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A Chua-type magnetization model is derived by means of a Fourier series while the magnetic
flux density is sinusoidally varying with time. It is shown that this Chua-type model is well
suited for practical computations of magnetodynamic field. A geometrical duality between the
Delaunay triangles and associated Voronoi polygons is utilized to implement a dual energy
finite element approach. As an example, the magnetodynamic fields in a toroidal reactor
including the effects of transients, eddy currents, and hysteresis are computed.

I. INTRODUCTION

Modeling of magnetization characteristics of the mag-
netic materials is of paramount importance for magnetic
field computations in electromagnetic devices. In the present
paper, we derive a Chua-type magnetization model by means
of a Fourier series, and show that this Chua-type model is
well suited for practical computations of the magnetodyna-
mic field in electrical machines.! Also, it is clarified that this
Chua-type model is closely related to the Preisach- and Ray-
leigh-type models.

In order to evaluate the magnetodynamic fields in the
most efficient manner, a geometrical duality between the
Delaunay triangles and associated Voronoi polygons is uti-
lized to implement a dual energy finite element approach.??
This new approach requires the use of a single potential to
establish the upper and lower bounds of solutions in electro-
magnetic field problems, whereas the conventional dual en-
ergy finite element approach requires the use of two different
types of potentials (vector and scalar).

As an example, the magnetodynamic fields in a toroidal
reactor including the effects of transients, eddy currents, and
hysteresis are computed. It is shown by comparison with
experiment that our procedure models the sinusoidal re-
sponse and hysteresis loops with a high degree of precision.
Also, we find that our new dual energy approach yields the
solutions in 1/50 of the computation time required for the
traditional first-order finite element method.

Il. MAGNETIZATION MODEL
A. Chua-type model

When flux density B is sinusoidally varying with time ¢,
then the associated field intensity H becomes a nonsinusoi-
dal periodic wave. Figure 1(a) shows a B-H loop, and Fig.
1(b) shows the wave forms of B and H. By means of a Four-
ier series, the field intensity H in Fig. 1(b) is expanded into
the sine and cosine series, that is,

H= z H_, sin (nwt) + z H_, cos(nwt) , (1)

n=1 n=1
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where @ denotes the angular velocity of B. Let T be the peri-
od of B, then w = (2#/T), and the Fourier coefficients
H,, H_, for nth harmonics are given by

2 T

H, = —f H sin(nwt)dt , (2)
Tk
2 T

H, = —J. H cos(nwt)d: . (3)
T Jo

The odd and even components of H are respectively ob-
tained by

H, = i H,sin(nwt) , (4)
n=1
H,= 3 H, cos(not). (5)

n=1
As shown in Figs. 1(c) and 1(d), the odd component
H, and even component H, are respectively in phase with
the flux density B and the time derivative of flux density dB /
dt. Thereby, a combination of H, with B yields one of the

(d)
FIG. 1. (a) B-H loop; (b) time variations of Band H; (¢) Band odd compo-
nent H, of H; and (d) dB /dt and even component H, of H.
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FIG. 2. (a) B-H, curve which represents the saturation property and (b)
dB /dt-H, curve which represents the hysteretic property.

saturation curves. Also, a combination of H, with dB /dt
yields a curve which represents the hysteretic property, be-
cause H, (dB /dt) provides the power loss per unit volume.
Figures 2(a) and 2(b) show the practical examples of B-H,
and dB /dt-H, curves, respectively. In other words, by con-
sidering the relations of Figs. 2(a) and 2(b), it is possible to
write the field intensity H as

H=H,+H,=f(B)+f,(dB/dt), (6)

where f, (B) and f, (dB /dt) are denoting the single valued
functions of B and dB /dt, respectively. This means that the
saturation property is a function of the flux density B only,
and the hysteretic property is a function of the time deriva-
tive of flux density dB /dt only.

