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The nonlinear magnetostatic fields in a saturable reactor are calculated by the method of magnetic circuits.

Notation

vector potential

infinitesimally small area

infinitesimally small distance

mesh spacing in direction of y-axis

magnetic field intensity [AT/m]

mesh spacing in direction of x-axis

current [A]

current density [A/m?]

unit normal vector

mesh spacing in direction of z-axis

magnetic resistances around the mesh point (i, j) in direction of x-axis and of y-
axis, respectively

RM® RM magnetic resistances as functions of permeability /.18.) in direction of x-axis and

of y-axis, respectively

Rl(i)l magnetic resistance as function of permeability /.t,(fl)] in direction of x-axis

R® magnetic resistance as function of permeability ug)_l in direction of y-axis

surface area bounded by contour abed

U scalar potential [AT]

€ mean percentage error in entire solution

M = f(grad U), permeability as function of rate of change of potential U

0] magnetic flux [Wb]

w

A

SECR IR L

Rii12ys Ry

relaxation parameter
w rate of change of relaxation parameter
Superscripts 1, 2, 3, 4 refer respectively to the permeabilities u(V, u®, u®, 4 in each of the
regions; K indicates the Kth complete iteration. Subscripts #,i + 1,7+ (1/2),7,j+ 1,7+ (1/2) refer
respectively to the positions x;, x; + #, x; + (1/2), y;, ¥; £ g, ¥; * (g/2); abcd, eb, bf denote the con-
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tour lines. Moreover, M and m denote respectively the total number of loop magnetic fluxes and
the number of small magnetic resistances with the shape of a rectangular prism.

1. Introduction

The calculation of magnetic fields is the basis of the design of all electromagnetic devices such
as transformers, reactors and electrical rotating machines. With the development of modern electro-
magnetic devices the nonlinear magnetization characteristic of iron must be taken into account in
the design. Because of the nonlinear magnetization characteristic of the iron parts in electromag-
netic devices it is difficult to calculate the magnetic fields analytically.

However, when modern digital computers came into wide use, numerical methods became
available to calculate the magnetic fields of electromagnetic devices, taking into account the non-
linear magnetization characteristic of iron.

The numerical methods are fundamentally divided into two clases: (1) the finite difference
method, which was extensively applied to electrical rotating machines by Erdélyi and his associates
[1-6], and (2) the finite element method, which was applied to transformers as well as electrical
rotating machines by Silvester and others [7—12].

The author has reported the method of magnetic circuits for the calculation of magnetostatic
fields in current-free region (scalar potential problem) [13]. The purpose of the present paper is to
develop the method of magnetic circuits as a means of calculating three-dimensional magnetostatic
fields in a saturable reactor. Since the method of magnetic circuits was developed to solve the
scalar potential problem, a serious difficulty arises when the method is applied to the vector poten-
tial problem. However, this difficulty is avoided by replacing the uniformly distributed current by
concentrating on the infinitesimally small conductor. Appendix A shows that the magnetic circuit
equation in this paper is one of the finite difference equations.

A system of magnetic circuit equations is efficiently solved by the iteration method, using a
relaxation parameter which is determined in appendix B.

2. Fundamental equation based on magnetic circuits

Consider the region bounded by the contour abcd in fig. 1a. It is possible to write the fundamen-
tal relation between the magnetic field intensity H and current density J; ; as

[ Hat= [ Jfnda, (1
§;;

abed

where dI denotes the infinitesimally small distance along the contour abcd, da is the infinitesimally
small area, S,.’j is the surface area bounded by the contour abcd, and n is the unit normal vector on
the infinitesimally small area da. Moreover, the subscripts i, j refer to the mesh point in fig. 1a. The
right-hand term in eq. (1) is equivalent to the-current 7, ; through the surface S, ;, viz.

[ nda=1,. )
Sh]
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In order to apply the method of magnetic circuits to the region bounded by the contour abcd
in fig. 1a, it is assumed that the current /, ; in eq. (2) is not uniformly distributed on the surface

Fig. 1b. Modified representation of fig. 1a.
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Fig. 1¢. Magnetic circuit representation (F’.,]-, Fi+1,j denote the magnetomotive forces).

Fig. 1d. Details of magnetic circuit (Fi,j’ 1. denote the magnetomotive forces).

S, ; but concentrated on the conductor with infinitesimally small cross-sectional area located at the
mesh point (i, j) in fig. 1a. Similarly, it is assumed that the currents in the other regions in fig. la
are concentrated on the conductors with infinitesimally small cross-sectional area located at each
of their mesh points.

Due to the nonlinear magnetization characteristic of iron, the permeability g at each position
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takes different value with respect to the position. Therefore, it is assumed that the region which
encloses these mesh points in fig. 1a is divided into four subdivisions in each of which the permea-
bility 4 may have a distinct value.

