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A numerical method is proposed to solve the problem of space harmonic waves in polyphase induction motors.
Results are compared with those of other numerical methods.

Notation
A = parameter in numerical integration formulas
Clv,, t] = commutation matrix of the 19th space harmonic wave
Glu,, t] =(/at) Llv,, t1(1/v,, ), torque matrix
- G° = transformed torque matrix
h = stepwidth (sec)
I[t] = {igps Lgys Lpps Lyt > current vector
I10] = 1nitial current vector
I°[7] = {i5)» Igns Iyy» Iy}, transformed current vector
1, = unit matrix of order 4
j =+/ —1, imaginary unit
k = positive integer
Llv, t] = inductance matrix
L = transformed inductance matrix
L,L, refer to the stator and rotor self-inductances, respectlvely
M, M {6 refer to the fundamental and 19th space harmonic wave mutual inductances,
respectively
Piz] = state transition matrix
p = number of pole pairs
R = [R » Ry R, Rr_l, resistance matrix
"R, R, refer to the stator and rotor resistances, respectively |
S[z‘] - =L v, t1 (R +v,, Glv,, t]), coefficient matrix of the differential state equation
S¢ = —(L°) "1 (R tv,, G°), coefficient matrix of the linear differential state equation
T = torque (N — m) '
t = time (sec)

Ult] = L~1[v, t]1 VI[¢], input vector of the differential state equation
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ij Uclt] = (L°)~' V°[¢], input vector of the linear differential state equation

’% Vil = {V, exp(jvgt), Vg exp(—jv,t), 0, O}, voltage vector

Velr] = C"[v, t] Vlt], transformed voltage vector

‘ V, = amplitude of the stator impressed voltage

v, = mechanical angular velocity transformed into electrical angular velocity (rad/sec)
U, = angular velocity of the impressed voltage source

ﬂ Zlv, t] =R+v, Glv,t] + L[v,, t](d/dt), impedance matrix

Z° =C*[v,,t1Z[v,, t]C[v,,t] (or=R +v,, G°+ L°d/dt), transformed impedance matrix
Superscripts*, ¢, —1 and ¢ refer respectively to complex conjugate matrix, transposed matrix,
inverse matrix and matrix transformed by commutation matrix Cfv,, ¢].

Subscripts a, b, ¢ refer to the stator a-phase, b-phase, c-phase quantities; s, r refer to the stator
and rotor; and p, n refer to the positive and negative phase quantities, respectively.

1. Introduction

The accurate estimation of the torque produced by electric motors is important for the imporve-
ment of various mechanical equipment driven by them. However, magnetic saturation and space
harmonic wave effects make the accurate computation of the torque a difficult problem. Of all
types of electric motors the polyphase induction motor is by far the most popular and the most
widely used machine. Its space harmonic waves, however, produce abnormal torques and noise
[1]1-[5]. |

A numerical method that does not take space harmonic waves into account is given in [6]. How-
ever, if this method is applied to the problem of space harmonic waves in a polyphase induction
motor, a very small stepwidth must be selected to obtain accurate results in spite of its time con-
suming nature. The reason is that the fundamental equations of polyphase induction motors in-
cluding space harmonic waves consist of linear simultaneous differential equations with rapidly
varying periodic coefficients. The purpose of this paper is to put forth a simple numerical method
of effectively solving these equations with periodic coefficients. The solution obtained by the
method takes into account exactly the space harmonic waves and, as a result, describes well the
transient and steady state characteristics of polyphase induction motors. Furthermore, the
method improves and generalizes the computational procedure described in [6].

The fundamental equations of polyphase induction motors considering space harmonic waves
are introduced in terms of complex objects in section 2, and additional details are given in [5].

Section 3 describes the numerical method, where we at first approximate varying coefficients
by keeping them constant over small time intervals and perform a direct integration of the funda-
mental differential equations over the above intervals to obtain analytical solutions.

