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DUAL MESH APPROACH FOR SEMICONDUCTOR DEVICE SIMULATOR
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Abstract This paper describes a new discretization
approach for 2-dimensional simulation of semiconductor
devices. The approach essentially makes use of two
interlaced dual mesh systems based on Delaunay triangles
and associated Voronoi polyvgons, respectively. This
discretization method is applied to the solution of Poisson’s
equation for a reverse-biased P-N junction. Potential, field
and carvier distributions as well as junction capacitances
are obtained which not only show a good agreement with
conventional methods but also a promising prospective for
improvement of simulation cost performance.

INTRODUCTION

For analyzing semiconductor devices, numerical
simulation techniques have been applied for quite some
time. Although simulation methods are improved and
accordingly device simulators are modified year by year, it
still remains to fetch for a decisively reliable approach in
terms of convergency and simulation turn-around time.
The central difficulty of the problem lies in the fact that
the device structures under simulation are very
complicated and the governing fundamental equations are
strongly nonlinear.

Recently, a new discretization method is proposed to the
field problems {1}, {2). It makes use of a dual energy finite
element approach which solves the dual energy
functionals. To implement this method, two geometrically
dual mesh systems, one made of the Delaunay triangles and
the other of associated Voronoi polygons, have been
introduced. And by utilizing the characteristics that
simulated results involving functionals and local values
converge to upper and lower limit with increasing mesh
numbers, it has been pointed out that correct solutions can
be found by composing results obtained with the two dual
mesh systems 3], [4].

In this paper, we try applying this method to solve the
semiconductor Poisson’s equation. As an initial test
analyze a reverse-biased P-N junction
problem. It is found that the new method is effective for
wide areas. So this suggests that simulations of
semiconductor devices may be carried out with a lower
computational cost.

example, we

VORONOI-DELAUNAY DISCRETIZATIONS
Basic equations

For simplicity, a reverse-biased

considered.

P-N Jjunction is
In this case, the reverse current is almost

negligible.. The only governing equation is, thus, the
following Poisson’s equation.
§Viy =-qg.(p-n+Nz=-N.) = —op, (1}

where &, 1, g, N - and N . are the permitivity,
potential, electron charge, donor and acceptor concentra-~

tions, respectively and p is total charge densities. Also,

p and n in (1) are the hole and electron densities given
by
p=niexp [ ($.-v) ], (2)
kT
q
n=n..ep [—= - ¢n , (3
p [ T (¥ #n) ] )
where n;, k, T are the intrinsic carrier concentration,

Boltzmann constant, temperature, ¢ ., and ¢ , are the
quasi-Fermi levels of hole and electron, respectively. Since
we are concerened only with a reverse-biased junction, it
is legitimate for the time being to neglect minority carriers
in each of the two semiconductor regions, namely p in the
N regionand n in the P region.

Voronoi~Delaunav diagram

Delaunay triangulation of an arbitrary set of points is
coustructed by considering the geometrical duality with
the set of Voronoi polygons. The circumcenters of Delaunay
triangles are the vertices of the Voronoi polygons. Fig.l
shows the triangles in a Delaunay mesh. The Voronoi
polygons associated with these Delaunay triangles are
shown by dashed lines in this figure. By considering Fig.1,
it is obvious that the Delaunay triangles and Voronoi
polygons are locally orthogonal : each triangle side is
perpendicular to the corresponding Voronoi polygon side.
Furthermore, two complete but independent sets of nodal
potential may be defined on this Voronoi-Delaunay diagram
: one is located at the vertices of the Delaunay triangles ;
and the other at the vertices of the Voronoi polygons.
Thus, the governing equation (1) may be discretized either
by the Delaunay or the Voronoi mesh system.
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Fig.l. Voronoi-Delaunay diagram and locally orthogonal
coordinate.

Locally orthogonal discretizations

Equation (1) can be transformed into a boundary integral
equation by application of Gauss’ theorem as follows.

0018-9464/89/0700-2953$01.00©1989 IEEE



2954

gz dl+ |,

Sle p dS=0. (4)

On the local coordinate system shown in Fig.l, nodes i and
j are located on the boundary between the regions 1 and 2,
where it is dssumed that each of the Delaunay triangles
takes a distinct permitivity & . This means that a field
intensity E, {=- § ¥ / & ¥) in the direction of y-axis is
common to both regions 1 and 2 in Fig.1. A simple Lagrange
interpolation between the nodes i and j in Fig.1 yvields a
trial function for the Delaunay system as

Y (/20 y i+ 0y -y siy/a), (5)

where 'a’ is the distance between the nodes i and j. In-
tegrating over a portion of the Yoronoi polygon enclosing
node i after substituting (5) into (4) yields

ice—-awpdx+ i a/2

) dx dy
‘b€ oy ._b)o p 4ax dy,

=-(1/2)( e icota+e zcot BN Y - ¥ ;)
+{a/4)(b p +c pz) =0. (6)

when (6) is applied to the other
polygon enclosing node i, one obtains the full set of
Delaunay nodal equations which satisfies the common
tangential field strength between the adjacent Delaunay
triangles.

