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We have previously proposed a strategic dual image method for solving open boundary electromagnetic field problems.
Now, a new implementation technique for the method is presented to solve saturable and dynamic open boundary

electromagnetic field problems in a systematic manner.

1. Introduction

An inherent characteristic of electromagnetic
field problems having open boundaries makes it
difficult to obtain a finite element or difference
solution. Various means have been proposed to
get solutions, such as infinite element, balloning
and infinitesimal scaling methods [1-3]. Addi-
tionally, we have previously proposed a strategic
dual image method, which is based on the essen-
tial nature of vector fields, i.e. any vector field is
composed of rotational and divergence field
components [4-6]. In that method, the rotational
and divergence field components of an open
electromagnetic field are separated by imposing
the images of rotational and divergence field
sources, respectively. The rotational and diver-
gence field components are obtained by impos-
ing, respectively, zero and symmetrical boundary
conditions onto a hypothetical boundary when
the field is represented in terms of the vector
potentials. Combination of both rotational and
divergence field components yields the open
boundary electromagnetic fields. Thus, the
strategic dual image method makes it possible to
obtain the finite element and difference solutions
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of the open boundary problems without using
any other approaches such as an integral
method.

A new implementation technique of the
strategic dual image method is presented here to
solve saturable and dynamic open boundary elec-
tromagnetic field problems systematically. Sever-
al examples concerned with the dynamic, satur-
able and axisymmetric field problems suggest
that most of the open boundary electromagnetic
field problems can be solved by means of the
conventional finite element method.

2. The strategic dual image method
2.1. Principle

In most fields appearing in physical systems,
the field intensity decreases on moving away
from the source point. In addition to this field
intensity decrease, the potential may be reduced
to zero, so that both the field intensity and
potential become zero at an infinitely long dis-
tance from the source point. This means the
symmetrical and zero boundary conditions held
at the infinitely long distance.

A key feature of the strategic dual image
method is that any open boundary solution vec-
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tor in the electromagnetic field problems can be
obtained by averaging the symmetrical and zero
boundary solution vectors. These symmetrical
and zero boundary solution vectors are respec-
tively evaluated by imposing the symmetrical and
zero boundary conditions onto a hypothetical
boundary located at a finite distance from the
source point. Establishment of the symmetrical
and zero boundary conditions at the hypothetical
boundary is carried out by assuming strategic
dual images.

This method is sufficient to understand that
the symmetrical and zero boundary solutions
give the upper and lower bounds of the open
boundary solution, respectively.

2.2. Implementation

Let us assume a discretized system of the
equation:

CX=F, (1)

where C, X and F are the system matrix, solu-
tion vector and imput vector, respectively; and
the symmetrical boundary condition at the hypo-
thetical boundary is assumed. Equation (1) is
rewritten as

ENalFaEe )
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where X  is a sub-vector on the inside region;
X,, is a sub-vector on the hypothetical boundary;
F, is an input vector on the inside region; the
subscript s refers to the symmetrical boundary
solution; and sub-matrices C,,, C,,, C,,, C,, are
correspondingly defined to X, X, respectively;
and the zero boundary condition at the hypo-
thetical boundary is assumed. Equation (1) is
rewritten again as

ChX,,=F, (3)

where the subscript z refers to the zero boundary
solution.

Equations (2) and (3) can be written in the
following form

Cll C12 O Xls Fl
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When the open boundary solution vectors are
denoted as X, for the inside region and X, for
the hypothetical boundary regions, then the fol-
lowing relationship is established:
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By means of eq. (5b), eq. (4) is modified to
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(6a)
or
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In eq. (6b), if we introduce the relation,
X,,=X,+C/C,X,, then a system of equa-
tions for the open fields is given by

Ch C, :H:XI]—I:FI:I
I:CZI 2C22 - C21C;11C12 X2 - O N (83)

When ferromagnetic materials are included in
the problem region, then their permeabilities are
taken into account in the system matrix using [6]:

[Cu Ch . ] [Xx]
G, 2C,—C,CChH | X,
= F1+(C11_C1,1)X1]
[ 0 (8b)
or
Cy C,, Hxl]_[ﬂ]
[C21 2C,, — C21C;11C12 X, 0| (80

where C, is the sub-matrix taking into account
the permeabilities of ferromagnetic materials.
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2.3. 1D open field

Most one-dimensional (1D) electromagnetic
field problems cannot be used practically, but
they offer the best examples to illustrate the
basic idea of the strategic dual image method.

In fig. 1(a), for a source electric charge Q and
its image + Q located at x =2L, a symmetrical
boundary condition at x = L can be established.
Similarly, imposing a dual image —Q at x =2L
yields a zero boundary condition at x = L. The
average of both fields in figs. 1(a) and (b) gives
an open field caused by the source charge Q.
Thus, the open boundary solution vector can be
obtained by averaging the symmetrical and zero
boundary solution vectors.