Section 4 describes numerical results computed by the method of this paper. Comparison 1s
made with various numerical schemes (see appendix 2). |

2. Mathematical model

The linear simultaneous differential equations of polyphase induction motors are conveniently
represented in matrix notation. |

Sl
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They involve the voltage vector V[¢] (¢ denotes the time), the impedance matrix Z[v, ¢] which
is a function of the time ¢ and the mechanical angular velocity v, » and the current vector I[¢].
The linear simultaneous differential equations with periodic coefficients are

VIit] = Z[v, t] I[¢] . (1)

Each element of the voltage vector V[#] is a state voltage, with amplitude V', and angular velocity
v,. Then the voltage vector V[¢] (column vector of order 4) is

VIt] = {V, exp(jv,t), V* exp(—jv.1), 0, O} , (2)

where the superscript * denotes the conjugate quantities, and j is the imaginary unit (j =+ —1).

The impedance matrix Z [v,, ] (square matrix of order 4) is a linear combination of the resistance
matrix R, the inductance matrix Llv, t] and the torque matrix G [v,, ] (which can be obtained
by differentiating the matrix Llv,, t] with respect to the time ¢ and dividing the result by the
mechanical angular velocity v,, ). This yields | |

Zlv,t] =R +v,Glv, t1+L[v_t] (d/d). _ (3)

The resistance matrix R (diagonal matrix of order 4) depends on the stator resistiance R and
the rotor resistance R, as follows:

R=|R,R,R, R,)]. (4)

The inductance matrix L[v,, ] is classified into four cases by the relations of numbers of rotor
phases and of pole pairs p as described in [5]. The numerical method in this paper 1s applicable to
all four cases. In order to illustrate the essential characteristics of the method, only a special case
is treated as an example, where only the 19th space harmonic wave is taken into account. This
example, at first, is practically useful because the 19th space harmonic wave has a big contribution
to abnormal torque and then is theoretically very interesting as shown in appendix 1. In this case
the elements of L[v,, t] are the stator self-inductance L .» the rotor self-inductance L, the mutual
inductance of the fundamental wave M, and the mutual inductance of 19th space harmonic wave
M . The inductance matrix Llv,, t] (square matrix of order 4) is

i L, 0 M, exp(jv,, 1) M, ,exp(j19v, 0) |

0 L, M gexp(—~j19v,,t) M, exp(—jv, t)
Llv,, t] = (5)
Myexp(—j,,t) M5 exp(j19v, 1) L, 0
| Mg exp(—j19v,,1) M, exp(jv,,t) 0 L, ]

The torque matrix G[v,, t] (square matrix of order 4) is given by
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Glv, t] = (d/d¢t) Liv,,t]1 (1/v,,). | | | (6)

The current vector I[¢] (column vector of order 4) consists of the stator positive phase current

i, the stator negative phase current i,, the rotor positive phase current i, and the rotor negative
phase current i, , Viz.
I[t] = {igpn isnj irpj irn} . ' _ | | ‘ : | . (7) _

The torque T 1s éxpressed in terms of the current vector I[ ¢], the torque matrix G[v,, ¢] and the
number of pole pairs p: | | |

T=R{(p/)I*[t]) Glv,,t] I{t]}, | (8)

where ® {-)} denotes the real part of {-}, and I"[¢] is the complex conjugate of I[¢].
For mathematical convenience the complex stator currents i,, i,, i, are defined by the following
equation, whose real parts give the original coordinate stator currents (in three-phase stator circuits):

i, | R 1 ] [0
Iy | =5 |1 exp(2n/3)  exp(-f4a/3) | - |y |, _ (9)
A 1 exp(—j4m/3) exp (-——j21r/3)_ i

where the stator phases are represented by suffixes ¢, b and c.

3. Numerical method of solution
By means of eq. (3) it is possible to write eq. (1) as
(d/de) I[¢] = S[¢]1[¢] + Ul¢] , _ (10)
where S[¢] is a square matrix of order 4 and U[¢] is a column vector of order 4 which are given by
Slt] =—L~'[v, t](R+v, Glv,t]), o (11)
Ult] = L' [v, 1] VI1]. , (12)

A formal solution of eq. (10) can be obtained as
| , | |
I[¢] = P[£]I[0] + P{¢] [P~*[r] Ulr] dr, _ (13)
| 5 |

Where the matrices I[ 0] and P[¢] are respectively the initial value of the current vector (column
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vector of order 4) and the state transition matrix (square matrix of order 4). The state transition
matrix P[¢] must satisfy the following equation

(d/dr)P[¢t] = S[¢t] P[] . (14)
The initial conditions of eq. (14) are
P[O] = 1, (15)

the unit matrix of order 4.

