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In order to obtain the finite element solutions of open-boundary magnetic field problems, we
have previously proposed a strategic dual image (SDI) method. This SDI method requires the
use of a specific shape of hypothetical boundary so that it sometimes requires a solution of a
king size system of equations. To remove this deficiency, this paper proposes an efficient
implementation technique of the SDI method based on a Voronoi-Delaunay transformation.
As a result, it is revealed that a king-size system of equations can be dramatically reduced to a

small size system of equations.

I. INTRODUCTION

The finite-element method is being widely used to solve
various engineering and physical field problems. Most of the
engineering and physical field problems have a more or less
open boundary so that the finite-element method confronts a
serious difficulty. To overcome this difficulty, various means
have been proposed. The methods are roughly classified into
two categories: one is based on the combination of finite- and
boundary-element methods; the other is the infinite and ex-
terior finite-element methods.'~* In spite of these efforts, it is
still required to invent a deterministic method for the open-
boundary problems because the existing methods require
considerable computer time and programming effort com-
pared with those of the traditional finite-element method.

Previously, we proposed a strategic dual image (SDI)
method to evaluate the finite element solutions of open-
boundary problems in an extremely simple manner.*® This
SDI method is not a numerical technique but an analytical
one for open-boundary problems, so that even finite differ-
ence solutions of open-boundary problems could be evaluat-
ed by means of the SDI. Even though the SDI method is an
extremely simple and effective procedure for the open-
boundary problems, it sometimes becomes an expensive task
because the SDI method inevitably requires the use of a spe-
cific shape of hypothetical boundary.

In this paper we propose an efficient implementation
technique of the SDI method based on the Voronoi—De-
launay (VD) transformation. In the other words, the VD
transformation method which has been exploited to solve
the closed-boundary problems in an ultimate efficient man-
ner is now applied to open-boundary problems.>'! As a re-
sult, it is revealed that a king-size system of equations can be
dramatically reduced to a small-size system of equations.

Il. THE SDI SOLUTIONS USING THE VD
TRANSFORMATION METHOD

A. Strategic dual image method

The key idea of SDI method is that any vector fields can
be divided into two components: rotational and divergent;
and their field sources are also divided into two types: rota-
tional and divergent. Thereby, it is possible to exploit a meth-
od by which the rotational and divergent components can be
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obtained by imposing the rotational and divergent field
source images, respectively. In magnetic field problems the
rotational and divergent field sources are, respectively, cor-
responding to the current / and magnetic charge m so that
the rotational field component can be obtained by imposing
the corresponding image current, as shown in Fig. 1(a). In
this case, the following condition:

v 2 _o (D

p=1 rp

must be satisfied at the center of a circular hypothetic
boundary to reduce the net image to zero. In Eq. (1), g and
r, denote the number of source currents and the distance
from a center of circular hypothetic boundary to the current
i,, respectively. Equation (1) and the image in Fig. 1(a)
mean that the total currents in the problem region must be
zero, and the vector potentials at the center as well as on the
circular hypothetic boundary must be zero. Therefore, the

= (dp/_a) ip

= (dp/a)mP

(b)

FIG. 1. (a) The rotational field source image — (d,/a)i, and hypothetic
boundary. (b) The divergent field sourceimage — (d,/a)m, and hypothe-
tic boundary.
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calculation of the rotational field component can be reduced

to the solution of a vector potential problem having zero

boundary conditions at the circular hypothetic boundary
and the center of its hypothetic boundary. Similarly, it is
possible to show that the calculation of the divergent field
component can be reduced to the solution of a scalar poten-
tial problem having zero boundary conditions at the circular
hypothetic boundary and the center of hypothetic boundary,
as shown in Fig. 1(b). Obviously, the zero boundary condi-
tion of scalar potential U at the hypothetic boundary corre-
sponds to the symmetrical boundary condition of vector po-
tential 4. This means, if we employ the vector potential 4 to
represent the open field, then the calculation of the divergent
field component may be reduced to the solution of a vector
potential problem having the symmetrical boundary condi-
tion at the circular hypothetic boundary and the zero bound-
ary condition at the center of hypothetic boundary. Thus,
the open-boundary field calculation can be reduced to the
solution of zero and symmetrical boundary problems having
the circular hypothetic boundary in two dimensions. Fur-
thermore, the zero condition must be set at the center of
circular hypothetic boundary by (1) for both zero and sym-
metrical boundary problems ‘

B. Voronoi-Delaunay transformation method

The VD transformation is based on a VD discretization
method. The key idea of the VD discretization is that a dual-
energy finite-element method is implemented by means of a
geometrical: duality between the Voronoi.polygons and asso-

- ciated Delaunay triangles using a single potential.!>!* The
conventional - dual-energy finite-element method requires
the use of two different types-of potentials so that the func-
tionals.can be obtained in a most efficient manner but it is
difficult to obtain the improved local solutions.”* This defi-
ciency was removed by the VD discretization method. In the
two-dimensional magnetostatic fields of Fig. 2, the nodal
equation of the Delaunay system between nodes / and j is
given by'? :

