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Finite Element Solution of Open
Boundary Eddy Current Problems

Y. SAITO, K. TAKAHASHI and S. HAYANO

College of Engineering, Hosei University,
3-7-2 Kajinocho Koganei, Tokyo 184, Japan

ABSTRACT

Previously, we have proposed a new method which is based on the strategic
dual image (SDI) forcing an open boundary to close for the finite element
solution of open boundary problems (Saito et al., 1987). The theoretical
background of this SDI method is based on the generalization of tradi-
tional electrical image method so that the finite element as well as
finite difference solution of open field problems can be obtained in an
extremely simple manner (Saito et al., 1988). Furthermore, the finite
element solution of saturable magnetic field problems has been success-
fully obtained by combining our SDI and magnetization vector M {Eaito
et al., 1988).

In this paper, we apply this SDI method to the dynamic magnetic field
problems. As a result, it is reveald that the finite element solution of

open boundary eddy current problems can be obtained in an extremely
simple manner.
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INTRODUCTION

Unbounded open field problems arise in the analysis of electric and mag-
netic fields in engineering applications. Typical examples of these are
the determination of dielectric stresses in power line insulators, effect
of switching surges on power devices, magnetic field distribution in
accelerator magnets, magnetic printer heads, contactors and actuators.
The finite element and difference methods are being widely used to solve
the various engineering field problems. However, because of their essen-
tial feature, it is difficult to obtain the solution of the unbounded
field problems. To overcome this difficulty, various means have been
proposed in the literature such as ballooning, infinitesimal scaling and
hybrid boundary integral techniques. So far ballooning has been used for
D problems (Silvester et al., 1977). Infinitesimal scaling is useful but
requires the solution of a nonlinear matrix equation which is time con-
suming (Crowley et al., 1985). The hybrid integral method leads to an
unsymmetric matrix and requires the long solution time and large computer
storage capacity (Salon et al., 1982). To remove these deficiencies of
the existing wethods, we have previously proposed a nev method which is
based on the method of electrical image. This new method is called the
strategic dual image (SDI) method. The theoretical background of this SDI
nethod is based on the generalization of traditional electrical image
nethoed so that the finite element as well as finite difference solutions
»f open field problems can be obtained in an extremely simple manner
Saito et al., 1987, 1988). Even if the saturation of magnetic materials
-s taken into account, the finite element solution has been successfully
btained by our SDI method (Saito et al., 1988).

n this paper, we apply this 5SDI method to the dynamic magnetic field
roblems. As a result, it is revealed that the finite element solution of

pen boundary eddy current problems can be obtained in an extremely
imple manner.

THE STRATEGIC DUAL IMAGE METHOD

asi ield equations

ast of the magnetodynamic field problems can be reduced to solve a
>lloving governing equation:
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vhere A, J. , # and ¢ are respectively the vector potential, source
current density, permeability and electric conductivity. The vector
potential A is related with the flux density B by

VXA=B, (2)

go that, by considering a relationship between the electric field
intensity E and flux density B, it is possible to derive a following
relation:

E=-vé¢- 34, (3)

vhere ¢ denotes an arbitrary scalar potential., The electric field
intensity E is related with the current density J by

J=¢E. (4)

By means of Egs.(3) and (4), it is possible to show that the source
~current density J. in Eq. (1) has been assumed to

Joe=—aVé. (5)

Thereby, the eddy current density Ja. is given by

Jo=-o 44 (6)

kssumptions

At first, the net magnetic field source is assumed to be zero in the
problem region. Second, as shown in Fig.l, it is assumed that the problem
region is enclosed by a boundary lecated at an infinitely long distance
from the problem region. This assumption means that the boundary
conditions at this infinite boundary are

B. =0, (7)
He =0, (8)

vhere the flux density Ba. and field intensity H. are respectively the
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normal and tangential components to the infinite boundary as illustrated
in Fig.l. Further, Egs.(7) and (8) suggest that the open field is com-
posed of the divergence field B, and rotational field H. . Third, it
is assumed that the magnetic field source may be regarded as a rotational
field source, i.e., current i, or a divergence field source, i.e., mag-
netic charge m. Finally, ve assume that there is no conducting media
spreading to the infinitely long distance. This assumption means that the
eddy current is always confined in a finite conducting media.

