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ABSTRACT

Time-frequency distributions of axial turbulence velocities of spiral pipe flow and typical turbulence flow have been clearly
decomposed in a range from low frequency level to high frequency level by means of discrete wavelets transform. As a
result, the lower frequency levels (under Level 4) of the spiral flow are extremely lower as compared with those of the
typical turbulence flow. Moreover, the spiral flow is dominated by Level 3 to be stabilized from the autocorrelation. The
originality of this paper lies in applying discrete wavelets transform and its autocorrelation analysis to analyzing the spiral
flow stable motion in time-frequency dimension.
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1. INTRODUNCTION

Spiral flow is a swirling flow with large free vortex region, high concentration to the axis and high stability [1]. From the
high stability characteristics, the spiral flow is useful for industrial applications such as optical cord installation in a small
diameter pipeline with bends[2] and high performance pneumatic transportation without particles touching pipe inner
wall[3]. The solids in the two-phase spiral pipe flow acquire their position in a pipeline without large vibration. The
motivation behind this work is to clarify the mechanism of the high stability in order to improve the spiral flow system.
Time-frequency analysis is a suitable method to analyze the stability as a first step.

Recently, wavelets transform has been popular for time-frequency analysis instead of Fourier transform in mechanical
engineering fields. The merits of the wavelets analysis is to be able to analyze the frequency not to erase the time
information. Wavelets transform [4] is roughly classified with two types, which are continuous wavelets transform and
discrete wavelets transform. The continuous wavelets transform has been generally used for time frequency analysis in
vibration wave. For example, self-similarity of the inner structure of the jet [5], the breakdown of a large eddy and the
successive branching of a large eddy structure in a plane jet [6], decomposition of Reynolds stress in a jet [7], and the
multiple acoustic modes and the shear layer instability [8] were investigated.

However, most of the researchers on the time-frequency analysis carried out the continuous wavelets transform. On the
other hand, the discrete wavelets transform has been mainly used for picture image processing. The analysis enables to
decompose and to compose picture image data quantitatively because of the orthonormal transform. Saito applied this idea
to analyzing the electromagnetic wave[9].

The originality of this paper lies in applying discrete wavelets transform and autocorrelation to each frequency level to
analyzing the spiral flow stable motion. In this paper, as a first step to clarify the stability, time-frequency distribution of
axial turbulence velocity of spiral pipe flow is decomposed from low frequency level to high frequency level by discrete
wavelets transform and its autocorrelation. It is recognized which level is dominant to stabilize the spiral flow.

2. THEORY OF DISCRETE WAVELETS TRANSFORM

2.1 Basic Concept Using Simple Base Function

Basic concept of discrete wavelets transform is described using matrix expression instead of integral expression. One
dimensional input data matrix with four elements X and an analyzing wavelets matrix of Haar base function W are used to
simplify the expression. For example, the input data matrix X is discrete velocity data with time. The wavelets transform
matrix S that indicates wavelets spectrum is expressed by
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Where, WT+W=I, I is a unit matrix and W7 is a transpose matrix of W. The analyzing wavelets matrix is an orthonormal.
In Eq. (1), the first element in the wavelets spectrum S, shows a transform to obtain a mean value with a weight on the all
input data, a+b+c+d. The second element in the wavelets spectrum D, shows a transform to obtain a difference value
between the fast half and the latter half with a weight on the input data, {(a+b)-(c+d)}. It means that this element includes
the lower frequency level of the input data. The third element d; shows a transform to obtain a difference value on the first
half of the input data, (a-b). The fourth element d; is a transform to obtain a difference value on the latter half, (c-d). The
third and forth elements include the higher frequency level of the input data. Therefore, the input data is able to classified to
a range from higher frequency level to lower frequency level. Because of orthonormal, the inverse discrete wavelets
transform is expressed by,

X=w'.s —03)
Moreover, from Eq. (3), the input data X is decomposed by multiresolution. The matrix expression is
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Where, So=[5,000]" S;=[0D,00]" S,=[004d, d5]". W'Sy, W'S, and WS, are called Level 0, Level 1 and Level
2, respectively.

