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Abstract: In order to extract the coherent structure and the most essential scales governing
turbulence, the best choice of orthogonal wavelet basis to use for the multiresolution image analysis
of the turbulent structures was investigated in this paper. the digital imaging photograph of jet slice
was decomposed by two-dimensional orthogonal transform based on Daubechies, Coifman and
Baylkin bases. It is found that these orthonormal wavelet families with index N<10 were
inappropriate for multiresolution image analysis of turbulent flow. The multiresolution images of
turbulent structures were very similar when using the wavelet basis with the higher index number,
even though wavelet basis is different function. From the image components in orthogonal spaces
with different scales, the further evident of the multiscale structures in jet can be observed, and the
edges of the vortices at different resolutions or scales and the coherent structure can be easily
extracted.
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1. Introduction

Coherent structures are known to exist and are responsible for most of the momentum transfer in turbulent jets.
Many identification techniques, such as image processing, spectra analysis, spatial correlation functions,
education schemes, proper orthogonal decomposition, stochastic estimation, pattern recognition, and wavelet
transform, are well established to determine coherent structures. However, the local scales with respect to space-
time change continuously for the turbulence and the coherent structure in both time and scale spaces has not yet
been clarified. Identification of coherent structure requires the acquisition of detailed quantitative data on such
structure characteristics as location, size, strength, etc. Until now, traditional analytical techniques cannot give us
sufficient or detail information. Laufer ) (1975) pointed that the visualization of organized motions in shear
layers showed that the conditional sampling measurement had been hiding very important features of turbulence.
To solve these problems, we should develop more powerful identification or analytical techniques. In the present
study we investigate the development of a new identification technique, called two-dimensional orthogonal
wavelets, to analyze full field measurements or image process in turbulent shear flow, and focus on the
application of wavelets to the experimental study of jet.

In the limited open literature available, Everson et al. (1990) analyzed two-dimensional dye concentration
data from a turbulent jet using the continuous wavelet transform, and revealed the nature and self-similarity of
the inner structure of the jet. Lewalle et al. (1994) applied the wavelet transform to velocity signals in the inner
mixing layer of a coaxial jet and analyzed the dominance of non-periodic vortices at a given time scale. Li and
Nozaki (1995) displayed very different scale eddies, the breakdown of a large eddy and the successive branching
of a large eddy structure in a plane turbulent jet by analyzing the velocity signals at various positions with the
wavelet transform. A wavelet decomposition of fluctuating velocities in a planar jet was used to the Reynolds
stress in scale space by Gordeyev and Thomas (1995). Using wavelet decomposition the unsteady aspects of the
transition of a jet shear layer were studied by Gordeyev et al. (1995). Li (1997, 1998) proposed the wavelet
correlation and time-frequency correlation methods based on wavelets, and applied to revealing the structure of
eddy motion and coherent structure in the turbulent shear flow in both Fourier and physical spaces. Li (1997,
1998) also developed the wavelet spatial statistics using wavelets and analyzed the large-scale eddy motions and
the structure of the energy transfer over a two-dimensional frequency-physics plane in a turbulent shear flow.
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The large eddy structure of a bounded turbulent jet was first studied by applying the wavelet transform, local
wavelet Reynolds stress and wavelet Reynolds stress to the experimental velocity signals in Li et al. (1997).
Walker et al. (1997) studied experimentally the multiple acoustic modes and shear layer instability waves in a
rectangular underexpanded jet using wavelet transform. The discrete wavelet transform using Daubechies-
orthogonal wavelet bases were also applied to analyzing velocity signals of a plane turbulent jet in the dimension
of tizee and fequency by Li ot al. (1998). Resides these application studies, several new taals and diagnostics
based on the wavelet transform, such as wavelet intermittency, wavelet Reynolds number, wavelet spectrum,
wavelet cross spectrum, and wavelet correlation function were developed. They offered the potentials extracting
new information from various flow fields. However, most of above researches limited to the analysis of jet
structure using the one-dimensional wavelet transform. To gain deeper insight into multi-scale structures and
extract coherent structure in turbulent flows, it is an important to analyzing the full field by image processing.
Although there were several researches (e.g., Everson et al., 1990; Brasseur and Wang, 1992; Spedding et al.,
1993; Dallard and Browand, 1993; Dallard and Spedding, 1993), who applied two or three-dimensional wavelet
transform to full field measurements or simulation data, they have thus far concerned the continuous wavelet
transform. The coefficients of continuous wavelet transform can extract the characterization of local regularity,
but it is unable to reconstruct the original function because the mother wavelet function is non-orthogonal
function. In the image processing it is importance to reconstruct the original image from wavelet composition
and to study multiresolution image in the range of various scales.

