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Faster Electromagnetic Field Computation
Using the Voronoi-Delaunay Transformation
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Abstract— Previously, we have proposed a locally orthogonal discretization method. This
method is based on a geometrical duality between the Voronoi polygons and Delaunay
triangles so that only one type of potential is required to implement the dual energy
approach. In this paper, we propose a Voronoi-Delaunay transformation method to im-
plement the dual energy approach in an ultimate efficient manner.

L. INTRODUCTION

In order to evaluate the electromagnetic fields in a most efficient manner, a dual
energy finite element method was proposed [1-3]. The traditional dual energy
method requires the use of the two different types of potentials, viz., vector and
scalar, and as such the method provides the improved functionals; however, it
does not provide the improved local solutions. To overcome this difficulty, we
have previously proposed a locally orthogonal discretization method [3,4]. This
method is based on a geometrical duality between the Voronoi polygons and De-
launay triangles so that only one type of potential is required to implement the
dual energy approach. Thereby, both of the improved functionals as well as local
solutions can be obtained by the dual energy approach. Even if a single type of
potential is employed to implement the dual energy approach, this locally orthog-
onal discretization method is compelled to solve the two independent systems,
i.e., Voronoi and Delaunay.

In the present paper, we exploit the Voronoi-Delaunay transformation method
so that the solution of Delaunay system can be obtained by transforming the
solution of Voronoi system. This means that only the Voronoi system of equations
has to be solved to implement the dual energy approach. Thus, it is revealed that
the electromagnetic fields can be computed in an ultimately efficient manner by
the Voronoi-Delaunay transformation method. Some examples demonstrate how
highly accurate electromagnetic fields can be computed from a small system by
our Voronoi-Delaunay transformation method.
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II. THE VORONOI-DELAUNAY TRANSFORMATION METHOD

A. Basic Equations

In two dimensional zy-plane, most of the magnetodynamic fields are reduced
to solve the following governing equation
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where A, Js, p, and o are the z-components of vector potential, source current

density, permeability and conductivity, respectively. The vector potential A4 is
related with the flux density B by

=—J, (1)

VxA=B (2)
so that the electric field intensity E is given by
04
E=-V¢— —

4- 3)

The scalar potential ¢ and time derivative term 9A/8t in (3) are respecuvely
related with the source current density J, and eddy current density J.

Jo= -0V (4)
Je = 0(0A4/8t) (5)

B. Locally Orthogonal Discretization

The key concept of locally orthogonal discretization is to exploit the geometric
duality that exists between Delaunay triangles and Voronoi polygons. Delaunay
triangles and Voronoi polygons are related by the fact that vertices of Voronoi
polygons are the circumcenters of Delaunay triangles. Figure 1 shows the trian-
gles in a Delaunay mesh. The Voronoi polygons associated with these Delaunay
triangles are shown by dashed line in Fig. 1. One of the features of this Voronoi-
Delaunay diagram is that the sides of the Voronoi polygons are always perpen-
dicular to the sides of the Delaunay triangles [5]. This relationship leads to a
locally orthogonal coordinate system as shown Fig. 1. When the vertices i, j of
the Delaunay triangle and the vertices k, [ of the Voronoi polygon are chosen as
node points, following interpolating function may be assumed:

A = ag + a1z + agy + azzy (6)
Applying (6) to the node points i, j, k, ! in Fig. 1 yields
A; 1 O a/2 0 ag
Al=11 b 0 0| |a
Al 1 ¢ 0 0] |as

However, it is difficult to represent the coefficients aq, aj, ag, ag in terms of
the nodal variables 4;, 4;, A, 4, because the determinant of (7) is zero. This
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means that two complete but independent sets of nodal variables must be defined:
one is located at the vertices of the Delaunay triangles and the other is located
at the vertices of the Voronoi polygons.

A simple Lagrange interpolation between the nodes ¢ and j in Fig. 1 is given

by
Ap =(1/2) (Ai + 4j) + (Ai — 4) (v/a) (8)

where a is a distance between the nodes 7 and j. Equation (8) is an interpolating
function of the Delaunay system. This interpolating function (8) satisfies the flux
density Bz (= 0A/d3y) continuity between the adjacent Delaunay triangles when
each of the triangles takes a distinct permeability u.

