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Abstract. This paper proposes a visualizing methodology of iron loss in a magnetic material using
its visualized domain images, i.e., SEM, Kerr and Faraday effects. Our image analysis methodology
based on classical field theory leads to the image differential equations. A dynamic image, so called
animation, is given as a solution of Helmholtz type partial differential equation in particular. The state
transition matrix, given in the Helmholtz equation, derived from a series of distinct visualized domain
images representing magnetized state makes it possible to visualize the magnetizing mechanism as
well as iron loss generation. In the present paper, visualization of iron loss generation is worked out
using a set of SEM images representing the domain pattern of a grain-oriented electrical steel sheet by
mean of image Helmholtz equation. Based on the state transition matrix derived from three distinct
SEM images we have succeeded in visualizing and quantifying the behaviors of magnetic domains,
i.e., magnetic boundary displacement, delay of magnetic domain movement, lancet domain generation
and so on.

1. Introduction

A lot of magnetic domain observation methodologies are available to clarify the physics of magnetic material
behavior [1]. This provides us a visualized image of the magnetic materials. Consideration of magnetic
domain behaviors such as domain structure and boundary displacement leads to the evaluation of magnetic
materials [2]. In order to accomplish this in a most efficient manner, we have proposed an image processing
methodology for evaluating the precise characteristics of magnetic materials.

Recently, the authors have proposed an image processing methodology based on differential equations [3].
According to our methodology, any dynamic images so called animation can be given as a solution of the
Helmholtz types of equations; we call it the image Helmholtz equation. This makes it possible to analyze an
animation based on calculus and to handle an animation, consisting of several static images as frames, as
continuous quantity. Further, the state transition matrix derived from our image Helmholtz equation just
corresponds to the value parameterizing the physical systems. Thereby, our methodology is capable of
extracting the characteristics of system from visualized information.

In this paper, we apply our methodology to the distinct magnetized domain images of a grain-oriented
electrical steel observed by scanning electron microscope (SEM). It is demonstrated that solving for our
image Helmholtz equations generates any magnetized state of domain images as well as continuous
magnetization curves. Moreover, the iron loss generation processes are visualized by the state transition
matrices derived from a series of distinct domain images.

2. Dynamic Image Representation

2.1 Governing Equation of Dynamic Images

To analyze an image visualizing physical dynamics, a representation by Helmholtz equation is regarded as an
image governing equation. The key idea is that Helmholtz types of equations govern many of the physical ’
dynamic systems. Assuming an image to be described in terms of a scalar field U, any dynamic images can be

given as a solution of the Helmholtz equation [3}:

0
ViU+e—U=-0
da : M
where ¢, a and ¢ denote the moving speed parameter, transition variable and image source density,
respectively. The first and second terms on the left in (1) represent the spatial expanse and transition of image
to the variable a, respectively. The first term on the left in (1) represents a static image. The image source
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density o is given by the Laplacian operation to a final image so that the final image U, is obtained as a
solution of

VU e = =0
Final R (2)
This means that the governing equation of static images is the Poisson equation [4].
2.2. Solution
Modal analysis to (1) gives a general solution:
U(a) = exp(_Aa)(USmn - UFmaI )+ UFmal 3)

where Us,,, and exp(-A a ) are the initial image and state transition matrix, respectively. The values € and ¢ in
(1) are respectively reduced into the matrix A and final image Up;,y. However, the matrix A is unknown,
since the value ¢ in (1) is not given. Eq. (3) generates the initial image Ugy, if @ = 0, and the final image Up;,y
when the variable a reaches to infinity. However, a never reaches infinity so that it is necessary to determine
the optimal state transition matrix from the given images.

2.3. State Transition Matrix
The matrix A is a key to generate the dynamic image because it corresponds to the characteristic values in
various engineering. In most cases, the state transition matrix is given and derived by imposing various
conditions as well as by setting physical constants of the dynamic system. In such a case, it is possible to
obtain the modal matrix analytically. In our case, however, we have to determine it from several images
visualized images. The problem evaluating the physical system from the visualized images is one of the
inverse problems.

Let Uy, be the image between the initial and final images, then it is possible to determine the elements in

matrix A by modifying (3), as given by

A= ___1_ ]n UAa - UFlnal
Aa U UFmaI

Stant A (4)
Therefore, it is possible to analytically generate the animation by substituting the matrix A in (4) into (3). The
solution obtained by (4) satisfies the image U,, when the variable o takes Aa. Eq. (4) is one of the inverse

parameter evaluation strategies using digital images.

