwidth A7 = 0.0005 (sec) have satisfactory accuracy.

EXCITING CURRENT

—

1
TIME (msec)
®-..At = 1 (msec)

v)

INDUCID VOLTAGH

O.ST
(d SEARCH COIL A
SEARCH COJIL B
0.4 4 A
s [
SEARCH COIL C
0.0
0 1
TIME (msec)
..At = 0.5 (msec) ®...At = 0.1 {(msec)

Fig. 5. Typical results of the numerical tests using various stepwidths.
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Fig. 6. Numerical solutions. (a) exciting current and induced voltages at the search coils from the transient to the
steady states, (b) the relationship between steady state exciting currents and magnetic fluxes calculated under six
different step voltages.
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Third, we continued the numerical calculation until the numerical solutions reached the
steady state values. As shown in fig. 6a, the exciting current reached the steady state value and
the induced voltages at the search coils reduced to zero. Fig. 6b shows the relationship
between steady state exciting currents and magnetic fluxes together with the experimental
values. The numerical calculations were carried out under six different step voltages so that
the results shown in fig. 6b were obtained. The experimental values in fig. 6b were obtained by
integrating the induced voltages at the search coils by an electronic integrator [12].

Finally, the initial transient exciting current and induced voltages at the search coils are
shown in fig. 7 together with the experimental results. In order to perform a good switching
operation, a simple electronic switching circuit (fig. 8) utilizing a silicon-controlled rectifier
was used. As shown in fig. 8, the input step voltage wave form is of fairly good accuracy.
Therefore, the stepwidth was not changed at the beginning of numerical calculation. Also, the
experimental results in fig. 6a were obtained by the simple test circuit shown in fig. 8.

When we consider the results of figs. 6a and 7, it is obvious that the magnetodynamic fields
in the saturable reactor are considerably dominated by the eddy currents flowing through the
iron core.
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Fig. 7. Transient exciting current and induced voltages at the search coils.
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Fig. 8. Schematic diagram of the experiment and the experimentally used input voltage source wave form.

4. Conclusion

In this paper, it has been shown that the method of magnetic circuits is quite effectively
applicable to the magnetodynamic field problems in electromagnetic devices. Consequently,
three-dimensional magnetodynamic fields of a saturable reactor have been predetermined,
taking into account the eddy currents. Moreover, it has been shown that the system of
magnetic circuit equations is effectively solved by the central difference method along with the
iteration method.

. The operation count required to obtain the results of fig. 7 was about 10 minutes on the
computer FACOM 23(0-45S.
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Appendix. Coordinate transformation
The magnetic field energy stored in the saturable reactor is constant, regardless of the
coordinate system. Therefore, the magnetic field energy in the original coordinate system must
be equivalent to the magnetic field energy in the transformed coordinate system, that is
@'F = (P°)F*, (A1)
or
DZPD = (D) Z D (A2)
The magnetic flux vector @ and the transformed magnetic flux vector @¢ are related by
b =CP. (A3)
When eq. (A.3) is substituted into eqs. (A.1) and (A.2), we obtain

(C'®°)F = (d°)F*, (A.4)
(C'D°YZ(C'P°) = (B° ) Z°D~. (A.5)

By means of eqs. (A.4) and (A.5) it is possible to obtain the following relations:

F< = CF, (A.6)
Z°=CZC" (A7)
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