On the other side, a field intensity Hy (= —(1/p)0A/0z) must be common
between the adjacent Delaunay triangles. This boundary condition can be satisfied
by selecting the following interpolating functions for the Voronoi system:

Ay = {(Ax/p1) e+ (A1/p2) b+ (A1 — Ar) (2/u2)} / {(c/p1) + (b/p2)},

—-b<z<0 (9a)
Ay = {(Ag/p1) e + (Ar/p2) b+ (A1 — Ag) (z/11)} / {(e/111) + (b/p2)},
0<z<e¢c (9%)

where the distances b and ¢ are shown in Fig. 1.

@ NODES OF DELAUNAY
SYSTEH

O NODES OF VORONOI

SYSTEH

Figure 1. Voronoi-Delaunay diagram and a locally orthogonal coordinate
system.

According to these two independent interpolating functions (8) and (9a) or
(9b), the governing equation (1) may be reduced to a one-dimensional equation
in either the Delaunay or Voronoi sets of variables in the locally orthogonal coor-

dinates:
1824 1 84
1824 1] 84
poy? 2 [" ot J’] (106)
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C. Functional and System Equations

A functional satisfying the flux density B, (= 8A4/8y) continuity condition
between the adjacent Delaunay triangles is given by

F(A) = // {% (g—‘:)z + (%%—f - J,) A} dedy (11)

After substituting (8) into (11), and integrating over the region enclosed by a
line i-k-j7-1 in Fig. 1, we can obtain the functional for the Delaunay system. By
taking a minimum of this functional, it is possible to obtain the nodal equations
for the Delaunay system. For example, a nodal equation for the node 7 in Fig. 1
is given by

15 1e¢
(Z - + E E) (Ai — A; )+ (ba'l +co2) = (7‘4 + 5‘4])

=1 2 (b1 +cTy)
(12)
Thus, an entire Delaunay system of equations is represented by
Dp®p + Ep(d/dt)®p = Fp (13)
where Dp, Ep are the coeflicient matrices corresponding to the first and second
terms on the left of (12); Fp is an input current vector corresponding to the right
of (12); and ®p is the potential vector of Delaunay system, respectively.

On the other side, a functional satisfying the common field Hy(= —(1/p)
8A/8z) condition between the adjacent Delaunay triangles is given by

G(4) = —// {y (i g:) + (%%—J,) A }dzdy (14)

where ~ refers to the prescribed values. After substituting (9a) and (9b) into
(14), and integrating over the region enclosed by the line i-k-j-1 in Fig. 1, we
can obtain the functional for the Voronoi system. By taking a maximum of this
functional, it is possible to obtain the nodal equation for the Voronoi system. For
example, the nodal equation for the node k in Fig. 1 is given by
Ap — A ab 0A, ab
+ = 01 =—J 15
(/) + m(e/a) % 2 (15)
Thus, an entire Voronoi system of equatlons is represented by
Dy®y + Ey(d/dt)®y = Fy (16)
where Dy, Ey are the coefficient matrices corresponding to the first and second
terms on the left of (15); Fy is an input source current vector corresponding to
the right term of (15); and ®y is the potential vector of the Voronoi system,
respectively.

D. Voronoi-Delaunay Transformation

The common field H; condition between the adjacent triangles is always sat-
isfied in the Voronoi system. However, it is obvious that the normal flux densities
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Bp to the edges of Delaunay triangles are included in the entire solution of the
Voronoi system as shown in Figs. 2(a) and 2(b). The condition of normal flux den-
sity Bp continuity between the adjacent Delaunay triangles is essentially satisfied
by the nodal variables of the Delaunay system. The original governing equation
(1) has been already discretized by the Voronoi discretization method so that the
discretized problem region is governed only by a Laplace equation and not the
original governing equation (1), viz.,

b 1\ 64 9 /1\ 8A
%(ﬁ)%*%(z)a—y—" (17

By means of the Delaunay discretization method (12) and (13), the vector
potential A; in Fig. 2(b) can be represented in terms of the vector potentials of
the Voronoi system as

1 1 1 1
(— cotay + — cot ﬂg) A+ (—— cot ag + — cot ﬂ3) Al
#1 K2 K2 13
1 1 1 1
+ | —cotaz+ —cotfBy | Ang+ | —cot ag + —cot 85 | Agr
K3 Ha K4 H#5