2.2 Generalization of Discrete Wavelets Transform

Many orthonormal wavelets analyzing function are found [4]. The basic concept of the discrete wavelets transform is
generalized by using fourth Daubechies function (N=4). The analyzing wavelets matrix is also an orthonormal function.
The analyzing wavelets matrix W is acquired by a cascade algorithm on the basis of a function matrix C. The matrix C is
shown in Eq. (6),

6 €6 6 & © 0 -0 0 0 0 q,=1+ﬁ
6 -¢, ¢ ¢ 0 0 -0 0 0 0 42 —(6)
00 ¢ ¢ ¢ ¢ -0 0 0 0] 3+

N T T Y

00 0 000 ¢ g ¢ 6|2 4
0o 0 0 0 0 O 6 =0, € -G, -3
g ¢ 0 0 0 0 0 0 ¢ ¢ “Jzﬁ
q - 0 0 0 0 0 0 ¢ -q
Cj-Cz+C[-Co=0_(7) 003—102+2CI"3C():0 _(8)

Where, CT+C=I. The first line in Eq. (6) is called scaling coefficients and second line is called wavelets coefficients. Forth
Daubechies function (N=4) has four coefficients in a line. The first line shows a transform to obtain a mean value with
weights of c;, c;, c;and c; on the input data. The second line shows a transform to obtain a difference value with weights of
¢y, ¢, c;and c; on the input data. The third line shows a transform to translate the first line by two steps. The fourth line is a
transform to do the second line by two steps. Egs. (7) and (8) show the transformed values are zero when the input data are
constant or are simply increased. To explain easily the process to acquire the analyzing wavelets matrix W from C, the
matrix X is assumed as one dimensional 16 elements,

X =[x, X7 %3 X4 X5 X5 X7 Xg X9 X109 X11 X12 X13 X4 %15 xl6]T —9)
From Eqgs. (6) and (9), the transformed matrix X’ is

X =CX=][s;d;5:d,53d35,d,55ds556ds5;d7 55 ds ]T —(10)
Where, Cy is 16X16 matrix of C. The element s indicates the mean value and the element 4 indicates the difference value.
The elements in the matrix X’ are replaced by a matrix Py .

PX’ =Py CieX =[5, 5,555,558 575sd; drdsd; ds ds d; dy ]T—(ll)
Where, P;; is defined as



re

1 0000O0O0O0OO0OOO0OOOOOTO
001 000O0OO0OO0OOOO0OOO0OVD0
00001 00O0O0OO0OCODODOOCDOO
0000O0OT1O0O0OOOOOOOO
0000O0CO0OOO0OTILI OOOOODOO
0000O0O0OCOOOI1IO0O0OTO0O0
0000000O0OCOCOOTLOOOQO
P = 00000O0OOCOOOOOOCOTI O
“lo100000000000000
0001 000O0O0OCOOOOO0O
0 00001000OCO0OO0CO0OO0CO0O
00000O0O0O1O0OCO0OGO0OOODOO
000000O0OCOI 00O0O0COCO
000000O0COCOCOOTI O0OOTOCO
000000OCO0OO0OOCOOOTI1 00O (12)
0000000O0O0O0O0O0O0O0O0I1
Moreover, from Eq. (11), the transform is continuously carried out by C and P without any operations to the difference
values,
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W® is a analyzing wavelets matrix that is W in Eq. (2). The wavelets spectrum S in Eq. (2) is W®X in Eq. (14). In Eq.
(13), S, indicates the mean value from s, to s, in Eq. (11). S; indicates the mean value from s; to s4 that translate by two
steps. D, indicates the difference value from s, to s,. In Eq. (14), S, indicates the mean value from S, to S, in Eq. (13). D,
indicates the difference value from S; to S, in Eq. (13). From Eq. (14), the input data are transformed to the mean values
and the difference values with valuable resolution levels by the discrete wavelets transform. The input data are divided into
a range from high frequency to low frequency.
From Eq. (14), the inverse wavelets transform is,

X=[W's —(18)
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From Eq. (18), the multiresolution is,

X = [WOITS = [WOITS, + [WPI'S, + [WOITS+ [WOTS;  ——(20)
Where, So=[8:5,00000000000000)" $;=[00D,D,000000000000]"

$;=[0000D,D,D;D,00000000]" S;=[00000000d,d,d;d,dsdsd,ds]” ——(21)

In the case of sixteen input data and fourth Doubechies, multiresolution indicates from Level 0 to Level 3. In general, in the
case that input data is 2" and Doubechies function is kth (N=k), the algorithm to obtain levels is shown in Fig. 1. The final
wavelets spectrum is obtained after the wavelet transform in Eq (14) continues until the number of final summation elements
is less than k.
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Fig. 1 Algorithm of discrete wavelets transform



3. EXPERIMENTS

3.1 Nozzle to Produce Spiral Flow

A nozzle to produce the spiral flow is designed with an annular slit connecting to a conical cylinder as shown in Fig. 2 [10}.
Pressurized air is forced through the sides of the device into the buffer area, and then through the annular slit into a vertical
pipe entrance. The suction force is generated at the back of the nozzle by Coanda effect. The annular flow, passing through
the conical cylinder, develops a spiral structure with a steeper axial velocity and an azimuthal velocity distributions, even if
it is not applied tangentially. Vaporized water as a tracer of LDV are sucked into the nozzle from the back of the nozzle. An
ejector is used to generate the typical turbulence flow.