By defining the permeability 2 and hysteresis coefficient

sas
p=B/H, : N
s=(dB/dt)/H,, (8)
relation (6) is expressed by
H=(1/u)B+ (1/s)dB /dt . ¢

Equation (9) is obviously one of the Chua-type models.

B. Preisach-type model

According to Ref. 4, the reversing point field intensity
H, and applied field intensity H, are defined as shown in
Fig. 3. By considering Fig. 3, it is obvious that the B-vs-H
trajectory takes different paths depending on the reversing
point field intensity H,. Thereby, the flux density B is repre-
sented as a function of the applied field intensity /, as well
as reversing point field intensity H,, viz.,

B=B(H,H,) . (10)
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FIG. 3. Derivation of Prei-
sach’s function V.

Moreover, by considering a saturation point of flux den-
sity on the nonsymmetrical hysteresis loop shown in Fig. 3, it
is revealed that the B-vs-H trajectories take different paths
according to the reversing point of field intensities but al-
ways coincide at the saturation point of flux density. There-
fore, the rate of change of slope dB /dH,, with the reversing
point field intensity H, takes nonzero values in the region
|B | < B,,, where B,, is the saturation flux density. This rela-
tionship gives the definition of Preisach’s function i as

2
¢=aB(Hp,H,,) . an
JoH,dH,

When we apply Eq. (11) toalower branch of a Rayleigh

loop,®

B=(u,+vH)H, + (v/2)(H2 - H}Y), (12)
then it is possible to obtain the following relationship:
Y=y, (13)

where v, u, are, respectively, the Rayleigh’s constant and
initial permeability. Thus, it is obvious that the Rayleigh’s
model is one of the Preisach-type models.

C. Comparison of models

The Chua-type model is based on the fact that the mag-
netization path is uniquely determined by dB /Jt. On the oth-
er hand, the Preisach-type model is based on a behavior that
the change of slope dB /dH depends on the reversing point
field intensities.

In order to find a relationship between them, applica-
tion of Eq.(9) to the states of Fig. 3 gives the following rela-
tions:

JB,
H, = (/wB, + (1/s) ==, (14)
H, = (1/p)B, + (1/s) P (15)

where the field intensity AH, in Fig. 3 is so small that the
permeability 1 and hysteresis coefficient s may be assumed
to be constant. By subtracting Eq. (14) from Eq. (15) and
rearranging, it is possible to obtain

dB, dB,
AB/u= (1/u)(B, — B,) = (1/s) ( )— )
ot ot

dB, JB,\ JH,
= (1/s) - . (16)
0H, JH,] ot
Further rearrangement of Eq. (16) yields
dH aB dB
/) wen|(G)- ()] o
ot JH, JH,

In Fig. 3, if the limit of AH, goes to zero, thenthe AB /u
term in Eq. (17) is simultaneously reduced to zero. Thus an
assumption of AH, = AB /u leads to

B o8B, 2
lim (,u/AB)[( ")—( )]: 9B g
aro oH,) \om, )|~ om,om,
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From Egs. (11), (17), and (18), a relationship between
the hysteresis coefficient s and the Preisach’s function ¢ is
obtained as

e

oz 19
at (1)

11l. FASTER MAGNETODYNAMIC FIELD COMPUTATION

A. Basic equations

Consider the cross section of a toroidal reactor shown in
Fig. 4. The governing equations for the electric and magnetic
fields in the system are

vxE= _ 9B (20)
at

VXH=J, 2n

E=plJ, (22)

where E, J, and p are, respectively, the electric field intensity,
current density, and resistivity. Combining Eqgs. (20)-(22)
yields

JB
VXVXH= ——.
P ot
Furthermore, only the axial component of the magnetic field
exists, so that Eq. (23) is simplified to
J*H d*H OB
T TP~ =—7o
ox dy at
where the magnetic field intensity H and flux density B are
related by Eq. (9).

