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Electromagnetic field source searching from the local field
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First, we make a brief review of inverse problems in various fields and formulate the inverse problems in the
electrostatic, magnetostatic and current flowing fields. Secondly, we propose one of the methods for obtaining a unique
solution pattern, not a unique solution of the inverse problem. Finally, we apply our method to human heart diagnosis and
current flow estimation in a human brain. As a result, the positions of defects in hearts exhibiting the Wolff-Parkinson—
White syndrome are successfully identified and sequential current flows in a human brain are clarified by our approach.

1. Introduction

In 1917, Radon gave a mathematical back-
ground of computed tomography. After Old-
endorf’s experiment (1961) and Kuh!l’s experi-
ment (1963), Hounsfield and Anbrose succeeded
in realizing computed tomography [1]. Com-
puted tomography could be one of the inverse
problems in a broad sense and called the weakly
ill-conditioned inverse problem, because avail-
able data are a set of orthogonal data around a
target region. The essential inverse problem in
medicine is the electromagnetic field source iden-
tification from the electrocardiogram (ECG),
magnetocardiogram (MCG), electroencephalog-
ram (EEG), magnetoencephalogram (MEG)
and other electromagnetic data, which are insuf-
ficient to identify or find the field source dis-
tribution and field source amplitudes exactly.

In the electromagnetic field source searching
problems, the difficulty of the inverse problems
exists in the fact that the area of the known field
does not include the source existing region. In
other words, if the field measurement region
include the source existing positions, the source
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can be easily obtained by spatially differentiating
the field. In this case, the governing equation has
a differential form. However, the governing
equation becomes an integral form in the inverse
problem because of the lack of field information.

In the present paper, we propose a method
for obtaining a unique solution pattern, not a
unique solution of the inverse problem. No
unique solution can be usually expected in the
inverse problems because the system matrix, ob-
tained by discretizing the integral equation, is
not a regular matrix.

Our proposed method is applied to human
heart diagnosis and current flow estimation in a
human brain. As a result, the positions of defect
exhibiting the Wolff-Parkinson—-White syndrome
are successfully identified. Also, the current flow
in a human brain is estimated when the median
nerve of a right wrist is stimulated electrically.

2. Formulation of open boundary inverse
problems
2.1. Electromagnetic field problems

In electrostatic fields, the electric potential ¢
is related with the charge density p and the
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permittivity of free space ¢, by

50V2¢) =P (1)

When we denote A as a vector potential, then
the magnetostatic field problems are reduced to
solving the following equation assuming the
Coulomb gauge V-A =0:

(1/u, VA=-J, (2)

where u, and J are the permeability of free space
and current density, respectively.

In current flowing fields, the electric field
intensity E is related with the electric potential ¢
by

E=-V¢ (3a)
and has the following relation:
J=kE+1]_, (3b)

where « and J, are the conductivity and current
density springing out in conductive space, re-
spectively. Substituting (3a) into (3b) and taking
the divergence of (3b), we have

kVi =V-J_, (4)

because of the relation V-J=0.
Equations (1), (2) and (4) can be written
generally in the form

AV =-0, (5)

where ¢, o and A are the scalar or vector poten-
tial, field source density and medium parameter,
respectively.

The problem, in which the field source density
o and the medium parameter A in entire space
are given and the potential ¢ is the unknown, is
called a forward problem. A number of analyti-
cal studies in engineering and science have de-
veloped methodologies for solving this kind of
problem. Also, most of the present numerical
methods have been developed to solve this type
of problem. On the other hand, obtaining the
field source density o using the potential ¢ or
field intensity as well as the medium parameter A
in entire space is called a dual problem.

In source searching problems, when the only
local potential ¢ in limited space not including
the source existing region is given, the evaluation
of the field source density o is called an inverse

problem. Stokes, Neuman and others already
have pointed out that the lack of field or poten-
tial information results in ambiguity of the solu-
tion of the inverse problem [1].