On the other side, nodes k and | are located on the x-axis
in Fig.l. In this case, flux density Du.(=- & @ ¥ / @ x) must
be continuous from region 1 to region 2. This boundary
condition can be satisfied by selecting the following trial
functions:

portions of Voronoi

Y .={{e pe/bHlezp /eIt & 2y -y )x/bc])

/e /by+(&z2/c)),-b £ x 20, (7a)
w.={le @ /b)+rlezp . /c)H & (Y -y «)x/bcl)
/e /by+lez/c)}, 08 xS c (7b)

where the distances b, ¢ are shown in Fig.l. Integrating
over the portion of the Delaunay triangle enclosing node k
after substituting (7a) into (4) vields
.a/2 v - .a/2 .c
i " dy { dy dx
‘ast Tox ‘asep POV AR

=-[2 /{(cot ¢ / & :)+(COtﬂ/62)]](U)V."l/11)
+(1/2)ab p . = 0 . (8)

Applyving (8) to the other portions of the Delaunay
triangle enclosing node k, the equations of Voronoi system
are complete(jl. which satisfies the continuity condition of
normal flux density between the neighboring Delaunay
triangles.

Duality

By means of (0) and (8), il is possible to derive the
equivalent circuits of the Delaunay and Voronoi systems.
Fig.2(a) and Z2(b) show the equivalent circuits of the
Delaunay and Voronoi systems, respectively. The pa-
rameters depending on the geometry and medium constant
are obviously equivalent to the capacitances per unit

length in these figures. By considering Fig.2(a), it is
observed that the equivalent capacitances are connected
in paralle] to satisfy the common tangential field intensity
condition between the adjacent Delaunay triangles. On the
contrary, in Fig.2(b), the equivalent capacitances are
connected in series to satisfy the normal flux density
condition between the adjacent Delaunay triangles. Thus,
the Voronoi-Delaunay discretizations form a dual
relationship [5). Furthermore, the inverse circuit
relationship is established between Voronoi and Delaunay
system.

1/2(cot @ +cot B8) - [2/(cota+cot B)1 =1 . (9)
Equation {9) reveals the geometrical duality in the
Voronoi-Delaunay discretizations.
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Fig.2(a), Equivalent circuit of Delaunay system,
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Fig.2(b)., Equivalent circuit of Voronoi system,

This also suggests that the convergence of the numerical
solutions may be accelerated by averaging the approximate
solutions by (6) and (8).

For example, the midpoint potential
given by

¥ m in Fig.2(c) is

Yo 2 1/200 i+ Y o) (10)

Fig.2(c) Location of an averaged potential ¢



An example

Figure 3 shows a simplified P-N junction model used as an
initial test example. Various constants used in the
computations are listed in Table 1. The iterative solution
process was carried out by means of the Gummel algorithm

(6}. ELECTRODE
&—2um——>

P

21 m

N

ELECTRODE

Fig.3. A simplified P~N junction model used as an
initial test example.

Fig.4 and 5 shows the potential distributions and junction
capacitance characteristics under different reverse-
biased conditions. The results in Figure 4 reveal that
averaging potentials by (10) vields better results even if a
small number of nodes is employved.
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F16G.4. Potential distributions under the different
reverse-biased conditions.
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Thus, our initial test example suggests that the simulation
of semiconductor devices can be carried out in a more
efficient manner using this Voronoi-Delaunay discretiza-
tion method.
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Fig.5. Capacitances between the electrodes under the
different reverse-biased conditions.

CONCLUSION

As shown above, we have proposed to utilize the
Voronoi-Delaunay discretization method for the simulation
of semiconductor devices. A simple example has
demonstrated its versatility, and suggested that the
simulation of semiconductor device may be carried out with
a low computational cost.
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Table 1. Various constants used in the computers

Parameter Value Units
€ 1.03e-12 F/cm
o} 1.60e-19 C
Nz 1.00e+16 atoms/cm®
N - 1.00e+17 atoms/cm?®
n . 1.42e+10 carriers/cm®
kKT /g 0.025 Y