INFINITE BOUNDARY

HYPOTHETICAL
BOUNDARY

Let consider one of the current i in the problem region. UYhen we impose
an image current — (d/a) i at a position shown in Fig.2 (al, then the
nermal component of flux dens@ty B. becomes zero at an arbitrary point
on the spherical surface enclosing the source current i . This means that
the normal component of flux density B. to the spherical surface is
suppressed by the image current — (d,” a) i so that the remainig field
is the tangential field intensity H. to the spherical surface. This
field intensity H. becomes zero at the infinite boundary. The magnitude
of image — (d.” a) i depends on a position of field source i in the
sphere so that the following condition

aiﬁ{ip/r.}=ﬂf (9)
p=1

nust be satisfied to reduce the zero net image. In Eq.(9), a is a radius
of sphere; r. (=a?/d, ) is a distance from the center of sphere to the
current 1,; and q is a number of sources.

Let consider one of the magnetic charges m in the problem region. When
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ve impose an image — (d. a) m at a position shown in Fig.2bi, then
the tangential component of field intensity H. becomes zero at an
arbitrary point on the spherical surface enclosing the field source m.
This means that the tangential component of field intensity H. to the
spherical surface is suppressed by the image — (d. a) m so that the
remaining field in the sphere is the normal component of flux density
B. , and this becomes zero at the infinite boundary., Similar to those of
Eg.(9), the following conditieon

aﬁ'v:] (mo /ro) =0, (10)
P.:

nust be satisfied to reduce the zero net image.

B =0
n
-(d/a)i
r=(a'/d)
HYPOTHETICAL d
BOUNDARY
{a)
H\QHt=“
-{d/falm
r=(a'/d)
HYPOTHETICAL p
BOUNDARY = 7
(b)

Fig.2. Strategic dual images. (a] The rotational field
source image = (d./ a) 1 and spherical hypo-
thetical boundary. The normal components of flux
density B, at the spherical surface becomes
zero, (bl The divergence field source image
-— (d/a) m and spherical hypothetical
boundary. The tangential components of field
intensity H. at the spherical surface becomes
Iero.
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Open field

The field intensity H. which satisfies condition (8) is obtained by
imposing the rotational field source image. Also, the flux density B.
vhich satisfies condition (7) is obtained by imposing the divergence
field source image. Therefore, the open field can be obtained by a
summation of these two fields, that is

open field = (1/2)(rotational field + divergence field), (11)

vhere coefficient (1/2) is come from the tvo field sources (rotaticnal
and divergence field sources).

Implementation

In Eq.(2), the magnetic flux density B is represented by the curl of
vector potential A so that the vectors representing the rotational and
divergence field components are respectively calculated by setting the
boundary conditions A=0 and JdA.d n=0 at the spherical surface
of the hypothetical boundary. Furthermore, because of Eq.(9), A= 0 must
be satisfied at the center of spherical surface. After governing equation
(1) is discretized by the conventional finite element method imposing the
Zero or symmetrical boundary conditions to the hypothetical boundary, the
distributed field source is substantially concentrated at the node
points so that the condition (9) can be iteratively satisfied for
the distributed field source.

Let assume a discretized system of equations using the symmetrical
boundary condition as

Civ Cua| [Xi | D 0f4[x =(F )

Cir Caz2l | Xa o o9 x,

=

vhere X, is a sub-vector on the inside region; X: is a sub-vector on
the hypothetical boundary; F. is an input vecter caused by J. in
Eq.(1); sub-matrices Ci:, Ciz, Cz:1, Cz: are correspondingly defined
to the sub-vectors X, , Xz ; and D is a sub-matrix caused from the
time differential term of Eq.(1).
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According to Eq.(11), the SDI solution vector X:' on the hypothetical
boundary is given by

) Y = ""'% X2

-1 -1 =1
== —ﬁ— [Cz:-CZ|Cllclz] ’c!;cil
x [F. -D ($£) xv1, (13)

because the sub-vector X:' of zero boundary system is always zero
vector: and X, denotes the 5DI solution vector on the inside region.