FIG. 2. Voronoi-Delaunay diagram and locally orthogonal coordinate sys-
tem. Solid line denotes the Delaunay triangles; dotted line denotes the Vor-
onoi polygons; and the vertices of Voronoi polygons are located at the cir-
cumcenters of Delaunay triangles.
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where A4; and A; are the nodal potentials located at nodes /
and j, respectively. Also, angles 8,, 6,, permeabilities ., u,,
current densities J, , J,, and lengths a,b,c are shown in Fig. 2.
On the other side, the nodal equation of the Voronoi system
between the nodes k and [ in Fig. 2 is given by'?

—A)/(—coté) +#T'c010~)=%J., (3)

where 4, and A, are the nodal potentials located at nodes &
and /, respectively. If the permeabilities in (2) and (3) are
set to a normalized value, viz., 4, = g, = |, then a product
of the geometrical coefficients in (2) and (3) gives

t 0 . . A
(co | +cot€_)/(cotb‘{ _ CO[e‘):l. @)
2 2 2 2

Equation (4) reveals that a geometrical duality between
the Delaunay and Voronoi systems can be established in the
Voronoi-Delaunay discretization because the geometrical
coefficient of potentials 4., 4 1in the Delaunay system is a
reciprocal to those of potentials 4, . 4. in the Voronoi sys-
tem. In the network terminologies. the Delaunay system is a
reciprocal network of the Voronoi system.'* This remark-
able relationship leads to the VD transformation method for
which the Delaunay solution vector ®,, can be represented
in terms of the Voronoi solution vector ¢ by

®D=C¢V’ T . (5)

where C is a transformation matrix. This transfofmatidﬁ
matrix C can be derived by satisfying a Laplace equation At
the vertices of the Delaunay triangles. Details of this deriva-
tion are described in Refs. 9-11. Thus, the functional of the
dual-energy approach' can be evaluated by averaging the De-
launay and Voronoi system functionals using only the Vor-
onoi system solution vector ®,.. Also, by means of Eq (5)
improved local solutions can be obtained by mterpolatmg
the potentials located at the midpoints between the vertices
of Delaunay triangles and Voronoi polygons.>'?

C. Open-boundary solutions

When the symmetrical boundary solution vector X and
the zero boundary solution vector X, are obtained after solv-
ing each of their systems, the open-boundary solution vector
X is formally obtained by

X=(172)[X, + X.], (6)
where a coefficient (1/2) comes from the two field sources,
viz., the rotational and divergent field sources. At the hypo-
thetical boundary, (6) is reduced to X = (1/2)X, because
the other solution vector X, is always zero. By means of this
and (6), a practical open-boundary solution can be obtained
from a following system equation:

Dll D12 Xl s
D21 2D22'_D21DI_IID12 XZ 0

where X, is a subvector on the inside region; X, is a subvec-
tor on the hypothetical boundary; F, is an input source vec-
tor; and submatrices D,,,D,,,D,,,D,, are correspondingly

F,
= ) (7)
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FIG. 3. (a) Anexample of convergence property of the functionals. (b) An
example of the local field distributions.

defined by the subvectors X,,X,.*° Because of a require-
ment of the specific shape of the hypothetical boundary, Eq.
(7) can become a king-size system of equations. Thereby,
the SDI solution becomes an expensive task. This deficiency
can be removed by employing the VD transformation meth-
od.

In order to demonstrate the effectiveness of our method,
we computed a simple magnetostatic field caused by the bifi-
lar conductors. As shown in Fig. 3(a), much improved func-
tionals were obtained by our VD transformation method
when compared with those of the traditional first-order
triangular finite-element method. This means that the size of
the system of Eq. (7) may be considerably reduced to a small
system so that the open fields can be evaluated in an efficient
manner. Figure 3(b) shows the field distributions due to the
bifilar conductors. The result in Fig. 3(b) reveals that the
fairly good local solutions can be obtained from a small sys-
tem. Figure 4(a) shows the convergence property of the
functionals when different radii of hypothetical boundary
are employed. Also, Fig. 4(b) shows that the fields are con-
tinuously distributed even if the different radii of hypothetic
boundary are employed. The results of Fig. 4 suggest that a
unique open-boundary solution can be obtained by the SDI
method. Thus, the SDI solution requires a half of the overall
computing cost needed by the simple dual energy approach.

ill. CONCLUSION

As shown above, we have proposed a new efficient im-
plementation technique of the SDI method based on the VD
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FIG. 4. (a) The convergence property of the functionals when the different
radii of the hypothetical boundary are employed in the computations. (b)
Field distributions when the different radii of hypothetical boundary are
employed.

transformation. As a result, it has been shown that the SDI
solution for the open-boundary problems can be obtained
from a small size of the system equation without sacrificing
the accuracy in functionals and local solutions.
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