2.4. 2D/3D open field

At first, let us consider one of the currents i in
the problem region. When an image current
—{(d/a)i is imposed at the position shown in fig.
2(a), the normal component of flux density B
becomes zero at the circular/spherical hypotheti-
cal boundary. This means that the vector poten-
tial A is zero at the hypothetical boundary when
the magnetic field is represented in terms of A.
Also, this zero boundary condition A =0 corre-
sponds to the symmetrical boundary condition
dU/on =0 when the magnetic field is repre-
sented in terms of the scalar potential U. The
magnitude of the image —(d/a)i depends on the
position of the field source current i in the
hypothetic boundary so that the following condi-
tion must be satisfied to reduce the zero net
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Fig. 1. Strategic 1D dual images: (a) an image charge Q
yields a symmetrical boundary at x = L; (b) a dual image
—Q vyields a zero boundary at x = L.
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Fig. 2. Strategic 2D/3D dual images: (a) the rotational field
source image —(d/a)i. The zero A =0 or symmetrical dU/
dn =0 boundary condition is established at the circular/
spherical surface; (b) the divergence field source image —(d/
a)ym. The zero U =0 or symmetrical 3 A/on =0 boundary
condition is established at the circular/spherical surface.
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q
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where a is the radius of the circle/sphere;
rp(=a2/dp) is the distance from the center of the
circle/sphere to the current i,; and g is the
number of sources. Equation (4) means that the
net current in the problem region must be zero,
and the vector potential A becomes zero at the
center of the circular/spherical hypothetical
boundary.

Secondly, let us consider one of the magnetic
charges m in the problem region instead of cur-
rent i. When an image —(d/a)m is imposed at
the position shown in fig. 2(b), the tangential
component of the field intensity H becomes zero
at the hypothetical boundary. This means that
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the scalar potential U is zero at the hypothetical
boundary when the magnetic field is represented
in terms of U. Also, this zero boundary condi-
tion U=0 corresponds to the symmetrical
boundary condition dA/dn =0 when the mag-
netic field is represented in terms of the vector
potential A.

Thus, the open 2D/3D field solution vector
can be obtained by using the circular/spherical
hypothetical boundary and averaging the zero
and symmetrical boundary solution vectors.

2.5. Axisymmetrical open field

As shown in fig. 3(a), with an arbitrary cur-
rent i flowing toward the ¢ direction, this prob-
lem can be reduced to an axisymmetrical field
problem. When we impose an image current —i,
then, as shown in fig. 3(b), the vector potential
A, becomes zero along an ellipse. This means
that the hypothetical boundary of the axisym-
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Fig. 3. Axisymmetrical open field: (a) an arbitrary current i
flowing toward the ¢ direction: (b) a strategic image current
and an elliptical hypothetical boundary.
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metrical open field becomes an ellipsoid of gyra-
tion. Depending on the axial ratio b/a, a large
number of ellipses is considered so that it is
essential to determine a unique axial ration b/a.
Numerical tests give the unique axial ratio b/a of
the ellipsoid as b/a =1.815. This value makes
the elliptical hypothetic boundary common to
various current distributions.

When we introduce this axial ratio b/
a = 1.815 into the following demagnetization fac-
tor formulae for an ellipsoid of gyration [7]:

N=— 1
T 2[(b/a)* - 1]
(b/a)’ fa
X [{(—b/a)—z——l—} COos (E)—l], (10&)
N,=1-2N,, (10b)

then the demagnetization factors N, of the z-
direction and N, of the r-direction becomes N, =
0.5 and N, = 0.25. This means that the condition
N, =2N, must be satisfied to calculate the (r—¢—
z) axisymmetrical three-dimensional fields in the
(r-z) two-dimensional space. In others, it may
be considered that both of the currents { and —i
in the (r-2z) coordinate system shown in fig. 3(b)
contribute to the r-axis field component. Thus

the axial ratio
b/a=1.815 (11)

may become a unique value.
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Fig. 4. Magnetic field distribution of a saturable reactor: (a) magnetic field distribution; (b) B-H curve used in the computa-

tions.
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The axisymmetrical open field vector can be
obtained by averaging the symmetrical and zero
boundary solution vectors, respectively, while
imposing the symmetrical and zero boundary
conditions onto the elliptical surface having the
axial ratio 1.815.
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Fig. 5. Axisymmetrical dynamic fields: (a) schematic dia-
gram of the problem; (b)-(e) dynamic field distributions.
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2.6. Examples

Fig. 4(a) shows the magnetic field distribution
in a saturable reactor. Fig. 4(b) shows the B-H
curve used in the computation. The solutions are
obtained using hypothetical boundaries with dif-
ferent radii. Nevertheless, the solutions almost
coincide with each other. This means that the
strategic dual image method gives a unique solu-
tion, even if nonlinearity of the material is taking
into account.

Fig. 5 shows the dynamic field distributions of
an axisymmetrical open field. Fig. 6 shows the
eddy current distributions in an aluminium alloy
conductor. Fig. 7 shows the induced voltages in

t=0.5[ms] t=5.0[ms] t=50.0[ms]
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Fig. 6. Eddy current distributions in a conductor.
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Fig. 7. Experimental verification: (a) search coils attached to a conductor; (b) induced voltages in the search coils together with
the experimental results.
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search coils together with the experimental re-
sults. Agreement between the computed and
experimental results in fig. 7(b) suggests that the
strategic dual image method is effective for dy-
namic field problems.

Discretization of the examples in figs. 4-6 is
carried out by means of the first-order finite
element. Further, the dynamic magnetic fields
are obtained by solving the following system
equation:

 se.- Gy ][4
Cy 2C22_C21C11C12 X,

5 @] e

where a sub-matrix D is due to the conducting
medium. Equation (12) is modified to

d
C.X, + D<d—t>X1 =F,, (13a)

where
C,=C, = Cpl2C, — C21C1_11C12]71C21 , (13b)
X, =—-[2C,;, - C21C;11C12]—1C21X1 . (13¢)

The time discretization of eq. (13a) is carried out
by means of the backward difference method.

3. Conclusion

The strategic dual image method was demon-
strated to make it possible to obtain finite ele-
ment solutions of open boundary electromag-
netic field problems. The procedure was also
shown to be extremely simple.
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