2.2. Governing equations for inverse problems
of electromagnetic fields

In the homogeneous medium cases, imposing
the open boundary condition, the potential ¢ in
(5) is formally obtained by an integral form:

l/l—_-f(G//\)O' dv, (6)

where G is the Green’s function given by G =1/
(4mr) in three-dimensional cases, and r is the
distance between the potential and source

points.
In the electrostatic fields, (6) becomes
¢ = f [p/(4me,r)]dvu. (7
1 4

Similarly, in the magnetostatic fields, (6) is

A= [ WG] dv, (8)
v _

or

H=B/u,=VX J. [J/(47r)] dv, (8b)

|4

where the magnetic field intensity H = (1/
uo)V X A. Further in the current flowing fields,
(6) is

¢ = —f [V-J/(4mkr)]dv . 9)

v

In the magnetostatic fields, the governing equa-
tion is not expressed by the vector potential,
because it is difficult to measure the vector
potential A directly.

2.3. System equations for inverse problems of
electromagnetic fields

Discretizing in (6) into small subdivisions AV,
(i=1,2,...,m) yields a system equation of the
inverse problems:
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U= E ad,, ‘ (10)
i=1

where »

U:[dll’ (/jz,,__’dj"]T, (11)

d,=(G, Gy»- .-, Gl (12)

o, = (0,/A) AV, . (13)

In (11) and (12), the subscript n denotes the
number of measured potential or field points.
Generally, the number of source points m is
much larger than the limited number of potential
or field measured points n, thereby the following
condition is established:

m>n. (14)

In (12), the elements G,;, Gy, ..., G,; are the
functions of the angles as well as distances be-
tween the field and source points. In (13), the
unknown «;, becomes a voltage dipole in the
electrostatic and current flowing fields, but it
becomes a current dipole in the magnetostatic
fields, respectively.

In the electrostatic and current flowing fields,
(11) and (12) are

U=[¢, ..., 0,1, (15)
d ={1/(4m)}[n,-a,lr,,n-aylry,...,n-a,;/
ral s (16)

where n, is unit space vector in the direction of
the voltage dipoles. In the electrostatic fields,

o= (ple,) AV, (17)
and in the current flowing fields,
o, =(=V-J,/k)AV,=—1I,/x . (18)

The current I, in (18) springs from the surface of
the volume AV,, therefore, the absolute value of
I is given by

L=1,|= f V-J,dv= fJS,.-dS. (19)
AVi Asi

Moreover, a,;, a,;, - . . , 4,; are unit space vectors
from the source point i to the field points 1,
2,...,n; and ry;, ry, ..., 1, denote the dis-
tances between the source point i and the field
points 1, 2, ..., n, respectively.

In the magnetostatic fields, (11) and (12) are

U=[H,H,,...,H], (20)
d,=[1/(4m)][n; X ali/r?i’ n; X a2i/r§i’
co,mxa i)t (21)

where n, is unit space vector in the direction of
the current dipole J; AV, assuming a constant
current density J, in a small subdivision AV,
[2-4]. Therefore, «, in (10) can be written by

o =|J|AV,. (22)

3. Unique solution pattern searching

Because the field or potential measurement
area is not located in the source existing region
in the inverse problem, it is obviously difficult to
obtain a unique solution of (10). The condition
(14) makes it mathematically difficult to solve
(10). Namely, the number of equations n is
much smaller than the number of the unknowns
m. When m < n, we could have a square system
matrix by using, for example, the Gram—-Schmidt
method, the factor analysis and so forth [5, 6].
However, even if the condition n=m is held,
solving (10) is still difficult because the deter-
minant of the obtained system matrix becomes
nearly zero. Also, the analysis using least
squares gives the most dominant source position
and its amplitude, but cannot provide plural
source positions [4].

Therefore, we have developed a unique solu-
tion pattern searching algorithm called the sam-
pled pattern matching (SPM) method [7-11]. The
validity of the method has been examined by
comparing the obtained source distribution pat-
tern with the original one, because the com-
parison between the field patterns due to the
original and estimated sources does not make
sense in the inverse problem. The uniqueness of
the source distribution patterns will be demon-
strated in section 4.1.

It is possible to modify (10) into

U= é (B,.d,. +’§;i (.3,','(‘11' +d))

-+

k#‘ik#}_ [Bi/‘k(di + d/‘ + dk) T ])) . (23)
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The physical meaning of (23) is explained as
follows: In the magnetostatic case, for instance,
one current dipole yields a pair of north and
south magnetic poles on the measurement sur-
face, which corresponds to the first term on the
right hand side of (23). If the field consists of
plural pairs of poles, the other terms should be
taken into account in order. A similarly, in the
electrostatic current flowing fields, the potential
pattern is regarded as consisting of plural pairs of
positive and negative poles caused by correspond-
ing plural voltage dipoles. The problem can be
reduced to determining the number of pole-pairs
and their source positions.

