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In the present paper, we exploit the Voronoi-~Delaunay transformation method whereby the solution of the Delaunay
system can be obtained by transforming the solution of the Voronoi system. This Voronoi—Delaunay transformation
method is now applied to eigen value problems in electromagnetic fields. As a result, it is revealed that the computation of
eigen values can be carried out in an extremely efficient manner.

1. Introduction

A geometric duality between the Delaunay
triangles and Voronoi polygons has been utilized
to implement a dual energy approach [1-3]. This
method requires the use of a single potential to
establish the upper and lower bounds of solu-
tions, whereas the conventional dual energy fi-
nite element approach requires the use of two
different types of potentials i.e., vector and sca-
lar [4-6]. Therefore, the conventional dual ener-
gy approach provides only an improved function-
al, but the geometric dual energy method is
capable of providing the improved functional as
well as improved local solutions. Even if a single
type of potential is required to implement the
dual energy approach, this geometric dual ener-
gy method has been compelled to solve the two
independent systems i.e., Voronoi and De-
launay.

In order to overcome this deficiency, in this
paper, we exploit the Voronoi-Delaunay trans-
formation method whereby the solution vector of
the Delaunay system can be obtained by trans-
forming the solution of the Voronoi system.
Thereby, only the Voronoi system of equations
has to be solved to implement the dual energy
approach. This Voronoi-Delaunay transforma-
tion method is now applied to eigen value prob-
lems in electromagnetic fields. As a result, it is
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shown that the eigen values can be obtained by
this Voronoi-Delaunay transformation method
in an extremely efficient manner. Simple exam-
ples suggest that our Voronoi-Delaunay trans-
formation method is more accurate than the
conventional first order triangular finite element
method by an order of magnitude.

2. Voronoi-Delaunay transformation method
2.1. Basic field equation

Typical examples of eigen value problems in
electromagnetic fields appear in the computation
of higher order waveguide modes as well as the
evaluation of eddy current distributions. The
eigen values in waveguide problems correspond
to the operating resonance frequencies, and
those in eddy current problems correspond to
the time constants of the system. In this paper,
the eigen value problem in scalar wave equation
is selected as an example.

The axial field components in propagating
modes of a uniform and perfectly conducting
waveguide satisfy the Helmholtz equation
8’6 %,
axZ + ayZ + kcd) 0 > (1)

where k_ is the cutoff wavenumber. This cutoff
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wavenumber k_ is related to k, [= oV, g,] (free
space wavenumber) and the propagation con-
stant vy in the direction of z-axis by

k2=ko—vy>. (2)

¢ in (1) stands for the axial field components E,
or H, for TM or TE modes, respectively. For
TM modes, (1) is subject to Dirichlet boundary
conditions, and for TE modes, it is subject to
Neumann boundary condition at the perfect con-
ductor, respectively. To evaluate the waveguide
modes, the eigen vectors of (1) are being calcu-
lated numerically by means of the finite differ-
ence or finite element methods [7-9].

2.2. Locally orthogonal form

A method of locally orthogonal discretization
is presented in refs. [1] and [2]. The key concept
in this procedure is to exploit the geometric
duality that exists between Delaunay triangles
and Voronoi polygons. Delaunay triangles and
Voronoi polygons are related by the fact that
vertices of the Voronoi polygons are the circum-
centers of the Delaunay triangles. As explained
in ref. [1] and illustrated in fig. 1, one of the
features of this Voronoi—-Delaunay duality is that
the sides of the Voronoi polygons are perpen-
dicular to the sides of the Delaunay triangles.
This relationship leads to a locally orthogonal
coordinate system as shown in fig. 1. When the
vertices i, j of the Delaunay triangle and the
vertices &, [ of the Voronoi polygon are chosen

,/ @ Nodes of Delaunay system
O Nodes of Voronoi system

Fig. 1. Voronoi-Delaunay diagram and locally orthogonal
coordinate system.

as node points, the following interpolating func-
tion may be assumed

b=a,+ax+a,y+taxy. 3

Application of (3) to the nodes i, j, k, [ in fig.
1 yields

&1 (10 a2 0]|%
| (1 0 —a2 0|®
&l |1 -b 0 0|l )

&, 1 c 0 0lias

Equation (4) suggests that the coefficients a,,
a,, a,, a; in (3) cannot be uniquely determined.
This means that two complete but independent
sets of nodal variables must be defined: one is
located at the vertices of Delaunay triangles; and
the other is located at the vertices of Voronoi
polygons. A simple Lagrange interpolation be-
tween nodes 7 and j in fig. 1 yields a trial function
for the Delaunay system as

b= G+a)+ (- 8) ., (5)

where a is the distance between the nodes i and j
[1-4]. On the other side, a trial function for the
Voronoi system is given by

¢ =[(ct, + bd) +(d,— & )x]/(b+ ), (6)

where the distances b and ¢ are shown in fig. 1
[1/4].