(23)

p (24)

B. Locally orthogonal discretization

A method of locally orthogonal discretization is pre-
sented in Refs. 2 and 3. The key concept in this procedure is
to exploit the geometric duality that exists between De-
launay triangles and Voronoi polygons. Delaunay triangles
and Voronoi polygons are related by the fact that vertices of
the Voronoi polygons are the circumcenters of the Delaunay
triangles.® As explained in Ref. 3 and illustrated in Fig. 5,
one of the features of this Voronoi—Delaunay duality is that
the sides of the Voronoi polygons are perpendicular to the
sides of the Delaunay triangles. This relationship leads to a
locally orthogonal coordinate system as shown in Fig. 5.
When the vertices i, j of the Delaunay triangle and the ver-
tices k, / of the Voronoi polygon are chosen as node points,
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FIG. 5. Voronoi-Delaunay
diagram showing the local-
ly orthogonal coordinate
system.

the trial functions are independently defined along the x and
yaxis.? Thus, the governing Eq. (24) is divided into x and y
components, that is,

£D-2))
AZ0)-()2).

C. Functional and node equations

Current density in the x and y directions is given by

oH
J.=1—), 27
. (ay) @n
oH
J = —1=—]. 28
’ (8x> (28)

As shown in Fig. 5, the resistivity p has a different value in
each Delaunay triangle. At the interface between regions of
the different resistivity p, the normal component of current
density to the boundary must be continuous. This condition
is satisfied by selecting a trial function for the y direction as

H,=W\)(H,+H)+ (H —H;)(y/a), (29)
where the length g in the direction of the y axis shown in Fig.
5. Substituting Eq. (29) into Eq. (27) shows that the current
density J, is continuous at the boundary with this approxi-
mation.

The other boundary conditions to be satisfied is that the
tangential component of electric field intensity at the bound-
ary must be common to both regions. This condition is satis-
fied by the following trial functions in the x direction:

H, = [(p/b)YH, + (p,/c)H, /[ (p,/b) + (p,/c)]
+ (H, — H,)) (px/bc) /[ (p,/B) + (po/c) ],

— bgx<0, (30)
H, = [(py/b)H, + (p,/c)H,1/[(p,/b) + (p,/¢) ]

+ (H, — H,))(p,x/bc)/[(p,/b) + (p./c) ],

0<x<ec, (31)

where the lengths b,c in the direction of the x axis are shown
in Fig. 5. Substituting Eqs. (30) and (31) into Eq. (28)
reveals the E, = p,J, = p,J, is satisfied at the boundary.
Since the Delaunay system obeys the boundary condition
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corresponding to continuity of the current density, a func-
tional for the Delaunay system is

a/2 —b
F=f J [p(Jx)z—Hp (a—B)]dxdy.
—a/2Je at

On the other hand, the Voronoi system obeys the boundary
condition of electric field intensity E, = pJ,, and this yields
the following functional for the Voronoi systems

a/2 c A
G= —f f [(1/p)(Ey)2—Hc (@)]dxdy, (33)
—b at

—as2

(32)

where “ denotes the prescribed value.
By means of Egs. (27)—(33), it is possible to obtain the
following nodal equations:

( oF ) — [(4p/a) + (cpy/a) 1 (H, — H))

an,
a0,

(a‘ifk) = (H, — H,))/[(b/ap,) + (c/ap,)]
) o

where

c a/2
¢jI=J‘] f dedy, ¢k1=f Jodedy.
—as2J—b —as2J—b

Equations (34) and (35) are the equations corresponding to
the node j of the Delaunay system and to the node k of the
Voronoi system, respectively.

D. Electric circuits

With Az denoting the length of the magnetic flux path,
Egs. (34) and (35) can be rewritten as

dd.

(Pop + 7o) (i; — ) +(—?£)=0, (36)
ot

. . 96, N
(e —i)/[(1/ry) + (1/r)] + 8t =0, (37)
where

i, =HAz, i=HAz i, =HAsz i=HAs

ry, =pib/(aAz), 1, = pyc/(alz),

ry. =pia/(bAz), r. =p,a/(cAz). (38)

Let ¢, and ¢, denote the magnetic fluxes passing
through the Voronoi polygon centered at node j and the De-
launay triangle centered at node k. The electric circuits for
Delaunay and Voronoi systems are shown in Figs. 6(a) and
6(b), respectively.

