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A locally orthogonal property between the side of a Delaunay triangle and the edge of a
Voronoi polygon is applied to the post-processing scheme. Our post-processing scheme
explicitly satisfies a governing equation in the electromagnetic fields so that it removes the
discontinuities appearing at the edges of the first-order triangular finite element. Furthermore,
when the vector obtained by our post-processing scheme is used as a starting vector for the
iterative matrix inversions, e.g., the successive overrelaxation and conjugate gradient methods,
then covergence to a correct solution vector is extremely accelerated in our test examples.

I. INTRODUCTION

Recently we proposed a new method which uses a single
potential based on a geometrical dual property of locally
orthogonal discretization. A locally orthogonal property
arises from the following fact that each side of a Delaunay
triangle is perpendicular to the corresponding edge of a Vor-
onoi polygon. This leads to two independent systems, i.e.,
the Delaunay and Voronoi systems. In a previous paper, we
applied this locally orthogonal property to the complemen-
tary variational principles, and succeeded in evaluating the
highly improved functional as well as potential with low
computational cost.'"

In this paper a locally orthogonal property between the
side of a Delaunay triangle and the edge of a Voronoi poly-
gon is applied to the post-processing scheme. Our post-pro-
cessing scheme explicitly satisfies a governing equation in
the electromagnetic fields so that it removes the discontinui-
ties in a field appearing at the edges of the first-order finite
element. Furthermore, when the vector obtained by our
post-processing scheme is used as a starting vector for an
iterative matrix inversion, then convergence to a correct so-
Iution vector is extremely accelerated.

{l. THE LOCALLY ORTHOGONAL DISCRETIZATION
METHOD

A. Assumptions

Numerous problems in electrical engineering are re-
duced to solve Poisson’s equation in two dimensions:
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where A is a parameter depending on the medium; ¢ is the
scalar or axial component of vector; and ¢ is a source den-
sity. At the boundary of region 0 and 1, the following bound-
ary conditions are assumed:
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When a problem region is discretized into triangular ele-
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ments, then a triangle is generally divided into two or three
isosceles triangles by taking the circumcenter as a vertex, as
shown in Fig. 1. It is apparent that each of the edges of the
triangle is perpendicularly intersected by a line connecting
the circumcenters of the adjoint triangles. Thus, the lines i-j
and 0-1 in Fig. 1 form a locally orthogonal system, and this
relationship leads to the two independent trial functions for
the primal and complementary functionals. Thereby, on the
local coordinate system shown in Fig. 1, the solution of Eq.
(1) is assumed to be evaluated from'-
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B. Functionals

On the local coordinate system shown in Fig. 1, the
nodes i, j are located on the boundary between regions 0 and
1. This means that the rate of change d¢/dx is common to
both regions 0 and 1 in Fig. 1. Thereby, the primal functional
for Egs. (2) and (4) is written by’

F(¢) =fl(z—ﬁ)zdxdy—f¢adxdy, (6)

where the integrations are carried out over the region en-
closed by 0-d-i-e-1-j-0 in Fig. 1.

FIG. 1. An example of a locally orthogonal coordinate system, where nodes
0,1,d,e are located at the circumcenters of triangles i-j-k, i-j-l, i-0-a, and
i-1-a, respectively.
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On the other side, nodes 0,1 are located on the y axis in
Fig. 1. In this case, the rate of change A (3¢/dy) is common
to both regions 0 and 1. This yields the complementary func-
tional G(¢) for Eqgs. (3) and (5) as?
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where& denotes the prescribed value of potential ¢ at nodes

0,1; and the integrations are carried out over the region en-
closed by 0-d-i-e-1-j-0 in Fig. 1.

C. Node equations

A simple Lagrangian interpolation between the nodes /
andjin Fig. 1 yields a trial function for the primal functional
as

¢p =%(¢,~ +¢j) + (¢ _¢j)(x/a) ’ (8)

where a is the distance between nodes / and j. Equation (8)
satisfies the boundary condition (2). Minimizing after intro-
ducing Eq. (8) into Eq. (6) yields the node equations. For
example, the equation for node / is given by

oF(¢,) (/1

O cota +ilcot6)
a6, 2 2

X (¢; —@;) — 4(ASop + ASy0y) =0,  (9)

where the areas AS,,AS, and angles a, § are shown in Fig. 1.
The other node equations for the primal system can be de-
rived in much the same way as Eq. (9); a combination of
these equations leads to a primal system.’