According to these two independent inter-
polating functions (5) and (6), the governing
equation (1) may be reduced to a one-dimen-
sional equation in either the Delaunay or in the
Voronoi sets of variables:

a8* 1
T$+§k§fb=0, (N
8> 1
5§+5k%=0, (®)

on a locally orthogonal x-y coordinate system
shown in fig. 1.

2.3. Functionals and nodal equations
In the Delaunay system, the derivative d¢/ay

is common to the adjacent Delaunay triangles so
that a functional F(¢) for the Delaunay system is



Y. Saito et al. | Application of Voronoi-Delaunay transformation method 61

given by

Fo)= [ [{oarayy -5 kefaray. )

After substituting (5) into (9) and integrating
over the region enclosed by i-k-j-/ in fig. 1, we
can obtain the functional F(¢) for the Delaunay
system. By taking an extremum of this functional
F(¢$), a nodal equation for the node i in fig. 1
can be obtained as

2

=0. (10)

Thus, an entire Delaunay system of equations is
represented by

[AD - kiBD]‘pD =0, (11)

where A, B, are the coefficient matrices corre-
sponding to the first and second terms on the left
of (10); and @, is the eigen vector of Delaunay
system, respectively.

In the Voronoi system, the derivative d¢/dx is
common to the adjacent Delaunay triangles, this
leads to a functional G(¢) for the Voronoi
system:

(@)=~ [ (@sroxy - 2 28} dxay,
(12)
where ~ refers to the prescribed values.

After substituting (6) into (12) and integrating
over the region enclosed by i-k-j-/ in fig. 1, we
can obtain the functional G(¢) for the Voronoi
system. By taking an extremum of this functional
G(¢), a nodal equation for the node % in fig. 1
can be obtained as

(¢, — ¢z)/{§ + —Z—} - (%i) a(b+c)p, =0. 03

Thus, an entire Voronoi system of equations is
represented by

(A, - kB,J#, =0, (14)

where A, B, are the coefficient matrices corre-
sponding to the first and second terms on the left
of (13); @, is the eigen vector of Voronoi system,
respectively.

2.4. Voronoi—Delaunay transformation

The Voronoi system of equations has been
derived satisfying the continuity of normal de-
rivative d¢/an between the adjacent Delaunay
triangles. However, as shown in fig. 2(a), it is
obvious that the tangential derivative compo-
nents d¢/at are included in the entire vector @,
of Voronoi system. The nodal variables which
represent the tangential derivative components
are essentially located at the vertices of De-
launay triangles. The original governing equation
(1) has been already discretized by the Voronoi
discretization method so that the discretized
problem region is governed only by a Laplace
equation and not the original governing equation

(1), viz.,
Vi =0, (15)

must be satisfied by the nodal variables of De-
launay system. Hence, by means of the De-
launay discretization (10), the nodal variable ¢,
in fig. 2(b) can be represented in terms of the
nodal variables of Voronoi system as

% [(cot as + cot B,) P, + (cot a, + cot B;) ¢,
+ (cot a, + cot B,)@, + (cot a; + cot Bs) g,

+ (cot @, + cot Bl)¢r]

= % [; (cot a; + cot 3].)]qsi , (16)

where the nodal variables ¢,, ¢, ¢,, ¢y ¢, and
angles a,—ay, B,~B5 are shown in fig. 2(b).

Thus, by means of (16), the vector &, of
Delaunay system can be represented in terms of
the connection matrix C and the vector @, of
Voronoi system as

D, =CP, . 17)

By means of (17), the Delaunay system of
equations (11) is transformed into the Voronoi
system:

[CTALC - K:C"B,C]®, =0. (18)

Thereby, the rearranged resultant system of
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Fig. 2. (a) The normal derivative d¢/9n and tangential de-
rivative d¢/at.
(b) Transformation from the Voronoi nodal variables
to Delaunay nodal variables.
(¢) Location to the mid point nodal variable ¢,,.

equations becomes
[D - k1P, =0, (19)

where
1. -
D=3[By'Ay+(C'BC) (CT450)]. (20

Each of the eigen values computed by the
Delaunay (11) and Voronoi (14) systems takes
different values depending on their own systems,
but the eigen value computed by (19) may take
their averaged value. This means that the prom-
ising eigen value may be computed from (19)
even if a small number of nodes is employed.
Further improvement of the eigen vector @, in
(19) is possible when we consider the nodal
variables located at the mid points between the
vertices of Voronoi polygons and Delaunay tri-
angles. The mid point vector &, can be repre-
sented in terms of the vectors @;, and &, as

Dy = ComPp + Cyn Py 5 (21)

where Cp,,, Cyy are the interpolating matrices
between the vertices of Voronoi polygon and
Delaunay triangle. For example, a mid point
nodal variable ¢, in fig. 2(c) is given by

1 1
¢m_§¢i+§¢k' (22)
By, means of (17), (21) is reduced into
Py = (CouC+ Cyn) Dy - (23)

The vector @, in (23) has improved accuracy
because the vector @,, takes into account both
the rate of changes for the normal (d¢/dn) and
tangential (3¢ /d¢) directions in fig. 2(a).