With these assumptions the magnetic fields in fig. 1a may be calculated for a modified form in
the region as shown in fig. 1b. This means that the calculation can be carried out by the method
of magnetic circuits, taking into account the nonlinear magnetization characteristic of iron.

In the region bounded by contour abed in fig. 1b the relation between the magnetic field intensity
H and scalar potential U5 is given by

[ H'dl=Ugpg . 3)

abcd

In fig. 1b let G i» Bivr,pr i1 j> i ju1» @, denote the loop magnetic fluxes enclosing each of
their mesh points, apd le't R”(l/”’ R; a2 Rj+(1[2), .Rf‘(l/Z) .denote the magnetic resistancgs
around the mesh point (i, j); then the magnetic circuit equation related to the scalar potential
Ug;z5 in eq. (3) is formally written as
Rz‘+(1/2) (¢i,j - ¢i+1,]‘) +R]'—(1/2)(¢i,j - ¢z’,f—1) +Ri——(l/2)(¢i,j - ¢i—1,]’) + R]'+(1/2)(¢i,j - ¢i,f+1) = Ua't?ﬁ s
4)

where the loop magnetic fluxes q),.’]., q),-ﬂ,]-, qb,._l’]., ¢,.‘].+1 R ¢,.,]-_1 are taken positive in the clockwise
direction, as shown in fig. 1c. By means of eqgs. (1)—(4) it is possible to represent the magnetic
circuit equation as

Riv1y2)(@ij— b ) T Ri_ 12y (D5 — Dij ) T R_(1y2)(Bi; — bimi )+ Ryuayn)( @iy — 0ijit) = 115 (5)

Appendix A shows that eq. (5) is one of the finite difference equations. As shown in fig. 1d, the
magnetic resistances R, ;5. R;_(1/2)» Rji1)2)» Rj—1)2) are respectively decomposed into four mag-
netic resistances by the difference of permeabilities (see fig. 1b).

The magnetic resistance is generally defined by

length of the flux path

permeability ][cross-sectional area J ’
of the material J{ normal to the flux path

(6)

magnetic resistance = [

Some examples of magnetic resistance with typical shapes are listéd in table 1. By the definition
of eq. (6) it is possible to calculate the magnetic resistances R, , , R,z in table 1. However, eq. (6)
is not directly applicable to calculate the magnetic resistances R 5, Ryp, R, o, R, because the
length of the flux path of cross-sectional area normal to the flux path differs according to the
positions. Therefore, in case of (B) in table 1, it is assumed that the magnetic resistance Ry,B is
composed of a large number of series-connected small magnetic resistances that are similar in shape
to the magnetic resistance R, , . Let m denote tlie number of series-connected small magnetic
resistances; then the magnetic resistance Ry g in table 1 is calculated by
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Table 1. Examples of magnetic resistance

B_
wAC

RxA

R = __A_”L__
XB™ 4CD log(A/B)

_Clog(4 /B)
YB ™ wa-BD

R - 2D
IB7 u(Aa+B)C

dx = Ax = C/m

1

Ryc=p Y AE
G _
u +{(C-G)/D}x log D " |,
F+—

E—-F+{(A-B+F-E)/D}x

_2 d>
RyC‘;f' c—G " (A+B) — (E+F
0 [G+—D—’x][1;‘+F+ ﬁw_D;(__)x]

C/m Clm + C/m + C/m
Rp= uDB uD{B +(A-B)/mt uD[B+(A-B)2/m] uD{B +(A-B)(m — 1)/m]

-1

1 5 C/m
uD kZ:)o [B + ((A-B)/C} (KC/m)] ° (7

]

where the constants A, B, C, D are shown in table 1. In the limit m - = eq. (7) reduces to

:g_f C
Rys uD B+{(A -B)/C} x uD(A—B)

log(A/B) , (8)
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obtained by defining

Ax =C/m 9)
and
x,=kAx, k=0,1,..m, (10)

and placing the points x, in the internal [0, C] before applying the definition of the Riemann in-
tegral. :

Similarly, it is assumed that the magnetic resistance R, in table 1 is composed of large number
of parallel-connected small magnetic resistances that are similar in shape to the magnetic resistance
R, , . Then the magnetic resistance R, in table 1 is given by

[ 1 1 A—B
R_, = lim = = .
k

~ C/m dx
“Dg [B + {(A-B)/C} (kC/m)] ’LDOfBH(A—B)/C}x (1)

The formulas in table 1 for the magnetic resistances R, -, R, - are obtained by making assump-
tions similar to those used in calculating of R 5, R 5.