One of the dominate principal analytical tool in the image processing is Fourier analysis, which can be used to
convert point data into a form that is useful for analyzing frequencies. In some problems, however, Fourier
analytic techniques are inadequate or lead to extremely onerous computations. A case is that each Fourier
coefficient contains complete information about the behavior of images at one scale of frequency but no
information about its behavior at other scales or frequencies. In contract, many applications require an analysis
of the series at broader scale. For example, a region of rapid change in the series can only be detected by
examining many points at once. A wavelet is a bandpass filter with the additional space location capability.

In this paper, the best choice of orthogonal wavelet basis to use for extracting information on the turbulent
structures from the multiresolution image, which is obtained by the digital imaging photograph of two-
dimensional orthogonal transform, is investigated.

2. Definition of Two-Dimensional Orthogonal Wavelets

In the previous papers (Li, 1997, 1998), we described applications of the one-dimensional continuous and
discrete wavelet transforms to the turbulent jet. In this section, we introduce definitions of two-dimensional
wavelet transform before applying it to image analysis. Let us consider a two-dimensional scalar field f (?c) and

isotropic mother wavelet w(%) by treating ¥ =(x;,x,) as vector. The family of wavelets y/l;a(f), which is

translated by position parameter b e R? (b= bl,bz)) and dilated by scale parameter a € R, is written as
X
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Several functions, such as, 2-D Morelet wavelet, Halo wavelet, and others, are often used as mother wavelet
in area of fluid mechanics.
The continuous wavelet transform of f x) can be defined as
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The coefficients of continuous wavelet transform Wf' (l;, a) can be interpreted as the relative contribution of

scale a to the scalar field f(%) at position & .
If the wavelet is admissible, the inversion formula is

f(3)=o f f P—SWﬂg,amﬂ(;yade;
4 0 o0

=Lf f P"‘Wf(l;,aﬂ/[i;bjdadzl;
CW o doo a

The two-dimensional continuous wavelet transform has proved to be useful in several applications in the area
of fluid mechanics and extracted the characterization of local regularity. However, it is unable to reconstruct the
original function and to carry multiresolution analysis because the digital image is known at only discrete pixel
values (whose spatial resolution depends on the resolution of the camera) and the mother wavelet function also is
non-orthogonal function. Therefore it is impossible to decompose image into a set of orthonormal basis functions
and is unable to analyze its multiresolution structure.

Therefore, for actual image analysis, the discrete wavelet transform is preferred. In the discrete wavelet

C))

transform, the dilation parameter a and the translation parameter b both take only discrete values in Eq. (3). For

a scale a we choose the integer (positive and negative) powers of one fixed dilation parameter a,>1, i.e., af ,
and different values of m correspond to wavelets of different widths. It follows that the discretization of the

translation parameter b should depend on m: narrow wavelets (high frequency) are translated by small steps in
order to cover the whole field, while wider wavelets (lower frequency) are translated by large steps. Since the

width of is proportion to a(j , we choose therefore to discretize b by b= nbgag' , where by is fixed. Starting

from wavelet basis y/m’,,(x)= a(;'"/ 2q//(aa Mx —nbo) the corresponding discretely family of wavelets is simply to
take the tensor product functions generated by two one-dimensional bases:
lIJm] nymy (xl » X2 ) =Vm (xl )/’mz,nz (x2) (%)
For some very special choices of y/(x) and ay, by, the vy, , (x) constitutes an orthonormal basis. In particular,
if we choose a,=2, b,=1, then there exist y/(x), with good physics-frequency localization properties, such that
the

lIJml ny;my,ny (xl X2 ) = 2—(m1 2 )/ZV/(z_”q X1—n )V(z—mz Xy —h ) 6

constitute an orthogonal basis. In this basis the two variables x, and x, are dilated separately. The oldest example
of a function y/(x) for which the v, , (x) constitutes an orthogonal basis is the Haar function, constructed long