2.5. Examples

Figure 3 shows a rectangular waveguide which
has been selected as an initial test example.
Because of symmetry, we computed only the
hatched region of this waveguide.

Figure 4(a) shows the convergence properties

% i

L

Fig. 3. A rectangular waveguide. Because of its symmetry,
only the hatched region is computed.
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Fig. 4. (a) Convergence properties of eigen value by the
Delaunay, Voronoi, Voronoi-Delaunay transfor-
mation (V-D transformation) and FEM in TM,,
mode.

(b) Field distribution in TM,, mode.
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of eigen values by the Delaunay (11), Voronoi
(14) and Voronoi-Delaunay transformation (19)
methods for TM,, mode. For comparison, the
results of conventional first order triangular finite
element using the same mesh as Delaunay sys-
tem method are also shown in fig. 4(a). By
considering fig. 4(a), it is obvious that the Vor-
onoi—~Delaunay transformation method yields a
far better result even if a small number of nodes
is employed. Figure 4(b) shows the field distribu-
tion of this mode computed by the Voronoi-
Delaunay transformation and conventional first
order finite element methods. The result in fig.
4(b) reveals that Voronoi—Delaunay transforma-
tion method (23) provides an excellent field dis-
tribution.

Figure 5(a) shows the convergence properties
of eigen value by the Delaunay (11), Voronoi
(14) and Voronoi-Delaunay transformation (19)
methods for TE,, mode. Figure 5(b) shows the
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Fig. 5. (a) Convergene properties of eigen value by the
Delaunay, Voronoi, Voronoi—Delaunay transfor-
mation (V-D transformation) and FEM in TE,,
mode.

(b) Field distribution in TE,, mode.

field distributions of TE,, mode computed by the
Voronoi-Delaunay transformation method (23)
and the conventional first order finite element
method using the same mesh as Delaunay sys-
tem, respectively. Our Voronoi-Delaunay trans-
formation method (23) provides a far better field
distribution compared with those of the finite
element method, even if a small number of node
points is employed. The results of figs. 5(a) and
5(b) demonstrate that the Voronoi-Delaunay
transformation method is quite effective for the
TE mode problems.

Finally, we show the usefulness of our Vor-
onoi-Delaunay transformation method for find-
ing the higher order operating mode. Figure 6(a)
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Fig. 6. (a) TE,, mode computed by FEM using 15 nodal
variables.

(b) TE,, mode computed by the Voronoi system
eigen vector @, in (19), where 8 nodal variables
are employed.

(c) TE,, mode computed by the Delaunay system
eigen vector @, in (17).

(d) TE,, mode computed by the Voronoi-Delaunay
transformation method (23).

(e) Convergence properties of TE,, mode eigen
value.
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shows a TE mode field distribution computed by
the conventional first order finite element
method using a Delaunay triangular mesh. Obvi-
ously, it is difficult to find the operating mode of
this waveguide from the result in fig. 6(a). Fig-
ures 6(b) and 6(c) show the field distribution
obtained from the Voronoi system eigen vector
in (19) and its associated Delaunay eigen vector
in (17), respectively. From the results in figs.
6(b) and 6(c), it is difficult to decide on the
operating mode. However, by means of the hy-
brid scheme of (21) or (23), a combination of
both field distributions in figs. 6(b) and 6(c)
yields a fairly clear result as shown in fig. 6(d).
Figure 6(d) reveals that this waveguide is now
operating in TE,, mode. In fig. 6(a), it was
required to employ 15 nodal points for the first
order triangular mesh, but only 8 nodal points
for the Voronoi polygonal mesh were employed
to reach the result in fig. 6(d). Nevertheless, the
result in fig. 6(d) yields a clear field distribution
compared with those of fig. 6(a). This fact can be
confirmed by considering the convergence prop-
erties of eigen values shown in fig. 6(e).

Thus, our Voronoi-Delaunay transformation
method is far superior than the conventional first
order finite element method for eigen value
problems.

3. Conclusions

As shown above, we have exploited a new
method that requries only one system of equa-
tions to implement a dual energy approach,
while the conventional locally orthogonal dis-
cretization method requires the solutions of two-

independent systems of equations i.e., Voronoi
and Delaunay. This new method has been ap-
plied to the computation of the eigen value
problem in electromagnetic fields. As a result,
the example problems have shown that our new
method provides the far better results compared
with those of the conventional first order finite
element method.
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