A magnetization model for computational magnetodynamics
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In order to calculate the magnetodynamic fields exactly, it is essential to work out a
magnetization model. We have previously proposed a Chua-type magnetization model based
on magnetic domain theory. This Chua-type model is now applied to typical ferromagnetic
materials, such as iron, ferrite, and amorphous magnetic material. As a result, it is

revealed that the typical magnetization characteristics of representative ferromagnetic
materials can be satisfactory reproduced by our Chua-type model.

I. INTRODUCTION

In order to calculate the magnetic fields, it is required
to work out a macroscopic constitutive equation represent-
ing the magnetization characteristics of ferromagnetic ma-
terials. Because of their physical structure, the ferromag-
netic materials exhibit various magnetization features
including saturation, hysteresis, anisotropy, aftereffect,
magnetostriction, frequency dependence, mechanical stress
dependence, and temperature dependence.]‘2

In the present paper, we derive a Chua-type magneti-
zation model based on a simple barlike domain-wall model.
Also, it is found that a similar model can be derived by
considering a magnetic aftereffect. Further, it is shown that
a mathematical model derived by Hodgedon is one of the
Chua-type models.’ This Chua-type model is now applied
to typical ferromagnetic materials, such as iron, ferrite, and
amorphous magnetic material. As a result, it is revealed
that the typical magnetization characteristics of represen-
tative ferromagnetic materials can be satisfactory repro-
duced by our Chua-type model.

Il. THE MAGNETIZATION MODEL
A. Domain-based model

To derive a constitutive equation representing typical
magnetization characteristics, let us consider a simple bar-
like domain-wall model shown in Fig. 1. When an external
field H, is applied, then the following relationship can be
established:

B= ,U(}H‘—*-HB .u‘O(l+ )H .U‘Hv (1)

()Hs
where By, n, p,, and p are the saturation flux density in
each of the domains, number of domains in accordance
with the direction of externally applied field H,, permeabil-
ity of air, and permeability of the specimen, respectively.
The magnetization model should exhibit various magneti-
zation characteristics, such as a hysteretic property, as the
solutions of the model. This means that the model itself
must be composed of parameters not affected by past his-
tories. One of the unique properties independent of the past
history is an ideal or anhysteretic magnetization curve. If
the relation (1) has been established for the ideal magne-
tization curve, then obviously these relations represent a
static magnetization characteristic corresponding to each
of the domain situations. This means that the permeability
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u is obtained from the ideal magnetization curve. Differ-
entiation (1) with time ¢ yields a following relation:

dB dH dn

2 =M +BXE (2a)
on on dx
(“°+B36H)I+B‘$E (2b)
dH on
(2c)

:.urE- + Bra v,

where H, v, and u, denote the applied field, velocity (dx/
dt) of domain movement, and reversible permeability, re-
spectively. Equations (2a)-(2c) are valid as long as the
specific magnetization mode is maintained.

Consideration of (2a)-(2c¢) suggests that the induced
voltage per unit area dB/dt is composed of the transformer
and velocity-induced voltages. When a hysteresis coeffi-
cient s (2/m) is introduced into the relations (2a)-(2c¢),
then the magnetic field H; due to the domain movement is
given by

1 on dB dH
( ) (3)

HF‘Bﬁ” ar  Mrar

where it has been assumed that the width of the domains is
fixed and only their number changes as the medium be-
comes magnetized. Summation of the static field Hin (1)
and dynamic field H; in (3) gives a general field H as

H=H_+ H, (4a)
1 1 an
_;_LB+ B, — ax (4b)
1 dB dH
=pBt; (dt He dt) (4c)

Equation (4b) or (4c) is a domain-based Chua-type
model.*® The hysteresis coefficient s in (3) physically cor-
responds to a friction coefficient between the domain walls
so that the loss is caused by mechanical friction.

The frictional loss is classified into two major compo-
nents: One is a static frictional loss which is proportional to
the velocity v of domain movement, and the other is dy-
namic frictional loss which is proportional to v?. These
static and dynamic losses are, respectively, known as the
hysteresis and anomalous eddy current losses, because the
velocity v of domain movement is proportional to the ex-
citing frequency £.5® The permeability @ in (4c) is ob-
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FIG. 1. Bar-like magnetic domain-wall model.

tained from the ideal magnetization curve as mentioned
before. Also, the reversible permeability pu, is obtained ac-
companying the measurement of the ideal magnetization
curve as described in Ref. 4. On the other side, the hyster-
esis coefficient s in (4c) is measured by setting the B =0
condition. This means that the parameters p and p, take
constant values so that the hysteresis coefficient s is ob-
tained by the measurements of dB/dt and dH/dt in (4c).