In the region containing air the permeability u is constant. However, in the region containing
iron u depends on the rate of change of scalar potential U at each position, that is

W= flarad V), | (12)

where f(grad U) denotes a function of grad U. By considering figs. 1b—1d the rates of change of
potentials Uz and Uj7 are approximately given by

e =(;) RORE ) g (13)
0Xx (h/2) h Rt(l) +R’(3)1 i i+1,j7 °

oU,, Uy, (2 R](I)RI(E)1 ) )
_— = = = s o B ’ 4
0y (g/2) g R}(l) +R](3)l (¢’J ¢1,]—1 )

where /4 and g denote respectively the mesh spacings in the directions of the x-axis and y-axis in
fig. 1b; the magnetic resistances R{Y, Rl(l), R®), R](i)l and the loop magnetic fluxes ¢, ;, ¢, ;»

¢, ;_, are shown in figs. lc, 1d. By substituting eqs. (13), (14) into eq. (12) it is possible to obtain
the permeability ,u,(}) of the shadowed portion in fig. 1b. The permeabilities of the other portions

in fig. 1b can be obtained in a similar manner.
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3. Nonlinear magnetostatic fields in a saturable reactor

Since the magnetic flux which passes through the path parallel to the current-carrying coils can
be neglected, it is preferable to consider the solid element as shown in fig. 2. The permeability of
the solid element is determined from the mean rate of change of potential in the tangential direction
as well as the rate of change of potential in the radial direction. Also the central portion of the
solid element shown in fig. 2 is one of the elements, and the permeability of this element becomes
a function of the mean rate of change of potential in the tangential direction because the magnetic
resistance in radial the direction reaches an infinitely large value. The magnetic resistances in fig. 2
correspond to those in table 1.

The saturable reactor shown in fig. 3 subdivided in much the same way as the solid element
shown in fig. 2 taking into account the region containing air; thus for a saturable reactor the cal-
culation of three-dimensional magnetic fields can be carried out in a two-dimensional coordinate
system (which consists of the tangential and radial directions) without committing any appreciable
error. The nonlinear magnetization characteristic of iron is established by careful measurement on
the saturable reactor. In carrying out the magnetic field calculation of the saturable reactor the
nonlinear magnetization characteristic of the iron part of the reactor is introduced by linear inter-
polation [14].

Let there by M loop magnetic fluxes on the magnetic equivalent circuit of the saturable reactor

a,t Ta,

RADTAL DIRECTION
j o

Ra,t

PANGENTINL L_ B __-l P T ‘
DIRECTTON TANGENTIAL DIRECTION RADTAL DIRECTION

CONBINED ELENENT
COMBINED MAGNETIC RESTSTANCE

R f—
= a

- Rb,t —Rc,t —"Rb,r - Rc,r
R
Rae [T 4,1
TANGENTIAL DIRECTION RADIAL DIRECTION
SUBDIVIDED ELEMENTS SUBDIVIDED MAGNETIC RESISTANCES

Fig. 2. Solid element and its magnetic resistances.
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MAGNETIC EQUIVALENT CIRCUIT OF SATURABLE REACTOR

Fig. 3. Schematic diagram of saturable reactor and its magnetic equivalent circuit.

shown in fig. 3; the calculation of these fluxes reduces to the solution of a system of M simultaneous
nonlinear algebraic equations since the magnetic circuit equation that takes into account the non-
linear magnetization characteristic of iron is one of the nonlinear algebraic equations. This system
of M simultaneous nonlinear algebraic equations is solved by iteration using a relaxation parameter
[13]. Fig. 4 shows the flow chart of this iteration method. The relaxation parameter is sequentially
determined in every complete iteration by the method described in appendix B. Various constants
used in the calculation of the saturable reactor are listed in table 2. Fig. 5a shows an example of

the convergence process of the numerical solution. Some examples of numerical solutions are shown
in fig. 5b together with experimental results which were obtained by the search coils shown in fig. 3
and were in fair agreement with the calculated values. Fig. 5¢c shows one of the magnetic flux dis-
tributions on the magnetic equivalent circuit in fig. 3.

4. Conclusion

In this paper it has been shown that the method of magnetic circuits is applicable to the scalar
potential problem as well as the vector potential problem. Consequently, three-dimensional mag-
netostatic fields of a saturable reactor has been preditermined by the method of magnetic circuits.
In particular, the method of magnetic circuits is effectively applicable to the three-dimensional
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Fig. 4. Flow chart of the iteration method.

Table 2. Various constants used in the calculation

Number of subdivisions in radial direction
Number of subdivisions in tangential direction
Limit of discrepancy

Inner radius

QOuter radius

Thickness of iron core

Thickness of coil part

Number of turns of coil

9

13

0.1 percent
0.025 [m]
0.035 [m]
0.01 [m]
0.0025 [m]
250 turns
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magnetic field calculations since the magnetic circuit is intrisically defined in three-dimensional
space. Moreover, when the magnetic circuit is established, all the boundary conditions that arise in
the magnetostatic field problem are automatically taken into account.

