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ABSTRACT

Major applications of the wavelet transform have been
focused on the waveform analysis and image data compression.
One of the distinguished properties of the wavelet transform is
that the major dominant factors can be extracted from the data.
In the present paper, we apply this property to the vector data.
As aresult, we have succeeded in reducing the noisy vector data
into noise free fine data. So, we apply this property to both
ocean current data as time series and monthly-mean global wind
data. This method of wavelet transform is suitable for the
analysis of complex vector data.
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1. INTRODUCTION

Major applications of the wavelet transform are both wave
form analysis and image data compression (Saito,1996). One of
the distinguished properties of the wavelet transform is
extraction of major dominant factors from raw data. This
method is available to analyze scalar data as a noise reduction
method. In addition, the wavelet transform is suitable to
compress data for transmission of the signal removing by the
random noise. In the present paper, we try to apply this property
to vector field of the environmental fluid and confirm to reduce
the noisy vector data into noise free fine data (Matsuyama et al.,
1997a, Matsuyama et al., 1997b).

Then, we apply this method to ocean current in
oceanographical data and wind in meteorological data. The
current and wind are mainly constituted from the periodic
fluctuations and some random noise, so that these data are

suitable to the application of the wavelet transform to compress
the data by removing the noise.

2. METHOD OF VECTOR WAVELET TRANSFORM

Wavelet transform of the column vector, X, with order n of
scalar element is generally expressed as

X'=WX ., )]

where W is a n by n wavelet transform matrix, and X’ is a
wavelet spectrum. When the element of column vector X is two
dimensional vector, V(V,,V,), the wavelet transform spectrum
of V is composed by wavelet transform of each component and
is expressed as

Vi =Wv, ,

\A y= WVy , )
where V’(V’,,V’,) is defined as transform spectrum of vector,
V(V,.,V,). Hereafter we call V vector in column (VIC).

Wavelet transform of matrix, M, is

S=Wm.M'WnT, €)

where S, M, W,, and W, are the m by n wavelet, m by n original,
m by m wavelet transform and n by n wavelet transformation
matrices, respectively. When the element of matrix, M, is two
dimensional vector, the wavelet transform spectrum is
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composed by the wavelet transform of each component as well.
Hereafter we call the matrix vector in matrix (VIM).

3. WAVELET TRANSFORM OF VECTOR IN COLUMN
(VIC)

3.1 EXAMPLE OF MODEL VECTOR
First, we apply the method to a model VIC given by

(3 371,
V[ =|sinf —i jcos| —1 L= 172" sno, (4)
n n

which contains a random noise vector having the magnitude
between —1 and 1. Figure 1 shows the time series of the model
vector with order n = 128. Figures 1(a), (b) and (c) are the
vector calculated by Eq.(4), random noise vector, and model

isy vector, respectively. The vector wavelet transform is
applied to the model noisy vector shown in Fig.1(c). The
second-order Daubechies base function is employed for this
wavelet transform. The calculated wavelet spectrum vector is
shown in Fig.2 and demonstrates the nature of wavelet
transform, i.e., concentration of the large magnitude vector near
the mother wavelet. This result clarifies to be possible to
compress the vector data as well as the scalar data.

N Fig.1(b) Random noise data for model vector data.

Fig.2 Wavelet spectrum vectors calculated by the second-order
Daubechies base function.

Then we try to compress the vector data. In Fig.2, the
wavelet spectra of only top 32 near the mother wavelet are
adopted for calculation and the others are assumed to be zero,
that is, the number of the calculated data is reduced into one-
forth in comparison with that of the raw data. Figure 3 shows
the vector data obtained by applying the inverse wavelet
transform to the compressed data with the above method. In
comparison with the raw vector data shown in Fig.1(c), it is
fairly improved by the wavelet transform. In other word, the
calculated vector data (Fig.3) are similar to the vector data
shown in Fig.1(a), so the compression of the vector data by
using the wavelet transform can decrease the noise in the raw
data. Saito(1996) employed a correlation coefficient between
the recovered and raw data in order to indicate the
recoverability of data. The correlation coefficient of this method
(recovery ratio) is 0.92, and it shows a good recovery.

Fig.3 Vector data recovered from the top 32 shown in Fig.2.

The multiresolution analysis with wavelet transform
decomposes the wavelet spectra (Fig.2) to the spectra at each
level, and makes the inverse transform of each wavelet
spectrum. After removing the high frequency levels by this
analysis, the obtained vector series are shown in Fig.4. This
shows that the time series are similar to those of vector in
Fig.1(a). The recovery ratio between the results in Figs.4 and
1(a) is 0.92. Thus, this method is suitable to remove the random
noise including in the basic data.
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Fig.4 Vector data after removing high frequency level.