Using the Cauchy-Schwarz relation in linear
vector space [5], the first solution group in (10),
i.e. the group of single pole-pairs, is given by

U'd, U'd,

wlld,|” |Ulld| " "

U'd, U'd,

I—U—Hd—hl, e Tl (24a)

The Cauchy-Schwarz relation of two vectors
evaluates the pattern matching rate between the
two vectors. This ratio does not depend on the
source amplitude, so that the most dominant
source position is uniquely determined by
searching for the maximum term in (24a).

When the term U'd,/[|U]||d,|] in (24a) takes
the maximum, the source located at point & is
regarded as the first source yielding the field or
potential pattern composed of a single pair of
poles. In (24a), the estimated field pattern d;
(i=1,2,...,m) depends on the spatial angle of
the voltage or current dipole, hence the position
h should be determined by taking it into account.

Regarding the term U'd,/[|U||d,|] as 1, the
second solution group can be written as

U'd,+d) U'(d,+d,)
\Ulld, +d,| > |Ulld,+dy| " "~
U'd,+d,)
Vo |Ulld, +d,]

1,

(24b)

for the source position estimation based on the
field or potential pattern consisting of two pairs
of poles.

A similar process is continued until the peak

value of the sequential pattern matching rates,
i.e. inner products, can be obtained. Thereby,
the normalized solutions of (10) are approxi-
mately given by

o,[ld,|/|U[) = (L/m")U/UI{[d,/|d,]]

+ [(dh + dl)/|dh + dl‘] +o0),
(25a)

oy [|dy|/|UN] = (1/m")[U/|U|]{[dy/]d,]

+ [(dh + dz)/ldh + dz“ + - } >
(25b)

ah[ldh|/|U|] =(1 /m'){[U/lU|]T[dh/|dh|]
+1+1+4+--}, (25¢)

‘0

a,(ld,|/|U}=1/m)[UNU|"{(d,/|d,l]

+ [(dh + dm)/|dh + dm|] +- } ’
(25d)

where m’ denotes the number of repeated pro-
cesses similar to those of (24a) or (24b) and also
corresponds to the number of pole-pairs of the
field or potential pattern.

Regarding d;, (i =1,2,.. ., m) in (10) as basis
vectors, each of the results in (25) can be inter-
preted as the spectrum corresponding to the
basis vector. By analogy with the Fourier series,
the Cauchy-Schwarz relation corresponds to the
integration for obtaining spectrums. In the
Fourier series:

f(t)='=§_: C, exp(jiwt) , (26a)
c,.=§‘:—r_ f/ (1) exp(—jiwt) dt . (26b)

where f(¢) is an arbitrary periodic function,
exp(jiwt) (i=-,...,-1,0,1,..., +) are
sinusoidal basis functions, w is a fundamental
angular frequency, j = (—1)”2 and C, is the fre-
quency spectrum corresponding to exp(jiwt); the
basis functions are orthogonal to each other.
This means integrating the product of two differ-
ent basis functions reduces to zero. Therefore,
each spectrum can be uniquely determined by
(26b). Equation (26b) corresponds to (25). How-
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ever, our method has assumed that the angle
between the basis vectors d; and d; (i # ) is not
orthogonal, so that (25) gives solution spectrums
of (10) with some spreading bands, not the
unique solution of (10) [7-11]. This corresponds
to the Fourier transformation for a non-period-
ical function. In the Fourier transformation, ob-
tained spectrums are continuous and form some
spreading bands.

4. Examples

We have described the inverse problems in
the electrostatic, magnetostatic and current flow-
ing fields in a unified manner and shown that
they can be formally reduced to solving the
system equation (10). As examples, we demon-

(a)

(c)

strate here the inverse problems concerning the
magnetostatic fields. First, we apply our method
to test examples in order to verify the validity of
the method. Secondly, the method is applied to
current distribution searching problem of human
hearts from the MCG. Finally, the method is
applied to current flow estimation in a human
brain obtained from the MEG.