1 1
+ (— cot ag + — cotﬂl) Ag,
s “1

5
= {Z (l) (cot a; +cotﬂj)A,-} (18)
=1\
where the angles aj ~ as, 1 ~ (5 are shown in Fig. 2(b); and Ay, Ay, Ang,
Agr, A, are the potentials at the inter-selected points of the Voronoi polygon
and the Delaunay triangle edges in Fig. 2(b). For example, Ay is given by
Ay = (c/.ul)Ak + (b/.uZ)Al (19)
(¢/p1) + (b/p2)

By means of (18), the potential vector ®p of the Delaunay system can be
represented in terms of the connection matrix C and of the Voronoi system
potential vector &y by

®p =Coy (20)
The Delaunay system of (13) is transformed into the Voronoi system by means
of (20) as
cTppCoy + CTEpC(d/dt)dy = CTFp (21)
where a superscript T refer to the transposed matrices. Thereby, a resultant
Voronoi system of equations becomes

Doy + E(d/dt)@v =F (22)

where
D =(1/2){€TDpC + Dy} (23a)
E =(1/2){CTEpC + Ev} (23b)

F=(1/2) {CTFpC + Fy} (23¢)
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The coefficient 1/2 in (23a)-(23c) is required because a simple summation of
(16) and (21) duplicates the input source current vector.

The Delaunay and Voronoi systems respectively satisfy the normal flux density
continuity and the common field intensity conditions between the adjacent Delau-
nay triangles. However, (22) satisfies both of the flux density and field intensity
conditions. Therefore, the functional obtained from (22) is a promising one, but
the solution vector obtained from (22) is the solution vector of Voronoi system. In
order to obtain the improved potentials, a midpoint potential vector &5 located
at the midpoints between the vertices of the Voronoi polygon and the Delaunay
triangle is defined by

¢y =Cpu®p + Cym®y (24)

where Cppr, Cyy are the interpolating matrices between the vertices of Voronoi
polygon and the Delaunay triangle. For example, a midpoint potential 4,, in
Fig. 2(c) is given by

Am = (1/2)4; + (1/2) 4 (25)
by means of (20), (24) can be reduced to
oy =(CpMC+Cvm) v (26)

The potential vector @7 in (26) is obviously improved in accuracy because
the vector &,y takes into account the boundary conditions of tangential field
intensity and normal flux density in Fig. 2(a).

(c/u )Ak' (I)/uz)A|
B (c/ar)s(h/ge2)

(b)

Figure 2. (a) The normal component of flux density Bp and tangential
component of field intensity Hjy.
(b) Transformation from the Voronoi nodal variables to the
Delaunay nodal variables.
(¢) Location of the midpoint potential Am.
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Figure 3. (a) Model of open slot.
(b) Convergence property of the functionals.
FEM: first order triangular finite element method,
V-D Trans. : Voronoi-Delaunay transformation method.
(c) Field distribution in the open slot.
V-D Trans. : 10 Nodal variables,
FEM: 15 Nodal variables.
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Figure 4. Model of highly permeable conductor.
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Figure 5. Dynamic field distribution in the highly permeable conductor.
— -—+— Voronoi-Delaunay transformation (16 Nodes)
First order finite element method (144 Nodes)
Stepwidth in time At = 0.01 [sec].

E. Examples

At first, we computed a static field distribution in an open slot shown in
Fig. 3(a). Figure 3(b) shows a convergence property of the functional. Also,
Fig. 3(c) shows a field distribution in the open slot. For comparison, we com-
puted the field distribution by the conventional first order triangular finite ele-
ment method. By considering the results in Figs. 3(b) and (c), it is revealed that
the Voronoi-Delaunay transformation method yields an excellent result even if a
small number of nodes is employed.

Secondary, we computed a dynamic field distribution on a highly permeable
conductor with square cross-section shown in Fig. 4. A step current density Js
was impressed at a central square portion, and the time discretization was carried
out by the trapezoidal method. Figure 5 shows the dynamic field distribution on
the conductor. The results in Fig. 5 reveal that only the 16 nodal equations of
Voronoi-Delaunay transformation method correspond to the 144 nodal equations
of conventional first order finite element method.
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III. CONCLUSION

As shown above, we have shown that the Voronoi-Delaunay transformation
method provides an excellent results even if a small number of nodes is employed.
The previously proposed locally orthogonal discretization method was a quite ef-
fective method to calculate the electromagnetic field in an efficient manner, but
it was compelled to solve the two systems, i.e., Voronoi and Delaunay. This defi-
ciency has been removed by the Voronoi-Delaunay transformation method. Thus,
an ultimate efficient method for the electromagnetic fields has been successfully
obtained.
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