before the term “wavelet” was coined. In the last ten years, various orthogonal wavelet bases, e.g., Meyer basis,
Daubechies basis, Coifman basis, Battle-Lemarie basis, Baylkin basis, spline basis, and others, have been
constructed. They provide excellent localization properties in both physical and frequency spaces. It is well
known that different wavelet basis functions will preferentially move, between scales, different characteristics of
the target dataset. For example, use of the Harr basis function will emphasize discontinuities in the target dataset,
and similarly, would enhance reconstruction of a discontinuous fine grid field from a sample set. Other wavelet
basis functions, such as the Daubechies family, emphasize the smoothness of the examined data. In this study, we
employ Daubechies, Coifman and Baylkin basis to analyze the flow image, and discuss the effect of different
orthogonal wavelet basis on the multiresolution results.
Therefore, the two-dimensional discrete wavelet transform is given by

The reconstruction of the original scalar field can be achieved by using

=233 W mmym Tmmomyrs &) ®

m
The total energy of the scalar field is given by summing over all scales and components as following
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Mallat and Meyer formulated the theory of multiresolution analysis in the fall of 1986, in order to provide a
natural framework for the understanding and construction of wavelet bases. The goal of the multiresolution
analysis is to get a representation of a function that is written in a parsimonious manner as a sum of its essential
components. That is, a parsimonious representation of a function will preserve the interesting features of the
original function, but will express the function in terms of a relatively small set of coefficients. Thus overcoming
limitations of the two-dimensional continuous wavelet transform that cannot reconstruct the original function.

In mathematics, the multiresolution analysis consists of a nested set of linear function spaces »; with the

resolution of functions in increasing with j. More precisely, the closed subspaces V; satisfy

“VyecWcVycV eV - an
with

UVJ. =L2(m2) and ﬂVj ={o} (12)
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The basis functions for the subspaces /; are called scaling functions of the multiresolution analysis.
For every je Z , define the wavelet spaces W to be the orthogonal complement of in V;_; of V;. We have

and
WLW if j=j. (14)

i.e., any function in ¥;_; can be written as the sum of a unique function in ¥; and a unique function in #;. In

Lz(iﬁz), the orthogonal basis for #; is the family of wavelets ‘¥, (xl,xz) that is defined in Eq.(6).

1.n1,m2,n

Thus, Lz(‘.Rz) can be decomposed into mutually orthogonal subspaces, and can be written as

Lz(m2)=@wj (15)
jeZ
The detail regarding the wavelet transform and multiresolution analysis can be found in many references (e.g.,
Daubechies, 1992).

3. Multiresolution Image Analysis of the Turbulent Jet

Since Mallat (1998) first applies multiresolution analysis to the field of image processing, researchers have
been making widespread use of multiresolution analysis for several years. The major applications of wavelets
consist of image compression, image editing, multiresolution processing, multiscale edge detection, texture
discrimination, and others. In this paper, we focus on multiresolution analysis of turbulent structure. It is well
known that an image often includes too much information for real time vision processing. Multiresolution
algorithm process less image data by selecting the relevant details that are necessary to perform a particular
recognition task. Coarse to fine searches processes first a low-resolution image and zoom selectively into finer
scales information. The aim of this paper is to analyze image multi-scale structure of jet flow simultaneously by
decomposing the original image into W; approximation spaces.

It is well known that turbulent jets exhibit complex structure with a wide range of coexisting scales and a
variety of shapes in the dynamics. To understand the turbulent mixing process, various measures of the
isosurface geometry from image appeared from 1980’s. Recently, Catrakis and Dimotakis (1996) reported two-
dimensional, spatial measurements of the jet-fluid concentration field in liquid-phase, turbulent jets and included
scalar-field measures and isoscalar measures that were found to be functions of Reynolds number were
performed. Furthermore, they presented scale distributions and fractal dimensions measure by level sets of
concentration, and also showed the shape complexity of irregular surface based on area-volume measure of
image. In order to gain deeper insight into the multiscale structures and coherent structure, we apply
multiresolution analysis to the digital-imaging photographs of turbulent jet that were experimentally obtained by
Catrakis and Dimotakis (1996).