The state transition matrix P[¢] is of paramount importance in the solution of eq. (10). A
satisfactory solution of eq. (10) depends on finding efficient methods of determining the state
transition matrix P[¢]. Various numerical methods have been proposed to find P[¢] (see [7]).

As the principal purpose of this paper is to solve eq. (10) by the simplest numerical method. It
18 assumed that the elements of the matrices S[#] and U[¢] of eq. (10) keep constant values in a

small time interval 4. Then eq. (10) can be solved as follows:
It + h] =exp(S[t+ ARTh) I t] — U, —exp(Slt+Ah]h) S [t + Ah) Ult + Ah] , (16)

where the value for the parameter A will be given later.
A further approximation is applied to the matrix exponential function exp(S[¢ + Ak]h), namely

exp(S{t+Anlh) =T, — (W/2)S[t+ ARV, + (h/2)S[t + AR . (17)
The state transition matrix P[z + &) is approximated by the central difference method as follows:
Plt+h] =U,— (h/2)S[t+ AR, + (h/2)S[t + AR]) P[¢] . | | (18)
To determine the value of the parameter 4, eq. (18) is rewritten by using a Taylor series expan-

sions of the matrices S[¢ + Ah] and U, — (h/2)S[t + AR]) 1A, + (h/2)S[t + Ah]). These Taylor
series expansions are | |

Slt+ Ah] = S[¢t] + AR dS[¢]/de + (AR)* (1/2)A%>S[¢] /ds?
+ o+ (AR (1KY A S[1) /dF _ ' (19)
and
d, — (h|2)S[t + ARV, + (h/2)S[t + Ah]> = I, + hS[t + Ah]
+(12[2)S2 [1+ AR] + ...+ (W[50 ) S 1 + AR] . (0

Theretore, eq. (18) can be written as follows:



340 Y. Saito, Numerical method for space harmonic waves
Pt +h] =, +hS[t] + (h¥/2)[S?[¢] + 24 dS[1]/ds] + (h3/6)[1.583[¢]
+3A42d>S[1]/de* + 3AS[¢] dS[¢)/dt + 3A(dS[£]/d) S[£1] + ... ) P[¢] . ' (21)

A rigorous Taylor series expansion of the state transition matrix P[¢ + /] is described in [7]. It
is | |

Plt+h] =, +hS[] + (h2/2)[S[¢] + AS[¢]/de] + (h3/6)[S? [¢]
" d?S[z]1/ds? + S[£1dS[¢]/de + 2(dS[¢]/d) S[£]] + ... Y P[] . (22)

Since the approximate state transition matrix eq. (21) coincides with the rigorous expansion
eq. (22) up to the first three terms if 4 = 1/2, we shall select

A=1/2 . (23)

as most suitable.
To summarise this section, the formula for the linear simultaneous dlfferentlal equations with
periodic coefficients is given as

Ift+h] =, - (h/Q)S[r+Ah]>—1 ([1,+ (h/2)S[r+Ah]] I[t] + hU[t + AR . (24)

If the parameter 4 in eq. (24) is 1/2, then the approximate state transition matrlx eq. (21)
coincides with the rigorous expansion eq. (22) in the first three terms. This method is called the
“improved central difference method”. If the parameter A in eq. (24) is 1, then this method is the

- same as described in [6] (the central difference method), and the approximate state transition

matrix eq. (21) matches the first two terms of the rigorous expansion eq. (22). In the case of linear
simultaneous differential equations with constant coefficients, the formula denoted by eq. (24)
(A =1/2)is reduced to the central dlfference method.

4. Numerical solution

The various parameters of a motor used in the numerical examples are listed in table 1.

When we consider only the 19th space harmonic wave, the fundamental equations can be reduced
to a set of linear differential equations with constant coefficients, as shown in appendix 1. To solve
the coupled linear differential equations with constant coefficients, the Padé approximation method
18 known to be quite effective, although this method is not applicable to general problems of the
polyphase induction motor including other space harmonic waves. Therefore, we obtain most
accurate values for theoretical comparison by this method with very small stepwidth.