In order to satisfy condition (3), it is inevitable to use
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FIG. 2. Post-processing results. (a) Original magnetic fields, where the five
node potentials are the boundary values and four node potentials are the
solutions of FEM. (b) A post-processed result of (a), where the extra 280
node potentials have been added. (c) Original magnetic fields, where only
one node potential is a solution of FEM and three node potentials are the
boundary values. (d) A post-processed result of (c), where the extra 285
node potentials have been added. The solid and dotted lines are the analyti-
cal and computed values, respectively.
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two different trial functions:
¢, = [(A/B)po + (A1/€),1/[(Ae/b) + (A,/€)]

+ [(41/bc) (¢ — d) /[ (Ae/B) + (A1/c)], (10a)
$. = [(Ao/b)po + (11/€)$,1/[(Ao/b) + (A,/¢)]

+ [(Ao/bc) (do — 61) 19/ [ (Ao/b) + (A,/¢)], (10b)
where Egs. (10a) and (10b) are held within regions O and 1;
b,c are the distances between nodes 0,z and nodes a,1 in Fig.
1, respectively. Maximization after introducing Egs. (10a)
and (10b) into Eq. (7) yields the node equations. For exam-
ple, the equation for node O in Fig. 1 is given by
aG(g,)
——¢— = (¢, — do)/[(1/245)cot a
3o

+ (1/24,)cot 8] + 8AS,0, =0. (1)

The other node equations for the complementary system can
be obtained in much the same way as Eq. (11); a combina-
tion of these node equations yields a complementary sys-
tem.'? ‘

D. Application to post-processing

Let us assume that the node potentials ¢,,4,,4;,4, in
Fig. 1 have been obtained by the first-order triangular finite
elements method, then the primal system gives a potential ¢,
ocated at a midpoint of edge i-j as a solution of

[(Ae/2)cot @ + (A,/2)cot 51(d, — &;)
+ [(Ap/2)cot a + (4,/2)cot §1(¢, — ¢;)
— 2(ASy00 + AS,0,) =0, (12)

where the area AS,, AS, are shown in Fig. 1. Similarly, the
other potentials ¢,,, ¢, on the edges of triangle i-j-k in Fig. 1
can be obtained in much the same way as Eq. (12). Also,
complementary system gives a potential ¢, in Fig. 1 as a
solution of :

Ao[tan a(d, —dy) +tan B( P, — &)

+ tan y(¢c _¢0)] +SOUO=0) (13)
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FIG. 3. A convergence property of the SOR method. No prediction: zero
starting vector. First prediction: a starting vector was obtained from Fig.
2(d). Second prediction: a starting vector was obtained from Fig. 2(b).
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where angles a8,y and area S, are shown in Fig, 1.

Thus, by means of the process shown in Eqs. (12) and
(13), we can add any number of node potentials. Equation
(12) satisfies one axial component but Eq. (13) satisfies
both of the x and y components of Eq. (1) within second-
order terms when solution ¢ is expanded into a Taylor se-
ries.?

E. Application to the iterative methods of solution

Iterative methods such as the SOR and CG methods are
widely available to solve large and medium size problems. In
these iterative methods, the number of iterations required to
arrive at a correct solution greatly depends on the starting
value. Our post-processing scheme yields the potentials
which satisfy an original governing equation (1) so that a
vector obtained by the process of Eqgs. (12) and (13) may
become a good starting vector for the iterative methods of
solution.

F. Examples

The method is illustrated by applying to a magnetic field
calculation of ferromagnetic material with square cross sec-
tion."* Figure 2(a) shows the original magnetic fields com-
puted by the first-order finite elements, where five node po-
tentials are the boundary values and the remaining four node
potentials are the solutions of FEM. Figure 2(b) shows the
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results of our post-processing, where 280 extra node poten-
tials have been added. A further severe condition is shown in
Fig. 2(¢), where only one node potential is a solution of
FEM and the other three node potentials are the boundary
values. As shown in Fig. 2(d), the discontinuities in Fig.
2(c) were removed by our post-processing method. In Fig.
2(d), 285 extra node potentials were added by our post-
processing scheme. In order to evaluate 256 node potentials,
the results of Figs. 2(b) and 2(d) were used as the starting
vectors for the iterative methods of solution. Figure 3 shows
a convergence property of the SOR method and reveals that
our post-processing scheme may be used for predicting the
starting vector for iterative approaches.

111. CONCLUSION

In this paper we have proposed a new post-processing
method based on the locally orthogonal discretizations. As a
result, the extremely smooth fields may be obtained at the
post-processing stage. Also, it has been shown that our post-
processing scheme may be used for predicting the starting
vector for iterative methods of solution.
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