As described in Catrakis and Dimotakis’ paper (1996), experiments were carried out in liquid-phase turbulent-
jet flows, and images of slices, which relied on laser-induced fluorescence digital-imaging techniques, through
the three-dimensional scalar filed of round momentum-driven turbulent jets were obtained. Transverse sections
in the far field of the jet, at downstream position z/d=275 (jet-nozzle diameter d is 2.54mm), were recorded on a
cryogenically cooled 1024x1024 pixels CCD camera.
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In this paper, black-and-white images of jet slices are expressed in a numerical form as a function f (xl,xz)

over two dimensions in which the function value f (xlo ,xg ) represents the “gray scale” value of the image at the
position or pixel values (x;, yo). The “gray scale” values are then normalized to one. Multiresolution analysis is

the result of a two-step process. Images are first decomposed into wavelet components and their wavelet
spectrums are obtained. Reconstruction or inverse discrete wavelet transform is then done at each scale, and
image multiresolutions are visualized in W, approximation spaces. It is evident that a sum of all image

components in W ; approximation spaces can reconstruct the original image. In order to investigate the effect of

different orthogonal wavelet basis on the multiresolution image, Daubechies, Coifman and Baylkin bases are
used. These orthogonal wavelet bases have respectively their families that are defined by different index number
or the number of wavelet’s coefficients. As the index number, i.e., the number of wavelet’s coefficients,
increases the wavelet becomes smoother closer to a smoothly windowed harmonic function, and the wavelet’s
Fourier transform becomes increasingly compact, i.e., are compact in the frequency domain.

At first the original image of the jet-fluid concentration with Re=4.5x10° at downstream position z/d=275 is
decomposed into six W, approximation spaces based on the two-dimensional orthonormal wavelet transform

with the Daubechies basis of index N=4. Results of multiresolution images with six levels are displayed in Fig.1.
False-colors have been assigned to the scalar values of wavelet transform, and the highest concentration is
displayed as a deep red and the lowest as purple. Blue in each signifies the zero value. The sum of six image
components can reconstruct the original image. From this figure it is evident that the images from level 1 to 6
respectively show non-smoothness distribution and any information on the flow structure of the large and
medium scales are hardly obtained. At levels 7 and 8, however, edges of flow region and vortex in the shear
layer may be observed at some certain. This is because Daubechies basis with index N=4 is nowhere
differentiable, although it is continuous and compact in the physical domain. Within the range of our study, it is
appropriate to say that the orthonormal wavelet families (Daubechies, Coifman and Baylkin bases) with index
N<I10 are inappropriate for multiresolution image analysis of turbulent flow. Therefore, it is very important that
orthonormal wavelet basis must be smoothness function in the multiresolution image analysis of turbulence.

Then the same original image of the jet-fluid concentration is analyzed by the two-dimensional orthogonal
wavelet transform with the Daubechies family with index N=18 and 14. The images of multiresolution structures
of the same turbulent jet slice are shown in Fig.2 and 3, respectively. These images provide further evident of
complex multi-scale structures in turbulent jet and may easily extract important scales that dominate the flow
structure. Because the frequency character of six W, approximation spaces based on the Daubechies basis of

index N=18 differs from that of the Daubechies family with index A=14, the multiresolution image even at same
level shows the different structures. Of course, the sum of each six image components can also reconstruct the
original image. In order to gain the frequency information on six W approximation spaces for these two bases,

two-dimensional Fourier Transform is employed to analyze the multiresolution images of six levels.

