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The nonlinear magnetostatic field in polyphase induction motors at no-load is solved by the finite difference meth-

od based on the method of magnetic circuits.

Notation

A amplitude of magnetomotive force
(MMF)distribution [AT/m]

a = f(u), coefficient of finite difference

equation as function of permeability
= uH, magnetic flux dénsity [Wb/m? ]
constant determined by boundary
conditions

mesh spacing in direction of y axis

= —grad U, magnetic field intensity
[AT/m]

mesh spacing in direction of x axis
number of mesh points in x and y
axes, respectively

mesh spacing in direction of z axis
LR, magnetic resistances in direction of
x axis at mesh points (i, j, k) and
(i+1,],k), respectively

magnetic resistances in direction of
y axis at mesh points (i, j, k) and
(i,j £ 1, k), respectively

Sl

moa

1. Introduction

Rk , Rkil magnetic resistances in direction of
z axis at mesh points (i, 7, k) and
(i,j, k £ 1), respectively

U scaler potential [AT]

X, ¥,z rectangular coordinates

u = F (grad U), permeability as function
of rate of change of potential U

T pole pitch

w relaxation parameter

Superscripts K and * denote the Kth com-
plete iterations and the first approximate value,
respectively.

Subscriptsi, i+ 1,i+ 1/2,j,j+ 1,j+ 1/2,k,
k+ 1,k £ 1/2 refer to the positions XXt h,

X, xh[2,y,y, 8y, +g/2,z, .2, *tp,z, tp[2,
respectively. Moreover, m = MN (in two dimen-
sions) denotes the total number of mesh points.

Of all types of electric motors the polyphase induction motor is by far the most popular and the
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most widely used in machines. However, its space harmonic waves due to the magnetomotive force
(MMF) distribution and the magnetic saturation in iron produce abnormal torques and magnetic
noise.

The accurate design of polyphase induction motors is required to reduce these injurious features
(e.g. [11-[61).

The calculation of magnetic fields is the framework of the design of all electromagnetic devices
(e.g. transformers and rotating electrical machines). Because of the saturation of iron parts in elec-
tromagnetic devices it is difficult to calculate the rigorous magnetic fields analytically. To evaluate
the magnetic fields in electromagnetic devices taking into account the nonlinear characteristic of
iron, numerical methods are most effective. They are fundamentally divided into two classes: One
is the finite difference method which replaces partial derivatives by divided differences, and the
other is the finite element method which is based on variational formulations (e.g. [7]—[111]).

When we consider only the region containing iron in a certain electromagnetic device, the mag-
netization constant called “permeability” varies at each position with the rate of change of po-
tential at that point. Therefore, the permeability of the region containing iron takes different val-
ues with respect to the position. On the other hand, it can be assumed that the region containing
iron consists of different magnetic resistances (whose meahing will be explained later) with respect
to the position, and it is possible to suppose the various connections of magnetic resistance to com-
pose the magnetic circuits. The “method of magnetic circuits” utilizes magnetic resistance to eval-
uate the magnetic fields in electromagnetic devices.

The purpose of this paper is to develop the finite difference method based on magnetic circuits
as a means of solving nonlinear magnetostatic fields in polyphase induction motors at no-load.

2. Finite difference equations based on magnetic circuits

This paper treats only a certain region that contains the iron and air in polyphase induction mo-
tors. In the current-free region the fundamental equations of magnetostatic fields are

divB =0, §D)
B = uH, 2)
H=—grad U, 3)

where B, H and U are respectively the magnetic flux density, magnetic field intensity and scaler po-
tential. The permeability u is the constant value within the region containing air. However, in the
region containing iron the permeability u depends on the rate of change of the potential U at each
position.

By means of egs. (1)—(3) it is possible to write the potential equation in rectangular coordinates
as

L) 50 Y
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Fig. 1. (a) The mesh system in three-dimensional rectangular coordinates. (b) Typical subdivisions. (c) Lumped parameter represen-

tation.
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In the region containing iron the permeability is represented by

aU aU aU) 5)

u = F(grad U) =F(§’ 3y az)"

To deduce the finite difference representation of eq. (4), we consider the mesh system as shown
in fig. 1a, where the mesh spacings are & = Xppy =X, X, =X BTV —Y, TV, Y
P=2pin ™% T8 "2k

Due to the nonlinear characteristic of iron the permeability at each mesh point takes different
values with respect to the mesh points. Then as shown in fig. 1b, it is possible to consider that the
region which encloses these mesh points in fig. 1a is divided into seven subdivisions in each of which
the permeability may have a distinct value.

