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into account the space harmonic waves.
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= amplitude of the stator im-
pressed voltage

= (d/dt)y, function of ordinary
differential equations -

= (@/06(t))L[6(1)], torque matrix
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fied torque matrix

= stepwidth (sec)

= {lgps Lgys Lps by I CUITENE VECtOT

=J[t+h] — I|t], increase in
current vector

= 1nertia matrix

= inertia (N m sec?/rad)

=+/ —1, imaginary unit

= positive integer

= inductance matrix

=L[0(¢) + ahv,, (¢ + )], modi-
fied inductance matrix

This paper presents some numerical methods for electromechanical systems of polyphase induction motors, taking

P [t} = force vector

p = number of pole pairs

R = |R,, R, R,, R, ], resistance
matrix

R, R, stator and rotor resistances,
respectively

S[6@),v,, (1)] =L~ '[6()] E[¢], input vector
of the electrical state equation

S, = —j-1d, _, coefficient of the
mechanical state equation
T = torque (N m)

Uuie), ¢l =LY [0(H)]E[¢], input vector

of the electrical state equation

U, [0(0),11¢]1] =7, (P*/2)UT[¢]1) GLo()111¢],
input vector of the mechanical
state equation

v,, () = (d/dt) 0(¢), mechanical angular
velocity (rad/sec)

VP = predicted value of the mechan-
ical angular velocity

uC | = corrected value of the mechan-
ical angular velocity

Av,, =v, (t+h)—v, (), increase in

mechanical angular velocity

stator and rotor self-inductances, Z[0(?), v, ()] =R+v, (t)G[6(1)]

respectively

fundamental and 19th space
harmonic wave mutual induc-
tances, respectively

+ L[6(8)](d/d?), impedance
matrix

o = parameter of the linearized
method
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) = relaxation parameter of the Subscripts a, b, ¢ refer to the stator a-phase,
iteration method b-phase, c-phase quantities; s, r refer to the
6(t) = mechanical angle transformed stator and rotor; and p, n. m refer to the
into electrical angle (rad) positive phase, negative phase and mechanical
Superscript * denotes complex conjugate quantities, respectively.
matrix.

1. Introduction

If an induction motor is to be used in variable speed systems, 1t becomes necessary to know 1ts
dynamic performance.

Numerous studies of the dynamic performance of induction motors have been reported and
covered a wide range of performance aspects including starting, overspeeding, switching etc. (e.8.
[11—[5]). The electromechanical systems of equations are nonlinear, and hence difficult, to
solve analytically. Therefore, most studies have obtained the solutions either by means of com-
puters or by analytical methods for the linearized equations. Moreover, the electrical systems of
equations in these studies have been transformed into simultaneous differential equations with
constant coefficients by the tensor transformation method. The tensor transformation method
is useful to reduce the electrical systems of equations to a simpler form, and to work out the
analytical solutions effectively [6, 7]. However, under somwhat worse conditions such as unbalanced
operations and space harmonic waves, the process of tensor transformations becomes too complex
and tedious to be practical.

This paper intends to work out an effective and general numerical method which covers various
performance aspects, taking into account the space harmonic waves.

An example of an application of the numerical method of this paper is the starting transient
performance of a polyphase induction motor. The electrical system of equations taking into ac-
count the space harmonic waves are introduced in complex form whose additional details are given
in [8,9]. The mechanical system of equations consists of the inertia and the coefficient of friction,
both of them include the motor and the load. |

For dynamic performance computations of polyphase induction motors, three different kind
of numerical methods are examined. One of the methods employs the analytically linearized
mathematical model. The second one iterates sequentially between electrical and mechanical sys-
tems of equations. The third one is the well known one-step method (auch as Runge-Kutta type
methods) based on Taylor series expansion.

2. Mathematical model

Fundamentally, the electromechanical systems of equations involves two systems — one of them
is the electrical system and the other one is the mechanical system.

