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ABSTRACT: The generalized vector sampled pattern matching (GVSPM) method has been proposed to
solve the ill-posed inverse problems. Major difficulty of the mentioned problems has been removed by
GVSPM. This paper presents one of the methodologies to check up the validity of the GVSPM solutions. A
key idea was to extract the common parts among the independently evaluated solutions. Each of the
GVSPM solutions was evaluated from the orthogonal x-, y- and z- components of the measured field
vectors. Three kinds of the current distributions were evaluated by means of GVSPM.

1 INTRODUCTION

Visualization of the current distributions on
printed circuit boards is of paramount importance
for searching the fault points and checking up the
electromagnetic  compatibility of modem
electronic devices [1,2]. In order to visualize the
current distributions without destruction or
decomposition of the electronic devices, a kind of
inverse problem can be wused. Available
information from the outside of an electronic
device is only a set of locally measured
electromagnetic  fields. It means, the
electromagnetic field sources have to be evaluated
from the locally measured electromagnetic fields.
Most of the inverse problems are reduced into
solving an ill-posed linear system of equations.

2 SOLUTION STRATEGY OF AN
ILL-POSED SYSTEM

2.1 lll-posed linear system of equations

Let us consider a linear system of equations:

Y =CX, 4}
where Y and X are the #™ order input and m™ order
output vectors, respectively. The matrix C is an n

by m rectangular system matrix. Eq.(1) can be
rewritten as:

v=3xcC, @

X=[x, x . xJ,Cc=[c, c, . c,]

Further modification to Eq. (2):

Y & [clc,
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Eq.(3) means that the normalized input vector Y’
can be given by a linear combination of the
weighted solutions x,|C\|/|Y},x,C,|/¥}...x.|C..||¥]
with the normalized column
€ ACHC, G CC, -

vectors

2.2 Objective function

Eq.(2) means that the input vector Y can be given
by means of a linear combination of the column
vector C;. Therefore, according to the
Cauchy-Schwarz relationship [4], an angle
between the input vectors of Y and of CX("), given
in terms of the k™ iterative solution X, is defined
by:

Y Cx(l) .Cux|(k)
f(xm)=|7|'|cx<*>|= T @
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So that

fx®)>1, )
The solution vector X*' satisfies the Eq.(3), i.e.,
Y'=C' X', (6)

When an initial solution vector X' is given by:
XP=cTy, )

the first deviation to the normalized input vector
Y' becomes:

1 yi(0)
ayo -y CX° ®)
IC- x-(O)I

By means of Eqgs.(7) and (8), the k" iterative
solution vector X"* is given by:

Xv(lt) - Xv(k-l) +Axl(")
C'r cC J 1(k~1) (9)

=C'r Y"[Im —W)-I X

where I, is an m by m unit diagonal matrix.
2.3 Convergence condition

Convergence of the iterative scheme Eq.(9) should
be examined by considering a state transition
matrix S from the solution vectors X*" to X® in

Eq.(9):

C'T c
S=I"—m. (10)

When the maximum eigen value of Sis less than 1,
the solution converges to an exact solution vector.
However, the state transition matrix S in Eq. (10)
is not a constant matrix but a function of the
solution vector X'*" . This means that the
convergence depends on the solution vector
X'®*Y  The characteristic values of a unit square
matrix are the multiple roots of 1. The
convergence condition of the problem is described
by:
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Icvxl(k—l)ulml > ||C'x'(k-l)llm -CT C1 (11)

In Eq.(11), all of the diagonal elements in the

matrix C” C' are 1, and the other elements of this
matrix are always less than 1. Thereby, the
condition of Eq.(11) is always held. This means
that Eq.(9) gives an absolutely stable iterative
solution.