3. Magnetic Domain Motion Analysis

3.1. SEM Domain Image and I}nage Helmholtz Equation

Based on the image Helmholtz equation, iron loss in magnetic material is visualized as the state transition
matrix. Fig. 1 shows the magnetic domain patterns of a grain oriented silicon steel sheet under the distinct
magnetized states [5]. The backscattered electron observation was carried out using scanning electron
microscope (SEM). Supposing a domain image shown in Fig.1 to be composed of a scalar field U as flux
density, the dynamics of domains motion can be represented by the image Helmholtz equation. In
magnetizing state, the domain motion is caused by applied magnetic field 4, so that the transition variable o
in (3) is replaced by the magnetic field intensity H. Namely, (1) and (3) are respectively rewritten by

VU + e—a—U =—0
oH (5)

U(H) = exp(_AH)(USlarl - UFmaI )+ UFmaI X (6)

The matrix A is determined by given domain images. The elements in the i-th matrix A, are determined from a
series of distinct SEM images in much the same way as (4), i.e.,




(a)H=0.0 Alm, B=00T (b)H=2.9 A/m, B=0.1T (e)H=9.3 Aifm, B=16T

(e)H=2363 A/m, B=19T (N H=00A/m, B=1.73T (gH=4.T7A/m, B=122T (h)H=9.0 A/m, 8=-1.56T

Fig. | Magnetic domain SEM images of the ORIENTCORE HI-B
produced by Nippon Steel Co.(100x100 pixels, 0.1 mm/pixel)

Table | Measured Domain Images
H : External magnetic field intensity, 8 : Flux density

Image No. H(A/m) B(T) Image No.  H(A/m)  B(T)
] 0.00 0.00 13 214.13 1.93
2 2.85 0.10 14 160.37 1.92
3 9.26 1.63 15 98.68 191
4 24.16 1.73 16 54.66 1.84
5 30.23 1.78 17 28.53 1.83
6 54.59 1.84 18 3.73 1.77
7 84.92 1.86 19 0.00 1.73
8 115.39 1.88 20 -4.60 1.73
9 160.69 1.90 21 -5.95 -0.06
10 236.32 1.92 22 -7.45 -1.43
1 32431 1.95 23 -9.07 -1.56
12 269.64 195 24 -11.50 -1.62

-U
A‘ :—Lln Uni i+l
AH 'Uf _UH?_ 521121"%!}_2 (7)
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where the subscript / refers to a domain image number and p denotes the number of used domain images.
Mereover, the images U/, and L., correspond to the initial and final domain images, respectively. 24 domain
images listed in Table | were used in this example, therefore, 22 matrices A were computed. As is well
known in control theory, the elements in matrix A correspond to the modes of system. Extracted matrix A by
means of (7) is capable of representing the modes of animation. In this case, the real and imaginary parts of
the matrix A can be represented in phase and 90-degree phase different components to the applied field A.
Therefore, considering A derived from the SEM domain images leads to visualization of iron loss generating
parts.

12 Visualization of Domain Dynamics

Figure 2 shows the real and imaginary parts of the elements in the matrix A. The elements are displayed in
accordance with these of the domain pattern in Fig.l. In the low field intensity, the real paris represent
magnetic boundary displacements and magnetic domain movements (Figs. 2(a) and (b)). On the other hand,
there are some values of the imaginary part in Fig. 2(b). This visualizes the force against the applied field at
the grain boundary. In the high field intensity, Figs. 2(¢) and (d), the magnetization process is mainly carried
out by rotation of magnetization and the iron loss is caused by lancet domain appearance. Thus, based on the
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matrix A, it has been shown that the magnetic domain motion dynamics, i.e., behaviors of magnetic domain
and iron loss generating processes, can be visualized.
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Fig. 2 State transition matrices

3.3. Domain Image Reconstruction and Magnetization Curves

Extracted matrices A shown in Fig.2 are characteristic value matrices to the applied field 4. Egs. (6) and (7)
yield generating the domain images at arbitrary excitation. Furthermore, since the contrast of domain images
represents the polarity of magnetization, then computing averaged contrast of an entire domain image gives an
entire flux density. Fig.3 shows each frame of the animation generated by means of (6) and the magnetization
curves, Even though the domain images represent a limited area of the specimen, the experimental result
shown in Fig.4 supports our methodology.

4. Conclusions

We have proposed a method of image processing for magnetic domain images. The SEM domain images of a
grain oriented silicon sheet have been examined. State transition matrices visualize the behavior of magnetic
domain as well as iron loss generating parts. Moreover, a magnetization curve is reconstructed from the
domain images. It is obvious that our methodology makes it possible to evaluate the magnetic material in
macroscopic as well as microscopic points of view.
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Fig. 3 Reconstructed domain patterns and magnetization curves
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Fig. 4 Comparison computed and experimented magnetization curves