The electrical system of equations is preferably expressed in matrix notation involving a voltage
vector E[t] and a current vector I{¢]. With Z[0(?), v,, (+)] denoting the impedance matrix, the
electrical system of equations is given as
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E[t] =Z16(t), v, ()] I{t], (1)

- where ¢, v,, (¢) and 0(¢) denote time, mechanical angular velocity and the angle between the stator
and the rotor, respectively. |

The impedance matrix Z[0(¢), v, (¢)] is a linear combination of the resistance matrix R, the
inductance matrix L[0(¢#)] and the torque matrix G[8(#)] (which can be obtained by differentiating
the matrix L[6(¢)] with respect to the angle 6(¢)).

This yields

Z[0(t), v, ()] =R +v_()G[0()] + L[6(t)](d/dr) . (2)

The output torque T of the electrical system is expressed in terms of the current vector 7 [£], the
torque matrix G[0(¢)] and the number of pole pairs p:

T'=@/2)A'[¢]) GlomlI 1, (3)

where (I’[¢])" has elements which are the complex conjugates of those of 77[¢], and 7*[¢] is the
transpose of /[¢]. |

In general, the matrices R, G[8(¢)] and L[6(¢)] in eqgs. (2), (3) are square matrices.

The mechanical system of equations is given in terms of the force vector P, [¢], the velocity
vector ¥V, [¢], the friction matrix D_ and the inertia matrix J,., that is

P, lt] =D, +J,d/dDO]1 V,, (1], (4)

where a subscript m denotes the mechanical quantities. In the general case, the matrices P, [7],
V,,lt] in eq. (4) are column matrices: and D, ,J,  are square matrices.

The electrical and mechanical systems are coupled by the velocity vector v, (¢) which appears
in the velocity matrix V,, [¢] and which is a function of the electrical 1mpedance matrix Z[0(¢),
U, ()]

For simplicity, it is preferable to consider a concrete example. Therefore, this paper treats an
example from the various electrical and mechanical systems.

Each element of the voltage vector E[¢] is a state voltage with amplitude £ and angular
velocity v, viz.

E[t] = {E exp(juy?), E exp(—ju,t), 0, 0} (5)

where j is the imaginary unit (j =+/ — 1).

The inductance matrix L[6(¢)] is classified into four cases by the relations of the number of
rotor phases and of pole pairs p as described in [8]. The numerical methods of this paper are
applicable to all four cases. In order to illustrate the essential characteristic of the methods, a
special case is treated as an example, where only the 19th space harmonic is chosen, because it
has a big contributions to abnormal torque as described in [8, 9]. The elements of L[6(¢)] are
the stator self-inductance L, the rotor self-inductance L,, the mutual inductance of fundamental
wave M, and the mutual inductance of the 19th space harmonic wave M 19- The inductance
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- matrix L[0(#)] (square matrix of order 4) 1S

N 0 M, exp(jO())  M,,exp(j190(z))
0 L M, exp(—j190(¢)) M, exp(—j6(2))
L[O(¢t)] = (6)
M, exp(—jo(¢)) ,M19 exp(7196(1)) L, 0O
M,y exp(—j190(5)) M, exp(jo(t)) 0 L,

The torque matrix G[6(¢)] (square matrix of order 4) is .given by
GLO(1)] = B/o6(t) LIO()] . ' (7)

The resistance matrix R (diagonal matrix of order 4) depends on the stator resistance R and
the rotor resistance R, as follows: |

R=[R,R,R,R,| ' _ , (8)
The current vector I]¢] (Column matrix of order 4) consists of the stator positive phase current

Iy > the stator negative phase current ; o« » the rotor positive phase current i,, and the rotor negative
phase currenti,,, viz.

I[f] - {Zspg sn?irpﬂi } | | (9)
The element of the force vector P [t] is only the output torque T of the eléctriCal system:
P, [1]= (/A1) GO . (10)

The friction and inertia matrices involve respectively the inertia }m and the coefficient of friction
d,, ; both of them include the motor and the load. They are

J =i, ' (11)
D, =d_ . (12)

The element of the velocity vector V., [t] is only the mechanical angular velocity v, (1), and it
is given in terms of the number of pole pairs p, because the mechanical angular velomty 1S trans-
formed into the electrical angular velocity, that is

V111 =0, (1) . , ' - a3)
The rel-ation between the mechanical angular velocity v, (¢) and the angle 0(¢) is expressed by