E. Magnetic circuits

With AS; denoting the area of the Voronoi polygon, the
magnetic circuit equation for node j is derived from Eq. (9)
as

Jé.
i + ni, = Mg, + N, (ﬁ), (39)

at

where
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(a)

FIG. 6. (a) Electric circuit for eddy currenis in the Delaunay system and
(b) electric circuit for eddy currents in the Voronoi system.

M; = Az/(uAS;), N, =Az/(sAS)), (40)

and n, i, are the number of turns of the exciting coil and the
exciting current, respectively.

Similary, a magnetic circuit equation for node k is de-
rived as

b,
ik+m’e=Mk¢k+Nk( azk)’ (41)
where
M, = Az/(uAS,), N, =Az/(sAS,), (42)

and AS, is the area of the Delaunay triangle.

F. Time discretization

The full Voronoi and Delaunay systems are best ex-
pressed in matrix notation as

RI+ W(%)(I) -V,

dt

(43)

where R, W, V, I, ® are the resistance matrix, winding ma-
trix, voltage vector, current, and flux vector, respectively.
Also, magnetic circuit system equations are expressed as

W'l =M+ N(d/d)®P, (44)

where a superscript 7 denotes the transpose of matrix. By
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FIG. 7. (a) Step response of a toroidal reactor assuming linear permeability
and hysteresis coefficient s5; (b) computed magnetic flux density distribu-
tions for a step input assuming the linear permeability and hysteresis coeffi-
cient s5; and (c) step response for the reactor taking the saturation of iron
into account but neglecting hysteresis.

means of Eqs. (43) and (44), a system of dynamic magnetic
field equations is reduced to the following form:

WGV =M+ (W'GW + N)(d /d)®, (45)

where the conductance matrix G is the inverse matrix of the
resistance matrix R. Equation (45) is discretized in time ¢ by
using the following process

WTGV:+ ar/2y = Mr+ (At/2) (%)(¢1+A: +®,)
+ (WIGW + N, (ai2) ) (1/AD)

X(¢[-+ At _¢I) : (46)

where the subscripts £,¢ + (At /2), ¢ + At denote the corre-
sponding times and At denotes the stepwidth in time. It must
be noted that because of Eq. (6) the elements in magnetic
resistance matrix M and hysteresis parameter matrix & in
Eq. (46) are generally nonlinear functions of the flux and
time derivative of flux. The field solution thus takes these
nonlinearities into account.

IV. RESULTS AND CONCLUDING REMARKS

Various constants used in the computation are given in
Refs. 1 and 2, and the magnetization curves for permeability
and for hysteresis coefficient are given by Figs. 2(a) and
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FIG. 8. (a) Sinusoidal response together with experimental results and (b)
computed and experimental dynamic hysteresis loops for the laminated to-
roidal core.

2(b). Figure 7(a) shows the step response of the toroidal
reactor assuming linear permeability and hysteresis coeffi-
cient and Fig. 7(b) shows the computed flux density distri-
butions. Figure 7(c) shows the step response taking into
account the saturation of the iron but neglecting its hystere-
sis. Itis found that the average value of the Delaunay and the
Voronoi solutions yields excellent results even with a small
number of nodes employed. Figure 8(a) shows the sinusoi-
dal response of the toroid together with experimental mea-
surements. Figure 8(b) shows the computed and measured
dynamic hysteresis loops for the laminated toroidal core;
this comparison demonstrates the validity of the hysteresis
model.

Asshown above, it is possible to calculate dynamic mag-
netic fields in an efficient manner using a new method based
on the geometrical duality of Delaunay triangles and Vor-
onoi polygons. We have shown by example that the new
method is 50 times as efficient as the conventional first-order
finite element method.
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