4.1. Uniqueness of solution patterns

As shown in fig. 1a, the first test example is
that a straight current flows diagonally from the
right upper hand corner to the left lower hand
corner in a cubic region. The needle denotes the
direction of the current flow. This current flow
yields the magnetic field H, normal to the top
surface of the cube, as shown in fig. 1b. The z

H2

(e)

Fig. 1. Current flowing diagonally from the right upper hand corner to the left lower hand corner in a cubic region; (a) correct

current distribution, (b) the magnetic field pattern H, normal to the top surface due to the correct current distribution, (c) the

estimated solution pattern (m = 13225 and 72 angle divisions), (d) the same result as (c) when showing top 10% for making it
legible, (e) the estimated solution pattern showing its top 10% (m = 5491 and 72 angle divisions).
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component of the current flow does not affect H,
because of the rotational relation (8b), so that it
is possible to evaluate the x—y components of the
current flow from the magnetic field H,. Figure
Ic shows the normalized solution pattern ob-
tained by (25a)-(25d) with the field of fig. 1b,
where the number of known or measured mag-
netic field intensities used in the calculation is
n=6x6=36. In fig. 1c, the number of subdivi-
sions in the cube and the angle resolution of the
current dipoles on the x—y plane are m = 13225
and 5°, respectively, so that the total number of
the unknowns in the system equation is 13 225 X
72=952200. In order to make the result more
legible, top 10% of the results obtained by
(25a)—-(25d) is shown in fig. 1d.

It is necessary to confirm the uniqueness of

(a)

obtained solution patterns in inverse problems
because we have infinite possibility for a solution
of (10). This means a variety of solution patterns
can give the same field pattern. If proposed
algorithm give different solution patterns de-
pending on system conditions, it is useless to
analyze inverse problems. To verify the unique-
ness of the solution patterns obtained by our
method, the number of the subdivisions in the
target volume, m has been changed. Figure le
shows top 10% results of (25) obtained from the
field of fig. 1b, where n =36, m = 5491 and the
number of the angle divisions for the current
dipoles is 72. Comparing the results of figs. 1d
and le suggests that the uniqueness of the solu-
tion patterns obtained by the SPM method [7-
11] is verified.

(c) (d) (e)

Fig. 2. Clockwise loop shape current distribution in parallel to the x—y plane; (a) correct current distribution, (b) the magnetic

field pattern H, normal to the top surface due to the correct current distribution, (c) the estimated solution pattern (.m =131225

and 72 angle divisions), (d) the same result as (c) when showing top 10% for making it legible, (e) the estimated solution pattern
showing its top 10% (m = 5491 and 72 angle divisions).
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Hz

(a) (b) (c)

Fig. 3. Clockwise loop shape current distribution in parallel to the x—y plane, the current flowing in one side region is twice as
large as those in the other three sides regions; (a) correct current distribution, (b) the magnetic field pattern H, normal to the top
surface due to the correct current distribution, (c) the estimated solution pattern showing its top 10% (m = 5491 and 72 angle

divisions).
H: Hz Hz
Y Y
X X / X
(a)QRS 16ms. (b)QRS 40ms. (c)QRS 66ms.

(d) QRS 16ms. (e)QRS 40ms. (f)QRS 66ms.

Fig. 4. The current distributions of a healthy human heart; (a)-(c) the MCGs, (d)-(f) the obtained solution patterns.
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The second test example is a clockwise loop
shape current flow case shown in fig. 2a. Figure
2b shows that the known or measured field pat-
tern normal to the top surface of the cube has a
concave shape. Figures 2c-2e show the results
obtained from (25) with the field of fig. 2b,
where the system conditions, i.e. n, m and the
spatial angle division for the current dipoles, are
the same as those in figs. lc-le, respectively.
Even in a loop shape current flow case, the
uniqueness of the solution patterns has been
verified by comparing the results of figs. 2d and
2e with the correct current pattern shown in fig.
2a.