(d/d0)6(r) = v,, (1) _ ' (14)

Lt e e R T RO e RS T ,":i_'r.b"..""\-'i\.'\-'l s
S S R T o S T R £ e A
e N o ."-'{""-"\:""},f-“_'-.?-:'-';-‘-?-"-’_‘f:\.-r.:- R R e A
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For mathematical convenience the complex stator currents i, i,, i, are defined by the following

equation, whose real parts give the original coordinate stator currents (in three-phase stator circuits):

mL B T A

3 l l l 0
iy (=5 |1 exp2n3)  exp(-i4m/3)| i, | | (15)
i, I exp(—4n/3) exp(—2n/3)| | iy, |

where the stator phase are represented by suffixes a, b and c.

3. Numerical methods of solution

3.1. Linearized method. By means of eqgs. (1)—(14) it is poss1ble to write the electromechanical
system of equations as | |

LIO@]@/ANTTE] = ~[R +v,,(1) GLON] 11111 + E[1] _ (16)
G I2)@]d0),, (1) = —(d,, [D)v, (D) + (p/2)A* 1)) GLOW] ITe] (17)

This set of equations is a system of nonlinear simultaneous differential equations which is
linearized by finite difference methods, namely |

Lial[Ilt+h] — I[r-] 1/h=—[R+ {(1 .-- a)v, ()+av, (t+h)}Gla] J[(1 —a)I[t]
+al[t+h]) +E[t+ah], (18)
Ji [V R —v, (D] /h=—d, {(1 —a)v, () +av,(t+h)}
+ (P2D{A —a)It] +ad[t +R]1°} Gla) [(1 — ) I[t] +ad[t+h]], (19)
where the matrices L{a] and G[a] in egs. (18), (19) are defined by
Lla] =L[0(¢) + ahv, (t +1)] , (20)
Gla]l = G[6(2) + ahv, (t+h)] . (21)
The parameter « in eqgs. (18)—(21) can be chosen arbitrarily e.g. « =0, ¢ = 1/2 and « = 1 yield
forward, central and backward differences, respectively. It is assumed that the increase in the
current vector I{¢ + 2] and mechanical angular velocity v, (£ + h) are denoted Ai and Av,, _ nd

that thelr products can be neglected, that is

I[t+h] =1t +Ai, - ' o (22)

e
i Fon OO A A By o S T e S P L e Wl S
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U (E+R) =0, () + Av,_ (23)
(Av,, ) (A1) = (A2 = (Av, )> = 0. _ (24)

Then, by considering eqs. (18)—(24), the vectors / [t +h] and v, (¢ + h) are obtained as

—

Lla] +ah[R +v, (DG[alI[t]]  ahGla]l[f]] !

|

I+ nl] [ If]
= +
v,, (t+ 1) v, (1) ~ahp?(I*[t])" G[a] Im t ahd,

| —[R+v, (OG[a) 1 I[t] +E[t +ah] ]
X h . (25)
A Uy () + (P?[2)UT[2]) Gla]1[1]

However, it is impossible to obtain the solutions (It +h],v,, (¢ +h)) directly from eq. (25) by
the application of central (a = 1/2) or backward (a = 1) difference methods because the mechanical
angular velocity v, (£ + 1) is a function of L{a] and G[a]. Therefore, in a first step, a predicted
value of v, (¢ + 1) is obtained by the forward difference method (o = 0) of eq. (25). Afterwards,
corrected values of v, (¢ + /) and the current vector I{f + 4] are computed by the central difference
method (« = 1/2). The angle 6(¢ + /) is given by

0(t+h)=0(t)+hv, (t+h). (26)

3.2. lteration method. By considering eqs. (5)—(13) with the electromechanical system (1), (4),
1t is possible to derive the following equations

(d/dD1[t] = S[0(2), v,,, (D] I[¢] + ULO(2), 1] (27)
(d/dDv,, (1) =S v, (¢)+ U, 10(¢),11t]] . (28)