The convergence of iterative solutions is fairly improved by the method of this paper, comparing
with the method based on experience.

In order to calculate the 104 solutions, it required only 47 seconds for 88 iterations on the com-
puter FACOM 230-458S.
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Appendix A. Finite difference equation

For simplicity, it is assumed that fig. 1a in section 2 is written in a rectangular coordinate system.
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Fig. 5a. Convergence process of the iteration method.
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Then the magnetic field calculation reduces to solving the following partial differential equation

[31]:

24, ; dA, ;
i(l ”)+i (l ’])=_J_. , (A.1)
aX \M dx ay \u oy bl

where 4, ; denotes the vector potential at the mesh point (7, ;).
The terms in eq. (A.1) are replaced by the following divided difference approximations [15]:

3 (1 aAi,i) I(Ai+1,i_Ai,i Ai,f—Af—l,f)

= — (A.2)
ox \u ox h #,’+(1/2),]’h u’i~(1/2),ih

3 (1 aAu) N I(Af,m —Aiy A “A'%f—l) (A.3)
oy\u oy 8\ Mijryn8 Hij—q2n8 ’

where & and g are respective mesh spacings in the x and y directions; A, ;, 4, _; s A; 100,454
denote the vector potentials at the mesh points G + 1,7), G — 1,7), (i,7 + 1), (i, j — 1); the subscripts
G+ (1/2),7), G~ (1/2), ), (G, j +(1/2)), (i, j — (1/2)) refer to the positions (x; + (1/2), yi)s
(x; = (h]2), ¥)), (x;, y; + (&]2)), (x;, ¥; — (g/2)), respectively.

By substituting egs. (A.2), (A 3) into eq. (A.1) the finite difference approximation to eq. (A.1)
is given by

A, . —A,. A, . —A,, Ay — Ay A, —A,,
i(_m) +i(w) + 1 (__ﬁ_) +L(__#_) =_J,,, (A4)
K2\ Hivqy2), 2\ Misqy),j g2\ Hijrap g\ Hij—12)

or, rearranging,

R A p—Ay; )+ R (A;_1jp —Ay;D)
Bisap 0 ’ Hij-y2 P ’ '
+ ’—h_— (Aij+1 14 _Aijp) + —J— (Aij-l p _Aijp) = _gh"ij . (A.5)
Rijr) 8P 7 ' Rij-q/n8P 7 ' ’
Comparison of eq. (A.5) with eq. (5) in section 2 yields the following correspondences:
_ g
R85 — ¢i01) = m (A;;p — A1 ;)
i 5!
(A.6)
_ g
Ri—(1/2) (9,; — ¢ 1 )= ————— A ;p—A;_;P),

Hi_qy2)i hp
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/

. @, — ¢, )= ————
&+(1/2) if Lj+1 M+t 2y &D

(Al',]'p —A,',]'+1 p) s

h
R _(1)0(®;; — ;)= ——— (A;;p—A;;_; D), (A.6)

Mij—172)8P
I, =ght;;.

From eq. (A.6) it is found that eq. (5) is one of the finite difference equations.

Appendix B. Method of determining the relaxation parameter

To determine the relaxation parameter w, it is assumed that w is equal to or greater than 1 but
smaller then 2 and that the mean percentage error { w(K)] for the entire solution (not including
the permeabilities) can be expanded thus:

I<w<?2, (B.1)

de 3%e
e[w® D+ ALK = g[w®-D] + Aw(K)(ga\)w:w(Kq) + %(Aw(K))z(»—

+..., (B2
aw2 )w=w(K_1) ( )

where W& =D + Aw®) (= %)) is the relaxation parameter used in the Kth iteration, and Aw®
denotes the rate of change of the relaxation parameter in the Kth iteration. At the (K + 1)th itera-
tion the error e[ wW¥ =D + Aw®&*D] must be set equal to zero by the suitable selection of relaxation
parameter. Therefore, neglecting the second-order terms (Aw®)?, (Aw®*D)? the rate of change
Aw®*D is calculated from

elw®=D + AwE] = [&E-D] + A& (2€ =0, (B.3)
oW/ w=w K-1
whence
(K-1)
Aw&HD = _ elw ] i (B.4)

oc
% w=w(K_1)

By combining (B.2) with (B.4) the relaxation parameter in the (K+1)th iteration is given by

WE=D 4 ALK = (K- _ Aw® e[w®] : (B.5)
elw® D+ Aw®)] — glw®-D]
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The relaxation parameters for the first and second iterations were respectively selected to be
1.5 and 1.6 in the calculations of this paper. Moreover, if eq. (B.5) did not satisfy the condition
of eq. (B.1), then the rate of change Aw®*V in the (K+1)th iteration was reduced to satisfy this
condition.
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