3.2 Experimental Equipment, Method & Conditions

The experimental equipment consisted of a vertical acrylic pipe, the nozzle to produce the spiral flow and an air compressor
as shown in Fig. 3. The inside diameter of the vertical pipe was 41.0 mm. A LDV prove is set up at the side of the vertical
pipe at 1.0 m from the air supply part to measure the axial velocity at the center of the pipe. He-Ne Laser power of LDV
was 10 mW, and the probe picked up the reflected wave from the tracer. The air flow rate was 1.98 X 10~ m*/s. The mean
velocity of the air flow in the vertical pipe calculated from the flow rate was 1.50 m/s. Reynolds number calculated from the
mean velocity was about 4,200 .

The reflected wave pass though a timer unit connecting to LDV probe with 1ms (1,000 Hz) pick-up interval. The signals of
the reflected wave were countered for about 5 seconds in a counter system connecting to the timer unit. The discrete
sampling velocity data were #7—=1024(=2"%). The counter system has high pass and low pass filters that reduce signals under
0.625 m/s and over 6.25 m/s as noise. The pick up point is one point where is the center of the pipe as a first step study. The
time mean velocities and turbulence levels of the spiral flowrand typical turbulence flow are compared.

IF> Flow Meter
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Spiral Flow
Nozzle

Annular slit Annular slit

Pressurized air = o o <« Pressurized air
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Fig.2 Spiral flow nozzle
Fig. 3 Experimental equipment

3.3 Experimental Results
The velocities of the spiral flow and typical turbulence flow at the center of the pipe are obtained with LDV. The turbulence

level is defined as,

0 K RN L b

Where, n is the sampling velocity number, vy, is the time mean velocity, & is a pick-up time and v, is kth pick-up velocity in
a pick up time. The time-mean velocity and the turbulence level are shown in Table 1. From this table, the time mean
velocity of the spiral flow is higher than that of typical turbulence flow by about 9 % even though the air flow rate is the
same [1]. That is because the axial velocity of the spiral flow is steeper than that of the typical turbulence flow. Also, the
turbulence level of the spiral flow is much lower than the typical turbulence flow by about 10 %. It means the spiral flow is
a stable flow in an axial direction.

The normalized axial turbulence velocities in kth pick-up time with each mean velocity vi’= (V¢ - Viean) / Vmean are shown in
Figs. 4 and 5. These figures are analyzed in the next section.



Tablel Time-mean velocity and turbulence Level

Time mean velocity Turbulence level
Vmean v’
Spiral Flow 1.93 m/s 0.06616
Typical Turbulence
P 1.77 mis 0.07336
Flow
& Amplitude ‘;‘ Amplitude
2
g Z
2 3
= ®
3 o
I~ Q
8 g
2 E
& &
Time {ms] Time {ms]

Fig. 4 Axial turbulence velocity of spiral flow Fig. 5 Axial turbulence velocity of typical turbulence flow
‘a4 ANALYSIS AND DISCUSSION
4.1 Analysis Method
The normalized axial turbulence velocities in Figs. 4 and 5 are analyzed by discrete wavelets transform and its
autocorrelation. This wavelet analysis consists of three steps. Firstly, the 1024 (=2'°) sampling data of the axial turbulence
velocities are put into the matrix X in Eq. (9). The matrix X is transformed to the wavelets spectrum S in the algorithm from
Eq. (10) to Eq. (14). Next, the multiresolution analysis is carried out, that is, each part of the spectrum is inversely
transformed to multiresolution levels by means of the discrete inverse wavelets transform in Eq. (20). Finally,
autocorrelation of each level is obtained to recognize which level is dominant for the spiral flow stability.
Twentieth Daubechies function is used as an analyzing wavelets function. Twentieth Daubechies function has twenty
coefficients from ¢, to ¢y in the first line in Eq. (6), twenty coefficients from ¢y to -¢, in the second line in Eq. (6). In the
case of twentieth Daubechies function and 1024 (=2'°) input data, the multiresolution classifies to seven levels as shown in
Eq.(23).
X = [WNTS = [WETS, + [WTS, + [WOTS,+ [WE TS+ [WOTS, + (WIS + [WTS, —(23)
W® indicates the five times operation to obtain Daubechies matrix from a matrix C in Eq. (6). The coefficients of twentieth
Daubechies function are shown in Fig. 6. x axis shows the coefficients from c¢;yto ¢y in the second line of C matrix in Eq.
(6). Therefore, 1 in x axis indicates ¢y, 2 in X axig in,,di(f,at%s <9, Snd 20 indicates cg .
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Fig. 6 Coefficients of twentieth Daubechies function