The images based on the Daubechies basis with index N=18, as shown in Fig.2, display smoothness and
evident multiresolution structures, since Daubechies basis of index N=18 is more smoothness and compact
support in the frequency domain. From the image for the lowest level 1, which corresponds to the broader scale
of a=27.0~107.5mm, the interior of the flow may be identified by the blue line. A large peak that contains three
peaks can be clearly observed near the center of jet. These peaks imply that a large-scale structure consists of
three vortices. They are the uppermost and energy-containing vortices. With the broader scale of
a=14.3~27.0mm, as shown in the image of the level 2, a lot of stronger peaks mainly appear in the edge of flow
region, and correspond to the positions of vortices at this scale range. These vortices are more active in the shear
layer and dominate the turbulent mixing process, which are referred to as the coherent structure of the problem.
As decreasing scale to a=7.2~14.3mm at levels 3, peaks mainly concentrate on islands or lakes (as described in
Catrakis and Dimotakis (1996)) of the flow region edge. The distribution of peaks indicates that vortices also
undertake the turbulent mixing process within this scale range in this region. When the broader scale reaching to
a=3.6~7.2mm, as shown in the image of the level 4, edges of vortex within this scale range can be clearly
observed, especially are obvious in the shear layer. As increasing resolution to a=1.8~3.6mm, a finer
approximation of the original image can be obtained at level 5. A clear distribution of vortex edges with smaller-
scale can be observed, which is the “zoom-in” the image of the level 4. That is an important feature of
multiresolution analysis. Edges of the smallest-scale vortex in this problem can be observed everywhere in the
interior of the flow. This means that the smallest-scale vortices exist in the whole flow field. The image of level
6 describes the distribution of fine streamlines with the broader scale of a=0.8~1.8mm. From above results, it is
can say that the edges of the vortices at different resolutions or scales and the coherent structure may be easily
extracted by wavelet multiresolution analysis.
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In Fig.3, levels from 1 to 6 correspond to broader scale of a=54.0~107.5mm, 27.0~54.0mm, 14.3~27.0mm,
7.2~14.3mm, 3.6~7.2mm and 1.8~3.6mm, respectively, when using the Daubechies basis of index N=14. From
the image of the lowest level 1, the interior of the flow can be identified by the blue line, and a large peak in the
interior of the flow represents a larger scale vortex on the center of jet. At the level 2, the distribution of peaks
indicates that vortexes with broader scale a=54.0~27.0mm distribute uniformly in the interior of the flow. These
vortexes gain the energy from the large-scale vortexes and then transit it to the smaller-scale vortexes. The
images at these two levels or large broader scale differ from that of Fig.2 since they have different the frequency
character in W; approximation spaces. However, from level 3 to 6 images of flow structure are very similar to

that of Fig.2 from level 2 to 5, respectively. Since the Daubechies basis of index N=14 has lower resolution than
that of the Daubechies basis of index N=18 in the frequency domain, the image with the broader scale of
a=0.8~1.8mm can not be obtained. However, the Daubechies basis of index N=14 has higher resolution in the
region of lower frequency, and may be employ to study the large-scale structure of turbulence.

At last, Coifman family with the higher index is employed to analyze the same original image of the jet-fluid
concentration. It is found that the multiresolution images using Coifman bases of index N 218 show almost
similar flow structure at each level. This is because that these bases have the similar frequency character in six
W; approximation spaces. Figure 4 shows the multiresolution images based on Coifman basis of index N=30.

The image of each level is very similar to that of Daubechies basis of index N=18. We also find that the similar
multiresolution images also appear in Baylkin basis of index ¥=18 and Daubechies basis of index N=20. Based
on above results, it is reasonable to say that the similar multiresolution images of turbulent structures can be
obtained using the wavelet basis with the higher index number, even though wavelet basis is different function.
Therefore, it is an important condition that wavelet basis function is anywhere differentiable and more compact
in the frequency domain. In our problem, the best choice of orthogonal wavelet basis is Daubechies, Coifman
and Baylkin families with index N >18.

4. Concluding Remarks

(1) The orthonormal wavelet families (Daubechies, Coifman and Baylkin bases) with index N<I0 are
inappropriate for multiresolution image analysis of turbulent flow.

(2) The multiresolution images of turbulent structures are very similar when using the wavelet basis with the
higher index number, even though wavelet basis is different function.

(3) The condition of the best choice of orthogonal wavelet basis is anywhere differentiable and compact support
in the frequency domain

(4) The image components in orthogonal spaces with different scales can be obtained by decomposing the image
of turbulent structure using the two-dimensional orthogonal wavelet multiresolution analysis and provide
further evident of the multiscale structures in jet.

(5) The edges of the vortices at different resolutions or scales and the coherent structure can be easily extracted
from these image components.
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Fig.1 Multiresolution images of a turbulent jet based on Daubechies basis of index N=4
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Fig.2 Multiresolution images of a turbulent jet based on Daubechies basis of index N=18
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Fig.3 Multiresolution images of a turbulent jet based on Daubechies basis of index V=14
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Fig.4 Multiresolution images of a turbulent jet based on Coifman basis of index V=30
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