Each matrix in eqgs. (27), (28) is defined by

SLO(0), v, (D] =L~ 0D [R +v, () G[6(D)]] , (29)
Ulo(r), t] =L-'[6(D]E[?] (30)
S =—iytd | (31)
Uy 1000), ITt1] =7, 1 (pY 2T [1])* GLO()] I¢] . (32)

If the angle 6(¢) and the mechanical angular velocity v,, (¢) in eq. (27) are assumed to be constant,
then eq. (27) can be numerically solved as described in [9]. Therefore, in a first step, it is assumed
that the predicted value of the angular velocity vp takes the same value as v,, (¢). Then a first ap-
proximate current vector I[# + k] is calculated by
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It + k] = I, — (R/2)S[0() + (R/2)vp, vp] 17! {[1, + (h/2)S[6(2)
+(1/2) vp, up1 1 I1¢) + RUL6(2) + ([ 2)vp, t + (B[]} | (33)

where I, denotes the unit matrix of order 4.
The result (I[¢ + h]) of eq. (33) is substituted into eq. (28), which is the numerically solved by
(the same method as described in [10])

ve=1[1— (1/2)S,, 17" {[1+ 1/2)S,,1v, (6)+hU, [6()+ hop, It +h]]} . (34)

Then the result (i.e. corrected angular velocity vc) is substituted into eq. (33) with some modifi-
cations, namely by using a relaxation parameter £, -

new(up) = old(vp) + Blve — old(vp)] . (35)

Eq. (35) is substituted into eq. (33). The process is iterated to reduce the discrepancy |vp — vcl.
The results are the current vector I[¢# + 2] and the mechanical angular velocity v,, (¢ + h) (computed
as the vp or vc). Also the angle 6(¢) can be calculated from eq. (26). Fig. 1 shows the flow chart of
this iteration method.

| START ]
- |
READ VARIOUS CONSTANTS
T:LIMIT OF INTEGRATION

1

E=LIMIT OF DISCREPANCY |
. ‘ i" 1
Vp: let )

T=T+h

>

[ CALCULATE Ii(tth]

v

CALCULATE V,

@"'*ﬁr e ]

NO WRITE
VD= Vp"’ p Vc- Vpl ]

NO
YES
STOP J

Fig. 1. Flow chart of the iteration method.
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3.3. One-step method. 1t is possible to regard the system of equations of this paper as the follow-
ing simple equation:

d/de)y = f(¢, y) . , (36)

Most numerical methods for the solution of this equation may be put into two classes: predictor-
corrector methods, such as Adams and Moulton; and one-step methods based on Taylor series ex-
pansion, such as Runge-Kutta type methods [11, 12]. Predictor-corrector methods furnish attrac-
tive algorithms because of the relatively small number of derivative evaluations required. However,
in order to use predictor-corrector methods, an appropriate number of startmg points must be
provided in addition to the initial point. | | |

With modern computer the number of derivative evaluations is not such an important matter in
the selection of the numerical methods. Because of the simplicity of programming, one-step methods
are not only useful for starting point calculations of predictor-corrector methods, but also useful
for obtaining the entire solution.

The one-step method of this paper requires a relatively large number of derivative evaluations.
However, it is possible to obtain more accurate numerical solutions because the one-step method
of this paper calculates each term of the Taylor series expansion of the rigorous solution (see
appendix). The general formula is given in the appendix, and the various formulas are given in
table 1; the extension of the latter formulas to systems of equations is immediate and obvious.

The system of equations treated in this paper are egs. (14), (27) and (28). Namely, the electro-
mechanical system of equations is rewritten by

Table 1
Formulas for the ordinary differential equation (d/dt)y = f(t, y)

(1) Third degtee fi1 = —=f11 + 45

fr =1

Yo th)=ye+hfy+ (hf/2) + (hf5/3)
(2) Fourth degree fi = 0.5f;; — 8f,, + 13.5f4, |

f2 = —f12 81

J3 =13

ygth)y=yo +hfy+ (hflfz) + (hf2/3) + (hf3/4)
(3) Fifth degree f1 = =(f11/6) + 8fyy — 40.5f5, + (128/3)fy,

