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Abstract

At first, we make a brief review of the inverse problems in the various
fields. Secondly, we propose one of the methods for obtaining a unigue
solution pattern not a unique solution of the inverse problem in
magnetostatic fields. Finally, we apply our method to the human heart
diagnosis. As a result, the positions of defect exhibiting the Wolff-
Parkinson-White syndrome are successfully identified by our approach.

1. INTRODUCTION

In 1823, Abel considered a shape identification problem of a friction-
less hill. The problem: "Is it possible to identify the shape of hill by
measuring the initial speed of a mass and round trip time to reach at
the initial position ?" This problem could be reduced to solve the
Abel's 1st kind integral equation, and successfully solved [1]. Another
important problem under investigation from more than 100 years ago is
the inverse source problems in gravimetry. The problem: "Is it possible
to determine the earth's density by measuring the gravity on the earth
surface ?" According to the works by Stokes (1867), Neumann (1906) and
the others, it has been pointed out that the lack of information inside
the earth results in ambiguity with regard to this inverse source
problem [1]. Therefore, it is difficult to obtain a unigque solution of
the inverse source problems by the measurement of surface fields. But it
should be noted that this problem is equivalent to the current density
determination problem by measuring the local magnetic fields. In 1917,
Radon gave a mathematical background of the computed tomography. After
Oldendorf's experiment (1961) and Kuhl's experiment (1963), Hounsfield
and Anbrose succeeded in realizing the computed tomography [1]. However,
the computed tomography is not the inverse problem but one of the
reqular problems, because available data are not local but a set of
orthogonal data around the target. The essential inverse problems in
medicine are the electromagnetic field source identification from the
electrocardiogram, magnetocardiogram, elctroencephalogram, magneto-
encephalogram and the other electromagnetic data.

In the present paper, we propose one of the methods for obtaining a
unique solution pattern not a unigque solution of the inverse problem in
magnetostatic fields. Finally, we apply our method to the human heart
diagnosis. As a result, the positions of defect exhibiting the Wolff-
Parkinson-White syndrome are successfully identified by our approach.

2. THE INVERSE SOURCE PROBLEM IN MAGNETOSTATIC FIELDS

2.1 System equation
The magnetic field H is related with the current density J by
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H = ux{ [3/(4nir])]dv, (1

where r is a distance between the field B and source J points. In (1),
the volume V containing the current density J is subdivided into a large
number of subdivisions V;, i=l~m, also the number of field points is
denoted by n, then (1) reduces into

m
U= X a:di, (2)
i=1
where
U = [H1IH21..'IHN]TI (3)
di = [1/(4n)][nixa;;/ry;2,mx8; /T2i2,+-+,0; %3 /T,;2]7, (4)
a; = J;V;, izl~m, m>>n. (5)
In (4), n; is a unit vector in the direction of J;; a,i,a;,---,a:; are

the unit vectors from the source point i to the field points 1,2,---,n;
ry;,r;,---,rn; are the distances from the source point i to the field
points 1,2,---,n, respectively. Furthermore in (5), «:, i=l~m, is a
magnitude of the current dipole [2,3], also the condition m>>n is always
satisfied because the field B can be measured within the finite number
of points. Equation (2) is a system equation of the inverse source
problem.

2.2 Unique solution pattern searching
Equation (2) means that the vector U is a linear combination of the
vectors 4, ,i=1~m. Thereby, (2} can be modified into

n m m
U=3{8:di+ Z{0:;(di+d;)+ T {0, (di+d;+a )+ --- }}}. (6)
i=1 el #i,k#]
The 1st solution group in (6) is
Ud, , rd , ., rd. . .. Ud, . (7a)
oTTd T TO77a: T RLIRCY TUTTda T

If the term U'd, /{|U]]ds|] in (7a) takes the maximum, then 2nd solution
group is

U(d.+d,) , UT%dh+d2‘ L, 1, L, U{dy+da) - (7b)
n +dy h + h +

Similar process is continued until the peak value of inner product can
be obtained. Thereby, the normalized solutions of (2) are

ar|@| = U{[d/ld]] + [(dn+ds)/]dp4di |] + --- }, (8a)
aal@] > U {[d/]d|] + [(d+d2)}/dr+d |] + --- }, (8b)
anf@ | = U {[a/]dn]] + 1+ 1+ ---1, (8c)
anlb] > U {[d/]|d}] + [(dh+da)/[dr+da]] + --- }. (8d)

Obviously, this method has assumed that the angle between the vectors
d; and d; (izj) is always smaller than »/2, so that this gives a unique
solution pattern not the exact solutions [4,5].

2.3 Examples
Figures 1(a) and 1(b) show an exact current distribution in a cubic and
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its accompanying magnetic field distribution pattern normal to the top
surface of the cubic, respectively. Figure 1(c) shows a most dominant
pattern (top 10%) in the current distribution computed from the field of

Fig. 1(b).

(a) (b) (c)

Fig.l (a)Exact current distribution in a cubic and (b) its accompanying
magnetic field distribution pattern normal to the top surface of the
cubic. (c) Computed current distribution (top 10%), where m=395352 and
maximum error between the measured and computed fields is 0.5%.

Figures 2(a) and 2{b) show an exact current distribution in a cubic and
its accompanying magnetic field distribution pattern normal to the top
surface of the cubic, respectively. Figure 2(c) shows a most dominant
pattern (top 10%) in the current distribution computed from the field of

Fig. 2(b).

e g

(a) (b) (c)

Fig.2 (a)Ezact current distribution in a cubic and (b) its accompanying
magnetic field distribution pattern normal to the top surface of the
cubic. (c) Computed current distribution (top 10%), where m=395352 and
maximum error between the measured and computed fields is 0.01%.

Figures 3(a) and 3(b) show an exact current distribution in a cubic and
its accompanying magnetic field distribution pattern normal to the top
surface of the cubic, respectively. Figure 3(c) shows a most dominant
pattern (top 10%) in the current distribution computed from the field of
Fig. 3(b). The CPU time for any examples using the 25 MIPS computer was
about 15 minutes. Further, it is obvious that as possible as large
number of freedom m and measured points n are reasonable to get a higher
accurate result. Thus, it has been verified that our method provides the
unique solution vector patterns corresponding to the exact ones.
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ta) (b} (c)

Fig.3 (a)Exact current distribution in a cubic and (b) its accompanying
magnetic field distribution pattern normal to the top surface of the
cubic. (c) Computed current distribution (top 10%), where m=395352 and
maximum error between the measured and computed fields is 0.36%.

Finally, we applied our method to the diagnosis of the human heart
exhibiting WPW syndrome. The computed results in fiqures 4(a) and 4(b)
suggest that the defect positions are the Kent and James bundles.

(a) (b)
Fig.4 (a) Kent, and (b) James bundle defects in human heart.

3. CONCLUSION

As shown above, it is difficult to obtain the exact solutions of the
inverse source problems in magnetostatic fields. But it is possible to
obtain the unique solution vector patterns by our method. As a result,
the positions of defect in human heart exhibiting the WPW syndrome have
been identified by the local magnetic field measurements.
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