3 INVERSE PROBLEM OF THE
MAGNETIC FIELDS

3.1 System of equations

A relationship between current and magnetic field
is given as a solution of Maxwell's equation.
Applying a discretized integral equation method
using a Green's function to the Maxwell's equation
leads to a system of equations similar to Eq.(1). In
a magnetic system, the vectors Y, X are the nth
order magnetic field and the m® order current
vectors, respectively. The n by m rectangular
system matrix C is composed of the spatial
derivatives of Green's function [2]. Major currents
in electronic devices are flowing on the printed
circuit boards, but the magnetic fields are
spreading over a surrounding space. This means
that a region containing the currents can be easily
accessed whereas only a limited region containing
magnetic fields is accessible. To access the region
containing the currents, it is essentially required to
destruct or decompose the devices. On the other
hand, magnetic fields can be easily measured
without destroying or decomposing the devices
but only locally. Thereby, Eq.(1) has to be solved
under the condition of m>n in order to visualize
the current distributions.

3.2 Validity of checking method of the solution

This paper proposes one of the methodologies to
check up the validity of the GVSPM solutions. A
key idea is to extract the common dominant parts
among the independently evaluated GVSPM
solutions. Each of the solutions is evaluated from
the orthogonal x-, y- and z-components of the
measured magnetic field vectors. Three kinds of
current vector distributions are evaluated by
means of the GVSPM.



The maximum magnitudes of these three current
vector distributions are normalized to 1. To extract
the common dominant current vector distributions,
each of the current vector components was
convoluted without using any threshold operation.
This yields not only the reliable noise-free current
distributions, but also reveals a validity of the
solution.

3.3 Simulation

Fig.1 shows the magnetic field distributions,
measured at a parallel surface, lcm above a 10 by
10 cm printed circuit board. The three orthogonal
components of the magnetic field were measured
at 16 by 16 equi-spaced points. A 32x32 loop
current distribution model was employed for the
target printed circuit board so that the number of
unknowns was m =32x32=1024 [1,2]. Thus,
the problem was to compute the 1024 loop
currents from the 256 magnetic fields. After 100
iterations applying Eq.(9), the current vector
distributions were computed.

a) X~ b) y- c) z-
Figure 1 Measured magnetic field
distributions at 16 by 16 equi-spaced points.

Fig.2 shows each of the independently evaluated
current vector distributions normalized to 1. In
order to extract the common current vector
distributions each of the current vector
components was convoluted. This convolution
makes it possible to extract the only dominant
current vector distributions without using any
threshold operation.

a) x- b) y- c) z-
Figure 2 Current vector distributions
evaluated from magnetic fields.

Fig.3 shows the convoluted current vector

distribution together with the exact one. By
observing the results in Fig.3, this methodology
yields not only the reliable noise-free current
vector distributions, but also reveals a validity of

Figure 3 Current vector distributions:
a) exact b) convoluted

3.4 Experimental verification

Fig4 shows the magnetic field distributions,
which have been measured at a parallel surface 0.9
cm above a 10 by 10 cm target surface. The
magnetic field components were measured at 10
by 10 equi-spaced points. Thereby, the entire
number of magnetic field measured points was
10x10=100 for each of the x- y- and
Z-components.

c) z-
Figure 4 Measured magnetic field
distributions at 10 by 10 equi-spaced points.

A 16x16 loop current distribution model was
employed for the target printed circuit board so
that the number of unknowns for each component
was m =16 x 16 = 256 . Thus, the problem was to
compute the 256 loop currents from the 100
magnetic fields. After 300 iterations applying
Eq.(9), the cumrent vector distributions were
computed
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a) x- b) y- c) z-
Figure 5 Current vector distributions
evaluated from magnetic fields.
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Fig.5 shows each of the independently evaluated
current vector distributions normalized to 1.

The common current vector distributions were
extracted by the convolution of each of the current
vector components. Fig.6 shows the current
carrying coil with convoluted current vector
distributions.

(@ (b)
Figure 6 (a) The current carrying coil
(b) The convoluted current vector distributions.

4 CONCLUSIONS

This paper has proposed one of the methodologies
to check up the validity of GVSPM solutions. It
yields reliable noise-free current distributions and
reveals a validity of the GVSPM solution.
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The visualization of the noise-free current vector
distributions on the printed circuit boards has been
successful. Thus, the methodology provides a
deterministic tool for the nondestructive testing
and also to the electromagnetic compatibility
checking of modern electronic devices.
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