Practically obtained magnetic field is caused
by the currents having different amplitudes in a
target region. The final test example is to ex-
amine the effect of amplitude changes of cur-
rents. Figures 3a and 3b are a clockwise loop
model current flow and its accompanying field
pattern normal to the top surface of the cube,
respectively. In fig. 3a, the amplitude of the
current flowing in the negative x direction is
twice as large as those of the other currents.
Figure 3c shows the solution pattern obtained
from the field of fig. 3b, where the system condi-
tions are the same as those in fig. le. It is
obvious from fig. 3c that the concentration rates
of obtained spatial spectrums correspond to the
amplitudes of the original currents. This result
can be explained as follows: Basically, the
Cauchy-Schwarz relation (24) gives source posi-
tions. However, the plural found source posi-
tions can be concentrated in the vicinity of the
large amplitude current flowing region, even
though the amplitudes of the computed spec-
trums are not proportional to the amplitudes of
the original currents.

4.2. Current distribution in hearts

Depending on the heart operating conditions,
the MCG exhibits the distinct patterns so that
the MCG analysis is intensively studied for heart
diagnosis [12]. Figures 4 and 5 show the MCGs
[2] composed of the magnetic field H, normal to
the human chests and the estimated current dis-

tribution patterns on the x—y plane obtained by
the SPM method [7-11], respectively. The esti-
mated results in figs. 4 and 5 are showing the top
10% of the spectrums obtained from (25). And
they have been obtained from a human healthy
heart and the hearts of two patients with the
Wolff-Parkinson—White (WPW) syndrome, re-
spectively. Figures 4d, 4e and 4f show the cur-
rent flows from the sino-atrial node to antioven-
ticular node at QRS 16 ms, from the bundle of
His conduction to the left as well as right bundles
of QRS 40 ms and ending in the ramifying Pur-
kinje fiber network at QRS 66 ms, respectively,
The computed results of figs. 5S¢ and 5d suggest
that the defect positions of one patient is the
Kent bundles and the other’s is the James bundle
with the WPW syndrome.

4.3. Current distributions in a brain

The unique solution pattern searching method
is applied to the estimation of the current flows
in a human brain. As a result, sequential current
flows in a human brain reveal the functional
behavior of the brain when the median nerve of
the right wrist is stimulated electrically [13]. The
electrically stimulated pulse is a square wave
having the period 0.5s.

Figures 6a-6¢c show the MEGs measured on
the surface over the left brain of a healthy
22-year-old man at 70 ms, 100 ms and 150 ms,
respectively, after the stimulation [13]. The
MEGs are composed of the magnetic field inten-
sities H, normal to the measurement surface,
therefore, the estimated currents should be dis-
tributed in parallel to the surface. Figurers 6d-6f
show the top 10% estimated current distributions
obtained by (25) at 70 ms, 100 ms and 150 ms,
respectively.

At 70ms after the pulse impressed at the
median nerve of the right wrist, fig. 6d shows
that the signal reaches the brain via a vertebra.
At 100 ms, the signal stays at the hand sensory
cortex but strong recognition and memorization
are carried out, as shown in fig. 6e. At 150 ms,
the signal at the brainstem becomes the
strongest, as shown in fig. 6f.
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Hz
He .
Y
{/ X X
(a)Kent bundle defect. (b)James bundle defect.

(a)Xent bundle defect. (b)James bundle defect
Fig. 5. The current distributions in human hearts of the WPW syndrome; (a)-(b) the MCGs at QRS 30 ms, (c)-(d) the obtained
solution patterns. o 3

Hz . -

—t— g X W X

(b)100ms (¢)150ms

(e)100ms (f)150ms

Fig. 6. The normalized current distributions in a human brain when the median nerve of the right wrist is stimulated electrically;
(a)-(c) the MEGs, (d)-(f) the obtained solution patterns.
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5. Conclusion

As shown above, we have tried a unified
approach to the open boundary inverse problems
of electromagnetic fields. As a result, we have
succeeded in deriving a general form of govern-
ing equations as well as system equations for the
inverse problems. Further, we have proposed the
unique solution pattern searching method to ana-
lyze the inverse problem with the system equa-
tion where the number of equations is less than
the number of the unknowns. The solution pat-
tern, not the exact solution, has been successful-
ly evaluated, also the uniqueness of the solution
patterns has been verified by the test examples.

Finally, we have applied the method to the
medical diagnosis. As a result, the positions of
defect in the human heart exhibiting the WPW
syndrome have been identified by the local mag-
netic field measurements, and the proposed
method makes it possible to investigate the
human brain’s functional operations.
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