Jo=05f, — 16f22 + 40.5f5,
f3==f13+ 16/,

Ja =114
Yo +h)y=yo+hfy+ (hfy/2)+ (Bf,/3) + (Bf3/4) + (hf,/5)
(4) Sixth degree f1=(f11/28) — (16/3)f,, + 243/ f3, — (512/3) f,, + (3125/24) fs,
[y = —(f12/6) + 16f5, — 121.5f3, + (§12/3)f4,
fa=0.5f13— 32fp3+ 121.5f5,
Ja=—f14 + 32034
fs =115

Y Eo+h) =yo+hfy+ (hfy/2) + (hf2/3) + (hf3/4) + (Bf4/5) + (hf5]6)

f0=f(t0:y0):
J i
fkf'_'f‘to +hik,yo + 2 fq._1/[kqfl]) — Z)lfq__l/kq-'l .
q:

g-1
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S10(), v, (O] I[t] + U[

v, (1) + U, [0(D),

v,, (1)

where the matrices S[0(¢), v, (£)], ULO(), ¢

- eqs. (29)—(32).

4. Numerical solution |

o), t1°

I[t]]-

]:Sm:

37)

U, 10(r), 1111 are respectively defined by

Among the three numerical methods of this paper, the linearized and iteration methods are based
on a central difference method. The numerical solution obtained by a central difference method
coincides with the Taylor series expansion of the rigorous solution up to the first three terms (i.e.
second degree (2*) accuracy) [9]. Table ] shows the various (up to the sixth degree (h®)) formulas
of the one-step method. Then the one-step method is theoretically possible to provide the most
accurate numerical solution in the three numerical methods of this paper.

For obtaining the most accurate solution the fifth degree formula in table 1 is selected by the

several numerical tests taking a small stepwidth. The relaxation parameter § of the iteration
method is selected as 3 = 1/2 by the numerical tests when the convergence of the dlscrepancy
lup — velTis taken into account.

Table 2

Various constants of the calculated motor
~ (initial values are all zero)

Voltage Vo= (V)
Angular velocity v, = 100m7 (rad/sec)
Resistance | R,=R =5 ()

L,=L, =0.31831 | (H)
Inductance M, =0.30239 . (H)

M, q=0.30239/(19 X 19) (H)
Number of pole pairs p=2 .
Coefficient of friction d,, = 0.005 (N m sec/rad)
Inertia Ty = 0.02 (N m sec?/rad)

Table 2 shows the various constants of the numerical example.

The electromechanical system of equation is numerically solved by (a) the linearized method,
(b) the iteration method with a 0.01 percent discrepancy |vp — vc| and (¢) the one-step method.

Fig. 2 shows that the results of these numerical methods are in fairly good agreement. It is found
that the iteration method required an average of seven iterations. The fifth degree (4°) terms of

the stator positive phase currents Iy

smaller than 108,

obtained by the one step method (see appendix) were always

To summarize this section, any numerical methods examined here are applicable to the electro-
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.
8 ® Iteration method ( h=0.0001)
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Fig. 2. Comparison of the results of various numerical methods: (a) Stator a-phase current, (b) Mechanical angular velocity in term
of round per minute.

nechanical systems of equations for any performance aspects. The one step-method is possible to
provide the most accurate numerical solution compared with those of other numerical methods.
But it requires a large amount of operation counts because of the large number of derivative evalua-
tions (i.e. eleventh derivative evalations). The iteration method displays its ability within small

30T
0.4
2of [\ \
M
— 0.3 | /\
~
r 107
O
e e
. 0.2 Time t=20.01 (sec) L
o c 0 —tT'm0
g o Jr * 6? % O-1|tsec)
a S
o O
@ O -10; J
- y Vo
0 | . A — " A _-—. el . ""2'0" v
1 2 3 4 5 6 7 8 9 10
Number of iterations

Fig. 3. Convergence process of the iteration method. Fig. 4a.
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40 ¢

== 3
o
-
O
——ay

30 1

20 1

500l

o

......