Rearrangiment of Eq.(13) yields
[2C3:=C21C11C12] X&' +C21 Xy +C2,C1u [F.

—Can-Cl:Xz"“D{%}X:'] =0. (14)

In Eg.(14), obviously following relationships are established:

Cii X/ +C.:X:"+D {adf} X,/ =F. ., (15)
CaiXy + [2C22-C21C11Ca2) X' =0. (16)

By means of Eqs.(15) and (16), it is possible to obtain

cx/+D (&) xy/=F., (17)
vhere
C=C11=C12 [2C2:=C2:C11C12]  Cais (18)
and
Xs'=— [2C22-C2:C11C1z]  CmX/. (19)

Equation (17) is discretized in time by the backward difference method.
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An_example

In the present paper, the strategic dual image method has been formulated
in three dimensions. However, because of its simplicity, the two dimen-
sional magnetodynamic field problems are far more preferable as the
initial test examples.

As shown in Fig.3, wve selected a simplified model of induction heating
cooker as an example. The discretization of this exanple was carried out
by means of the standard first order triangular finite elements. Various
constants used in the computatiens are listed in Table I . Figure 4 shows
the step response of this model. The solutions vere obtained using the
hypothetical boundaries with different radii. Nevertheless, the results
in Fig.4 obviously suggests that our SDI method gives an unique solution,
Further, Fig.5 shows the eddy current distributions caused by a step
input current,

| CONDUCTOR

=J +J

Fig.3. A simplified model of induction heating cooker.

TABLE 1. Various constants used in the computations.

fumber of elements m:248, 4m:432, 5m:664
Source Current Density J, let4[A/m? ]
Step-width in time At 0.01[s]

Conductivity o le+7[s/m]
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im solution —-—4dm solution ----=4m solution

MIN.-1.12e-3[wb/m] MIN.-1.34e-3[vb/m] MIN.-2.23e-3[wb/m]
uAX. 1.12e-3[ub/m] MAX. 1.34e-3[wb/m] MAX. 2.23e-3[wb/m]
10 DIVISIONS 10 DIVISIONS 10 DIVISIONS

ja) t=0.01[s]. b t=0.1[s]. le) t=1.0[s].

——

MIN.-3.7Te-3[vb/m] MIN.-4.24e-3[wb/m] MIN.-4.2d4e-3[vb/n]
MAX. 3.77e-3[wb/m] MAX. 4.24e-3[wb/m] MAX. 4.24e-3[wb/m]
10 DIVISIONS 10 DIVISIONS 10 DIVISIONS

d) t=10.0[s]. {e) t=100.0[s]. (f) Steady state.

Fig.4. Step responce of the induction heating cooker.
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2721.29 -2721.29

SN——

MIN.-2721.29[A]
MAX. 2721.29(4]
10 DIVISIONS

a) t=0.01[s].

"

2

214.35 -214.35

N

MIN.-214.35[A]
MAX. 214.35[A]
10 DIVISIONS

(d} t=10.0[s].

L

2067.92 -2067.92

(

HIN.-2067.92[A]
MAX. 2067.92[4A]
10 DIVISIONS

bl t=0.1[s].

N [/
[B\ H/Jj
-4,24e-3 4}E;e~3

‘\a;h‘___#ﬂgf’
HIH.~4.24e-3[ﬁ]

MAX. 4.24e-3[A)
10 DIVISIONS

(e} t=100.0[s].

1446.16 -1446.16
\-__'/

MIN.-1446.16[A]
MAX. 1446.16[A]
10 DIVISIONS

e} t=1.0[s].

Fig.5. Eddy current distributions caused by a step

input current,
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CONCLUTION

As shown above, we have revealed that our strategic dual image methed is
still effective procedure for obtaining the finite element solution of
open boundary eddy current problems in an extremely simple manner.
Fundamentally, our strategic dual image method is an analytical mean for
the open field problems so that it is applicable to the other discretiza-
tion method (e.g. finite difference method) for obtaining the open field
solution.
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