The permeabilities B My g By e Mg Mijorio Mijs and y, 4 in fig. 1b are respec-
tively assumed to the constant values w1th1n t ese subdivisions. By consm{ermg the subdivisions in
fig. 1b, the lumped parameter representation shown in fig. 1¢ is possible.

The lumped parameters in fig. 1c are the magnetic resistances, and their general definition is

. . _ Length of the magnetic flux path
Magnetic resistance (Permeability of ) ( Cross-sectional area ) ’ (6)

the material normal to the flux path

where the relations of the potential, magnetic resitance, magnetic flux, magnetic flux density and
magnetic field intensity are

Potential difference

Magnetic flux = "~ Magnetic resistance ’ (7
. L Magnetic flux
Magnetic flux density (Cross-sectional area )’ (®)
normal to the flux path
_ Magnetic flux density 9)

Magnetic field intensity = Permeability of
( the material )

One of the examples of eqs. (6)—(9) is shown in fig. 2. By means of eq. (6) the magnetic resis-
tances in fig. 1c are easily calculated as shown in table 1.
By considering eq. (2) at the mesh point (i,j,k), the first term in eq. (4) is rewritten as

o { oU oB
5}(“1/,]( ax lalk)—_——‘lajk (10)

To discretize the right-hand term of eq. (10), the partial derivative in eq. (10) is approximately
replaced by the central difference, namely
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Permeability wu

JArea S

Area S

Potential u

Potential U | Potential U,

Length L
. . L
Magnetic resistance R = 5
U1 - U2
Magnetic flux ¢ = —x
Magnetic flux density B = 52—

Magnetic field intensity H =

T:\UJ

Fig. 2. The example of magnetic circuits.

oB.. B .. —B

i,j.k_ Tiv1/2,jk i-1/24,k

ax Z ’ (n

where the subscripts (i + 1/2,j,k) and (i — 1/2,7,k) refer to the positions (x, +h/2, Vi 2y )and (x,
—h/2, Vi 2 . )> respectively.
By means of egs. (7), (8) the magnetic flux densities are

B =_1_(Ui+1,f,k —Ui,f,k)zg( i1, Bk ) .. —U ) (12)
i+1/2.f.k gp Ri+1 +R’, I Fivyjie T Mk ijk M1,k
Table 1
Magnetic resistances
h/2 2
X axis R, = / Riyy =_L R; :ﬂ*
Hij k8P Kiv1 7 k8P Kio1j k8P
2 2
y axis R; = ¢/ Rj+1 =—_g/ Rj-l = -——g/z
Kij kP Bijr1 khP Bijo1 6P
pl2 p/2 p/2

zaxis  Rp = Ry = —— Ry 15—
Hijkhg Hijje+1hE Hijk-118
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and

uv. —-U_, . R
_ i L.k i~1,j,k =Z( p'l—l,hk ij.k ) _
Bipin ™ " gp ( R_, +R, ) AV . Wit = Yigue: (13)

where the magnetic resistances R, |, R, and R,_, are given in table 1.
When eqs. (12), (13) are substituted into eq. (11), then eq. (10) reduces to

) (# an,j,k) _2 l:l""‘i+1,j,kUi+1,j,k B ( Mk + Hiqjk
u

ox \Mijk 2 Pk T T ) ik
ax h ’ll'+l jk++ ,Jt] k i+1,/,k ’l’)])k ’ll—l,],k #’J’k

+M] (14)

Mo Y Mk

Similarly, it can be shown that the other terms in eq. (4) are

) an,j,k 2 Hiiv1,x Ui,j+1,k Hijir,x Hij 1k
av\Hije 3y )T o Hijk ¥ - ¥ t ¥ Uijk
YRR 0y g2 ML M TRk Vigene TR Mo TR YD

u, U
+_iiijgj£] (as)
"‘i,j—l,k "‘i,i,k

and

5 aU,

ijk) _ 2 Bijen Ui Hij ok H;ik -1
3z \ Hijk T Mk ¥ - ¥ t ¥ Uik
Z\EE 0z T p ML e TR i TRk B TR Y

+M] (16)

Mijre—y THijx

By combining eqs. (14)—(16), we can obtain the finite difference representation of eq. (4) by
the method of magnetic circuits.