Eq. (1) is numerically solved by (a) the improved central difference method, (b) the trapezoidal
rule, (c) the central difference method and (d) the Padé approximation method (4 = O. 000001) A
description of these methods is given in appendix 2.

The results of the numerical solution without considering the 19th space harmonic waves are
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Table 1
Various constants of the calculated motor

Voltage Ve=+/2/3200 (v)
Currents initial currents are all zero

vg = 100m (rad/sec)
Angular velocities

. vy = 90 (rad/sec)

Resistances Re=R,=35 ()
| Lg=L;=0.31831 (H)
Inductances M, =0.30239 (H)

M,q=0.30239/(19 X 19) (H)

shown in fig. 1. Although fairly good results may be obtained by any numerical method by using
a small stepwidth (4 = 0.000 01 or 0.0001), it is obvious that the improved central difference
method is one of the most effective numerical methods.

When the 19th space harmonic wave is taken into account, the same conclusions are obtained
for eq. (1). Results are shown in fig. 2. '

The state transition matrices of the rigorous Taylor series method eq. (22), the improved central
difference method, the trapezoidal rule and the central difference method are shown in table 2,
which shows that the state transition matrix of the central difference method is inferior in accuracy
to the other methods. The third term in the state transition matrix of the improved central dif-
ference method is somewhat more accurate than the third term of the trapezoidal rule. Further-
more, the trapezoidal rule needs more terms such as S[#] or S[r+ /] and U[¢] or U[t + h]. There-
fore, the improved central difference method is superior to the others.

Some examples of numerical solutions eqgs. (1) and (8) computed by the improved central dif-
ference method are shown in fig. 3.

5. Conclusion

This paper has proposed a simple and effective method applicable to the problem of space
harmonic waves in polyphase induction motors. This method is superior in accuracy to the trape-
zodial rule in spite of its simpler algorithmic form. A stepwidth can be chosen here that is about
20 times as large as the one necessary in the method reported in [6]. It is an improvement on the
method reported in {6]. |

For further study the author plans to work out another numerical method for space harmonic
waves in polyphase induction motors, taking into account the full system of mechanical equations.
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Table 2
Comparison of the approximate and the rigorous state transition matrix

Rigorous Taylor series expansion

Pt +h] =d, + hS[t] + (h*[2)[S%[¢] + aS[t]/de] + (3/6)[S3[t] + d28[¢]/ds?
+ S[t] dS[¢]/dt + 2(aS[t]/dt) S[¢]] + ... P[t]
Improved central difference method
Plt+h] = d, + hS[t] + (B2[2)[S?[¢] + dS[¢]/de] + (B3/6) [1.583 [¢]
+0.75 d*S[t]/de* + 1.58[r] dS[¢]/dr + 1.5(dS[¢]/de) S[¢]] + ...) P[¢]
Trapezoidal rule
Plt+h] =d + hS[t] + (h*/2)[S*[t] + dS[¢]/dt] + (3/6)[1.58°[¢]
+ 1.5d%S[¢]/dr? + 1.58[¢] dS[¢]/dr + 3(dS[¢]/de) S[t]] + ... ) P[]
Central difference method
Plt + h] =, + hS[t] + (W*[2) [S*[¢] + 2dS[t]/ds] + (B316) [1.583[+]

+3d°S[¢]/dr + 3S[r] dS[r]/dr + 3(dS[¢]/dr)S[¢] ] + ... ) P[t]

w—

The practical computations given in this paper were carried out by using the computers
FACOM 230-45S of Hosei University and HITAC 8800/8700 of Tokyo University.
Appendix 1. Linearized mathematical model

Eq. (1) in section 2 can be transformed into a linear system of simultaneous differential equa-
tions with constant coefficients by using the matrix C [v,,¢] (commutation matrix) for space

harmonic waves. The commutation matrix C (v, ] (d1agonal matrix of order 4) for the 19th space
harmonic wave is

Clv, t] = [I, exp(—720v,,¢t), exp(—jv,, 1), exp(—j19v, r)J . ' (A.1)
The linear simultaneous differential equations with constant coefficients are written as follows:
Veltl =Z°I°[¢] . (A.2)
The transformed voltage .Vector (column vector of order 4) V°[¢] = C*[v, t] V[¢] is