4.2 Turbulence Level on Each Frequency Level
To clarify the difference between wavelets transform and Fourier transform, the axial turbulence level on each frequency

level defined in Eq. (24) is calculated before indicating the wavelets analysis.
V= _l_ Z l: V (V'k _V'Ievelmean )2 ] :24)
n k=1
Where, the capital Vs indicate velocities on each wavelet level, in detail, ¥ veimean is @ time mean turbulence velocity and
x is a normalized turbulence velocity in Ath pick-up time on each wavelet level. V' indicates a normalized turbulence level
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in a wavelet level which includes a power spectrum obtained by Fourier transform. V’jyeimean iS N0t zero in the strict sense.
The normalized turbulence level on each wavelet level }” is shown in Fig. 7 (Level 0 is not shown). From the other view,
Fig.7 is a kind of power spectrum by Fourier Transform. From this figure, the turbulence levels of the spiral flow on all
levels are lower than those of typical turbulence flow. Mainly, the level from Level 1 to Level 4 are remarkably different.

Both turbulence levels have peaks at Level 3. The peak results from the energy contain range and the inertia range from
Kolmogorov theory.
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Fig. 7 Turbulence level on each frequency level
4.3 Wavelets Analysis Results & Discussion
Transforming inversely each level of the wavelets spectrum indicates multiresolution as shown in Eq.(20). Fig. 8(A) shows
the multiresolution of the spiral flow, and Fig. 8(B) shows the multiresolution of the typical turbulence flow in three
dimension display. They show the relation among the time, wavelet level and normalized turbulence velocity ¥,’. From Fig.
8, it is recognized that time and frequency level is simultaneously analyzed. To clarify the each frequency level, Fig.8 is
displaied in two dimension as shown in Fig. 9. From this multiresolution, the spectrum can be divided from low frequency
level (Level 1) to high frequency level (Level 6). The summation from level 0 to level 6 recovers completely the original
turbulence velocities in Figs. 4 and 5 (Level 0 is not shown). In the waveform on the low frequency level (Levels 1 and 2) in
the figures, the turbulence velocity of the spiral flow is much smaller than this of the typical turbulence flow. The waveform
on the middle frequency levels (Levels 3 and 4) is slightly different, and then, high frequency level is the same.
Next, the autocorrelation on each level in Fig, 9 is obtained to classify which level is dominant in the spiral flow with
Py —(25)

k+r

v v '&Z V ’7?
t is the delay time from 0.0 to 512 ms. The autocorrelation is done binarization with threshold value +0.25 and -0.25
because the periodisity makes clear. In this study, the points over +0.25 and under -0.25 of the autocorrelation is assumed to
be high periodisity, and the points between -0.25 and +0.25 to be low periodisity. The binary autocorrelation is shown in
Fig.10. In this figure, the black part is under -0.25, and white part is over +0.25, which are high correlation parts. The gray
part is between -0.25 and +0.25, which is low correlation part. From this figure, it is recognized that Level 3 is dominant in
the spiral flow because the black part and the white part are shown repeatedly.
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Fig. 8 Multiresolution analysis (3D Display)
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5. CONCLUSIONS

Time-frequency distributions of axial turbulence velocities of spiral pipe flow and typical turbulence flow have been clearly

decomposed in a range from low frequency level to high frequency level by means of discrete wavelets transform. Also, the

dominant level to be stabilized is clasified. As a result, the following conclusions become clear.

(1) The time waveform on target level is able to extract by means of discrete wavelets transform and multiresolution because
the orthonormal analyzing wavelets function composes and decomposes the original waveform. It is useful for analyzing
the stability of spiral flow

(2) The axial turbulence level in the under middle frequency levels (under Level 4) of spiral flow are extremely lower as
compared with that of typical turbulence flow.

(3) Level 3 of spiral flow has high periodisity. It means that the axial stability of spiral flow is mainly dominated by Level
3.
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