B. Aftereffect-based modei

With 7 denoting a relaxation time, a magnetic afteref-
fect can be represented by

M=y, H(l—¢e "), (5)

where M, H, and y,, are the magnetization, magnetic field,
and susceptibility, respectively.2 When we differentiate M
with time ¢, we then have

aM 1

1 .
T X He =2 Qo = M), (6

A general relationship among the flux density B, field
H (not constant), and magnetization M is given by

B=poH + uoM or M= (B/u,) — H. (7)
Substituting (7) into (6), we can obtain
1 dB dH
:ﬁB+ (dt ~Fo dt) (8)

where 4 = po (1 + y.»). Equation (8) is a magnetic
aftereffect-based model, which is similar in form to the
domain-based Chua-type model (4c). A relationship be-
tween them is that the reversible permeability u, and hys-
teresis coefficient s in (4¢) correspond to the permeability
of air uy and /7 in (8), respectively.
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FIG. 2. An example of parameters. (a) Ideal magnetization curve u = B/
H, (b) reversible permeability g -vs-B curve, where B is a bias flux den-
sity, and (c) (dB/dt) — pu,(dH/dt)-vs-H curve, s = [(dB/dr)
—u,(dH/dD))/H.
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FIG. 3. Anhysteretic magnetization characteristics of a laminated iron
core. (a) Time variations of the flux ¢ and current ; (b) hysteresis loops.
Left: experimental and right: computed.

C. Mathematical-based model

In 1988, Hodgedon derived a mathematical model of
magnetic hysteresis:

dH dB\ dB
o ’m"f“” H|+g( dt)dt 9)

where « is a parameter depending on the material, f is a
single-valued function of B, and g is a single-valued func-
tion of B and dB/dt.’ In (9), let us assume f(B) > H; we

then have
v [ 5]

L
dar []/g( dt) dr

Comparison of (10) with the domain-based Chua-type
model (4c) reveals the following relationships:

(10)

f(B)=(1/u)B, 1/g(B, dB/dt) = u,, and g(B, dB/dt)/
aldB/dt| = 1/s. Thus, it is obvious that the mathematical-
based model (10) is one of the domain-based Chua-type
models (4c¢).
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FIG. 4. Anhysteretic magnetization characteristics of a ferrite core (TDK
Ko6A). (a) Time variations of the flux ¢ and current ¢ (b) hysteresis
loops. Left: experimental and right: computed.
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FIG. 5. Anhysteretic magnetization characteristics of an amorphous core
(Toshiba MA1). (a) Time variations of the flux ¢ and current i (b)
hysteresis loops. Left: experimental and right: computed.

. TYPICAL MAGNETIZATION CHARACTERISTICS

A. Rayleigh’s curve

According to Refs. 4 and 5, a relationship between
Rayleigh’s constant v (which is equivalent to the Prei-
sach’s function in a low field) and hysteresis coefficient s in
the domain-based Chua-type model (4b) or (4c) is given
by s = v(dH/dt), where a weakly magnetized region has
been assumed. Substituting this relation into the modified
form of (4c¢) yields

toml (1)

An initial magnetization curve in a weakly magnetized
region can be obtained as a solution of (11):

B=pH += 1 il
= +;(ur—u)[ —exp(—#)

1
:#'H+§VH2’ (12)

where g, < p and exp( — Hv/u) = 1 — (Hv/u)
+ 3(Hv/u)? were assumed. The reversible permeability
i, in (12) reduces to the initial permeability u; on the
initial magnetization curve. Thereby, it is obvious that the
domain-based Chua-type model (4c) and the

4616 J. Appl. Phys., Vol. 69, No. 8, 15 April 1991

mathematical-based model (10) exhibit Rayleigh’s curve.?

However, because of the fact u; > g, the aftereffect-based
model (8) does not exhibit the exact Rayleigh’s curve.

B. Anhysteretic magnetization

Minor loops are generally most important for magnetic
recording. Thereby, we calculated an anhysteretic magne-
tization process.” Three kinds of materials were selected for
the examination. The first one is a laminated iron toroidal
core, the second is a ferrite core (TDK K6A), and the
third is an amorphous magnetic core (Toshiba MA1). The
parameters U, u, and s of the domain-based Chua-type
model were carefully measured. One of the results is shown
in Fig. 2 for the ferrite. As shown in Figs. 3-5, fairly good
agreement between the computed and experimental results
was obtained on the overall results. However, some dis-
crepancy in the measured and predicted minor loops may
appear. This is mainly caused by the inaccuracy of the
hysteresis coefficient s, because the measurement of dH/dt
in (4c¢) is somewhat difficult.

IV. CONCLUSION

As shown above, we have examined the Chua-type
magnetization models and compared with the other mod-
els. As a result, it has been revealed that the domain-based
Chua-type model is capable of representing various mag-
netization characteristics commonly observed in practice.
Further, it has been clarified that the Chua-type model can
be derived by considering the aftereffect process as well as
the mathematical approach. This Chua-type model is a
fairly simple differential form so that it may be considered
as one of the best representations for computational mag-
netodynamics.
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