Velel = {V, exp(ju,0), V; exp(—jv t +j200, 1), 0, O}. (A.3)

The transformed impedance matrix Z¢= C* v, t] Z[v, t] C[v, t] (square matrix of order 4)
consists of the resistance matrix R the transformed inductance matrix L¢ and the transformed
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torque matrix G, namely
Z°=R+v, G+ L°(d/dr), (A.4)

where the resistance matrix R is given in eq. (4), and the transformed inductance matrix L (square
matrix of order 4) is

by

Ls 0 Ml M19 |
0 LS M19 1
Lo = (A.5)
M, M, L, 0
_M19 Ml 0 Lr -
The transformed torque matrix G¢ (square matrix of order 4) is
|0 0 0 0
0 _j20L,  —j20M,, —j20M,
G = : (A.6)
—iM, —iM —jL, 0
| —J19M 3 —719M, 0 —J19L,

As each current in the current vector I[¢] is an unknown quantity which must be computed,
the transformed current vector I°{¢t] = C* v, ¢] I[¢] is represented by the new stator positive phase
- current i, the new stator negative phase current 7, , the new rotor positive phase current i, and
the new rotor negative phase current i€ . The transformed current vector I°{¢] (column vector of

order 4) is

Il = {4, , i, i€} . (A.7)

sp® ‘sn> ‘rp>

The torque T is represented by the transformed current vector I°[¢], the transformed torque
matrix G and the number of pole pairs p. Namely, the torque T is given by

T=R{pI*{t]) G°IF[t]} , (A.8)

{+} = real part of {-}.

Of course, the real part of eq. (A.8) equals the real part of eq. (8).

The original coordinate stator currents (in three phase circuits) are derived as the real part of the
following equation:
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[ “¥ - T |

i, | = wﬁ 1 exp(—27/3) exp(—jdn/3) e . (A.9)
I, | 1 exp(—j4n/3) exp(—j2n/3) | i, exp(—720v,, I)J

Appendix 2. Other numerical methods

1) Trapezoidal rule: Application of the trapezoidal integral formula to eq. (10) in section 3
yields

INt+h] —I[t] = /2D{S[t+h]I[t+h) +S[e] I[t] + Ule+ h] + Ut} (A.10)
Therefore, the following numerical solution of eq. (10) can be obtained:
I[t+h] = <i4 — (W[2)S[t+h YU, + (h/2)S[t]) I1¢]
(I, — (h/2)SLe + h])"Y (1)2) ULt + k] + ULLD | ' (A11)
In this case the state transition matrix P[¢ + A] is approximated as follows:
Plt+hl=Ud, — (W/2)S[t+ R~ I, + (h/2) S[t]) P[¢]
=(I, + hS[¢] + (%[ 2)[S?[¢] + dS[¢]/d1] (A.12)
+ (13/6)[1.583[¢] + 1.5d%S[¢]/ds? + 3(dS[¢]1/de)S[¢] +1.58[¢] dS[¢]/df +...) Ple] .

2) Padé approximation method: From eq. (16) the numerical solution of eq. (A.2) can be obtained
as follows: |

IFlt+hl=exp(Sh)I¢{t] — U, —exp(Sh) S Ut +0.5h] , (A.13)

where the parameter A4 in eq. (16) is conveniently selected to be 1/2, and the matrices in eq. (A.13)
are

¢=_L°"1(R+v, G°), (A.14)
Ucltl=Ltvels] . (A.15)

The matrix exponential function exp(S°h) in eq. (A.13) is approximated by a Padé approxima-
tion [8], that 1s
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exp(Sh) =(12 — 6 S°h + (S°h)*)~1 (12 + 65K+ (5°h)?)
=1, + hS°+ (hS°)*/2 + (hS°)’ /6 + (hS)*/24 + ... . (A.16)

As the right-hand term of eq. (A.16) is a relatively good approXimation of the matrix exponen-
tial function in eq. (A.13), it can be expected that the numerical solutions computed by the method

of eq. (A.13) using eq. (A.16) will yield fairly good results.
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