In the region containing air eqgs. (14)—(16) reduce to conventional representations of second-or-
der partial derivatives [14] since the permeabilities in eqs. (14)—(16) are the same values. However,
in the region containing iron the permeabilities in eqs. (14)—(16) depend on the rate of change of
the potential at each mesh point. For example, by means of eq. (5) the permeability at the mesh
point (i,j, k) is

o, aU“kaU“ﬂ

- ik i7, ij,
Hijk F(ax * T3y oz

(17)
The partial derivative aUl.]. k/ax in eq. (17) is approximately replaced by th central difference,
that is v
aU;,,-,k Ui+1/2,j,k B Ui—1/2,j,k (18)
ox h ’
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where the potentials U, 12 and U, are determined by the continuity of magnetic flux. By
Sk i-1/2,j,k
considering egs. (12), (13), the magnetic flux must be continuous from mesh point (i + 1,7, k) to
(i,7, k), and from mesh point (i, j, k) to (i — 1, j, k). Therefore, the following equations must be
satisfied:
U. - U.

i+1,1,k H1/2,,k _ Ui+1/2,j,k B Ui,j,k (19)

R R

i+1 i

and

LQLk'_[C-U2$k__LC—ULLk__Lc—hﬂk

(20)
R, R,

By combining egs. (18)—(20), we obtain

U, 1 l(#i+1,j,k Ui vie T M Vi ik Uiy Y Hiji Ui,j,k) 1)
ox h iy -k Moy THijk

Similarly, it is possible to show that the other terms in eq. (17) are

U,k _ 1 ( Bier e Uspor e T B Uige Mk Uit ¥ Bk Ui,j,k) 22)
v g B e Y Hk By T M

and

an,j,k - _1(“1,/,k+1 Ui,j,k+1 + Hiik Ui,j,k B Hiik-1 Ui,j,k-l + H;ik Ui,j,k) 23)

oz p Hojker T Mk Bije-r T Bk

When eqgs. (21)—(23) are substituted into eq. (17), then we can formally obtain the permeability
M @sa function of the potentials and of the permeabilities.

At an air-iron boundary the tangential component of magnetic field intensity as well as the nor-
mal component of magnetic flux density must be continuous.

In the finite difference formulations the tangential component of magnetic field intensity is al-
ways continuous since an air-iron boundary is used in common. Because of the theory of magnetic
circuits (e.g. egs. (12), (13), (19) and (20)) the normal component of magnetic flux is always con-
tinuous in all regions.

The considerations for other boundary conditions are treated in much the same way as reported
in [7].

3. Nonlinear magnetostatic fields in polyphase induction motors

With regard to the symmetrical mechanical structure, idealized magnetomotive force distribution
and no-load condition of polyphase induction motors, the magnetic field may be solved for a mo-
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dified form of the region as shown in fig. 3 (see [2] and [3]). This means that the solution can be
carried out in a rectangular coordinate system without committing any appreciable error for poly-
phase (linear and rotating) induction motors at no-load.

Since we are dealing with the current-free region (or scaler potential problem), it is possible to
divide the region (fig. 3) into two distinct regions.

One of the regions is the stator and the other is the rotor including the air gap.

Let there be M mesh points along the x axis and N mesh points along the y axis; then MN po-
tentials must be calculated in order to numerically solve the magnetostatic field in each region. Ul
timately, the calculation of MN potentials reduces to the solution of a system of MN nonlinear
simultaneous algebraic equations since the finite difference equation that takes into account the
nonlinear characteristic of iron is one of the nonlinear algebraic equations. This system is generall
written

U, +a U + +almUm=b1 }
.............................. ) (24)
am—l,lUl+"'+am—1,m—1Um—l +am—1,mUm _bm—l ’
am,lUl T +am,m—1Um—1 +am,m Um =bm

where m = MN; the (:oefficientsa1 1@y goe -y depend on the permeabilities [T U T
andb ,b,,...b, areconstants determined by the boundary conditions. Note that the permeabi
lities depend on the potentials as well as the permeabilities (cf. eqgs. (17), (21), (22) and (23)). In
order to calculate the potentials U1 , U2, - Um , eq. (24) is solved by iteration (see [9]).

y
LINES OF SYMMETRY
LINES OF OUTER AIR-1RON BOUNDARY (H =0)
}
! IDEALIZED MME DISTRIBUTION [H, =
= STATOR = [Hy=Acos (7x/T) |
[ 1
he AIR GAP
:
. ROTOR
]
f@— POLE PITCH T ——pof
0 = x