Round per minuite V{3 x(60/2Kxp)

¥ +«- Fundamental wave

Torque (N-m)
o

0 Time
0.05 0.1 (sec) I‘
) 0O i } + Time
Fig. 4b. 005 | 0.1<(sec)
1
-10 } \l |
Fig. 4. Examples of numerical solutions computed by the
linearized method using the stepwidth # = 0.0001: (a) Stator 20l 7 Fundamental wave
a-phase current, (b) Mechanical angular velocity in term of
round per minute, (c) Starting transient torque. Fig. 4c¢.

varying solutions as regards the time variation. Fig. 3 shows an example of the convergence process
of the iteration method. The linearized method requires some manual effort in the programming,
but it is the most reliable and speedy method. Some examples of the numerical solutions computed
by the linearized method are shown in fig. 4.

5. Conclusion

This paper presents three different numerical methods for the electromechanical system of
polyphase induction motors. The linearized method requires a considerable manual effort to write
a computer program. However, such a program has a considerable generality for the computations
of various performance aspects and provides reliable solutions with a low operation count. Therefore,
the linearized method is the most promising one.

Within small varying numerical solutions as regards the time variation, the operation count of
the iteration method is much the same as that of the linearized method. The operation count of
the one-step method (fifth degree formula in table 1) requires about 5 times that of the linearized
method.
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Appendix. One-step method
The solution y{t, + h) of the differential equation

@/dDy =1t y) - ' @D

can be given by means of a Taylor series expansion. Neglecting the fourth degree (h“) terms, the
solution of eq. (A.1) is |

y(ty +h)=yo +hfy + (2 f + (B6)f" o @A)

where ¢, and y, are respectively the initial point and the initial Value and the other terms in
eq. (A. 2) are

fo :f(roayo):' | | | | o | . | (A3)
=11, ). | ' O Ad
= (/20 4 FOOYN) frmy, - o (A.S)
Y= J"o ' | |
1" =100+ fOy NSy + (0flvhey f. . (A.6)
Y=Y, Y=Y,

Then, with a, and a, denoting arbltrary (but not equal) constants, the third and fourth terms of
the Taylor series expansion (A.2) can be obtained from

f(to tah,yy+ahfy) — 1, aj
o, ity tah,yy ta,hfy) —f, @z
(WDf == - | _ - (A7)
| | al . CZ%
a, o a;
(R6)f" = (h[3)(1/a2) {f(to + h, vy +ashfy + [, 121 £1) — fy — a, hf'} (A.8)

Egs. (A.7), (A.8) are based on the following relations:
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flto +ashyyo +ashfo) =fo + ayhf' + 1@ 120 {GN + £, /oy ) frep +.y  (A9)
- o Y=Yo
¢, +a2h,'y0 ta,hfy)=fy ta,hf’ " [(azh)2/2]' ((3/at) + fd (a/ay')}'2 Fr=gy *om | '_'(A; 1'0-)-_ '
Y=Y,
fltg +ash, yo +a hfo + [@hP21 )= fo +ayhf + (@21 f"+ ... (A1)

Therefore, each- term of the Taylor series expansion (A.2) is numerically obtainable, so that =
€q. (A.1) is solved with third degree (43) accuracy.
- The process described above is extended to the process of (i + 1)th degree solution, that is‘

fo =fty,vq),

| J 7 |
fkj“f(t()-l_akk:yo-l-h ;a%fth/Q)“ q@laz f_l S
f” _a;;+1 arl—]+1
S aé*l ay '
Jejrrg  @lje - @I
J;“ / i+ 1 | i—j+1 |
@, @ .ooay’
@, &, ay~ 11 (A.12)
J : i—j+1
Yiejrr @TL - @iljeg
i—j+1 i—j+1 i—j+1
2 s M1 d I @, —a,)
k=1 q+k m>n
— mn+k
i—j+1 -+ ’
1 & 11 @ —a)
k=1 k m>n m &

i+1

y(r0+h)=y0+h£fk_l/k,

wherej = 1, 2, WGREL2, - i1 > >+ >,
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The process (A.12) requires the [1 +i(i + 1)/2] th derivative evaluations to obtain the (i + 1)th

degree numerical solution.
Various formulas obtained by the process (A.12) are listed in table 1 and the constants in these

formulas are selected to

a,=1/k, (k=1,2,...0). (A.13)
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