Fig. 3. Simplified cross section of polyphase induction motors at no-load.
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One of the steps of this iteration method is
(W) 1% = FLUKD, . U&AD UE) U© p) p) D @)

m— m-~172

B, = D+ (o) (1, 1% — &)

= ) &) ) K-1)
am—l,l fm—l,l(l’ll ""#m—2’#m-1’#m )
................................... b (25)
= K) K) K) K-1)
am—l,m -2 fm—l,m-2 (#1 L I"m-2’ I"m-l ’ #m )

- &) ® L&) & -1)
am-l,m fm-l,m(#l ""I'lm—2’#m—1’#m )

(UK D)+ = —(1/a )a

UKD v+ UKD +q
m-1,m-1 m-1,1 " 1 m

®) _
m-1,m-2 " m-2 -1,m Um bm—l ]

(K+1) = K EK+D% 7K
Um~1) Umzl +w([Um—1 ]* Ufnzl)

/

where the superscripts K and * denote respectively the Kth complete iteration and the first approxi-
mate value, and w is the relaxation parameter.

By continuiting the iterations, it is possible to access the potentials U, U,, ... U which satisfy
eqs. (24). Note that the potentials Ul Uy, o U are overrelaxed, but that the permeabilities [T
My, ... M are underrelaxed to suppress the variations of the coefficients Ay sy sy

Various constants for the numerical example are given in table 2.

After two hundred iterations (maximum deviation is about 0.7 percent) the results of numerical
solutions combined with the stator and rotor regions are shown in figs. 4 and 5.

To check the validity of these results, the potentials in fig. 4 are substituted into the finite dif-
ference equation derived by the quasilinearization method (which is described in the appendix). As
a result it can be shown that the potentials calculated by the method of magnetic circuits comple-
tely satisfy the finite difference equations derived by the quasilinearization method.

Table 2
Various constants of the example (assumed)

Number of mesh points M =10, N =25 Station region
M=10,N =26 Rotor region
Length Ls =0.025(m), Lg =0.001(m), L, =0.025(m)
Pole pitch 7=0.150m)
Relaxation parameter w=1.8
Permeabilities tyiy = 1.0 H/m)
200

Hiron = 2 T (H/m)
1.0+142\/(36_U_) +(3U)
X

ay
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Fig. 5. Numerical solution of the permeabilities (the right-hand and left-hand regions are respectively the stator and rotor regions).

4. Conclusion

In this paper a new finite difference equation based on the method of magnetic circuits has been
derived for numerically solving the nonlinear magnetostatic fields in polyphase induction motors
at no-load. Consequently, it has been shown that magnetic saturation has occurred in the stator
magnetic frame in polyphase induction motors at no-load.

Especially, the finite difference method based on magnetic circuits is quite a useful method for
the computations of nonlinear magnetostatic fields in all the electromagnetic devices since aimost
all boundary conditions that arise in magnetostatic field problem are either automatically satisfied
or easily handled by considering the method of subdivision.

In order to calculate the 250 potentials, it required only a few minutes for two hundred itera-
tions on the computer FACOM 23045S.

-
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Appendix. Quasilinearization method

In the two-dimensional x—y plane each term of eq. (4) in section 2 is approximately replaced by
the following divided differences [7], [15]:

oU, . v, .—U. Uu.-U._ .
0 i) = #1,] b i -1,
ax(“u x ) - (l/h)[“iﬂm—_”h‘__ T Hiap “‘T’—] A1)
9 U\ _ Uiper = Uiy Uiy = Uiy
ﬁ(“u _ay_) =g [“i,f+1/2 — g HMyapT g ] (A-2)

where the permeabilities are

More = F(Ui+1,ih_ Ui,j, Ui jer — Ui+41‘;—1 + Ui,j+1 - Ui,j-l), (A3)
Bian, = F(Ui,i _hUi-l,f, Uijor = Uiy Zji—i’iﬂ — U ), (A4)
Hijerpp = F (Ui”'j“ E Ui—;; ot Dy Dy Ui’j+1g_ Ui’j), (A-5)
Hijo1pp = (UMJ ~ ey +Zi+1’j_l BAANE ) Y _gUi’j-l). (A-6)

By combining eqgs. (A-1)—(A-6), it is possible to derive the finite difference equations of eq. (4)
in the two-dimensional x-y plane.
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