3.2 APPLICATION OF WAVELET TRANSFORM TO
OCEAN CURRENT

For application to VIC data, ocean current data obtained at
a station at the head of Suruga Bay, Japan, are used. The
observed data are represented at every 10 minutes interval
during the period from July 17 to 21, 1991. The number of data
for analysis is 512. The main direction of the current is along
the coastline, i.e., north-south direction. These data are suitable
as VIC data. The dominant fluctuations are usually tidal
frequencies such as diurnal and semidiurnal periods
(Matsuyama 1991). The current data contain fluctuations of
both the tidal and short periods (Fig.5). The short period
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Fig.5 Time series of tidal currents at the head of Suruga Bay.

fluctuations are mainly random variations in relation to the
oceanic turbulence which are considered as noise in this
analysis. Figure 6 shows the result of the second-order
Daubechies wavelet analysis of the current shown in Fig.5. The
high current velocity is obviously concentrated near the mother
wavelet. Figure 7 shows the time series of the current vectors by
the inverse wavelet transform, using the top 128 spectra after

moval of noise. The time series of the current vectors after the
inverse wavelet transform (Fig.7) clearly indicate to be very
similar to those of the raw data (Fig.5). These results express
that main properties of the current vector in the time series
record are kept by the inverse wavelet transform. The recovery
ratio for reproduction is calculated as 0.94, i.e., the high
correlation. Figure 8 shows the variations omitted in the data
compression process. In this figure, the first 320 minutes
variations are shown. The magnitude of the variation vectors
has small in value and their vector direction take random.
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Fig.6 Wavelet spectrum vectors calculated by the second-order
wbechies base function.
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Fig.8 Time series of the currents omitted for the compression.

By means of the multiresolution analysis of the wavelet
transform, the reproduced tidal current data for higher two level
frequencies are small magnitude and their directions distribute
at random. Therefore, these data may be regarded as the no
major parts of all data. Figure 9 shows the time series of the
tidal current removing the above high frequency parts, so that
these are similar to the raw data. The recovery ratio between the
results in Figs.7 and 9 is 0.94. Thus, the simple data
compression makes it possible to reduce the noisy vector.

Fig.9 The tidal currents after removing high frequency level.

4. WAVELET TRANSFORM OF VECTOR IN MATRIX
(vis)

4.1 EXAMPLE OF MODEL VECTOR
We consider VIM data. The element vector, V;; of m by n
rectangular model matrix is expressed as follows

37 KV 2
Vii =| sin| —1i {cos| —j
y
m n
i = 1’29...’m,j = 1’2". .7n . (5)

In addition, the noise vector is made by random number
between —1 to 1, as well. Figure 10 shows the model data,
applying m = 16*n = 32 in Eq.(5). Figures 10(a), (b) and (c)
are the vector data with no noise, random noise data, and model
vector data including random noise, respectively.
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Fig.10(a) Vector data calculated by Eq.(5).
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Fig.10(c) Vector data including the noise data.

Figure 11 shows the wavelet spectrum vector after
transformation of the model VIM data shown in Fig.10(c) using
second-order Daubechies base function. This result shows
concentration of the major vectors near the mother wavelet, so
it is possible to compress the VIM data with the same method as
the scalar matrix. We examine to compress the VIM. The 8 by
16 part matrix near the mother wavelet in the wavelet spectrum
is applied, and the other high frequency components are
assumed to be zero in this inverse transformation. As a result,
the number of data is reduced into one-forth compared with that

“the raw data. Figure 12 shows the recovered vector data by
“fie inverse transformation of compressed spectra. The
distribution of vectors significantly shows the suppression of
the noise by the wavelet analysis, and therefore well agrees with
that in Fig.10(a). The calculated recovery ratio between the

PR TN
N PN
15 T e e
AP
*“T*"" ;,5‘\.
. “/4{'»‘-%7(
10 ST
“E W
S -
AP U T
5 AT S
,\,\‘4,\4’
P A N
0
i

0 10 20 30
Fig.11 Wavelet spectrum vectors calculated by the second-order
Daubechies base function.
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Fig.12 Vector data recovered from the top 8 x 16 shown in
Fig.11.

vectors in Figs.12 and 10(a) is 0.90, so it indicates good
reproduction of the data and is successful for data compression.

The multiresolution analysis of the wavelet transform gives
the data by the inverse transform of the partial wavelet spectrum
at each level. The analytical results show that the directions of
vector at two levels in high frequency range are at random, so
these levels may be composed of the noise. Figure 13 shows the
inverse transformed vector after removal of the above two
levels in high frequency range. The distribution of the vector in
the figure is very similar to that in Fig.10(a), which is composed
by the pure signal. The recovery ratio between the vectors in
Figs.13 and 10(a) is 0.91, which is very high.

0 10 20 30
Fig.13 Vector data after removal of high frequency level.

4.2 APPLICATION OF WAVELET TRANSFORM TO THE
WIND DATA

The horizontal distribution of the wind data is available for
the application of the wavelet transform to vector fields. The
data are NCEP/NCAR reanalysis ones with 2.5°x 2.5°grid size
(longitude x latitude). Figures 14 and 15 show the monthly
mean winds at 250-hPa surface on July 1993 and July 1994,
respectively. The former was very lower temperature than the
average in summer in Japan, while the latter was very high
temperature than the average in Japan. The characteristics of the
eastward strong wind around the Japan, i.e., the Jet Stream,
located the south ( 37¢to 47+N) in 1993’s summer and the north
(42¢to 52°N ) in 1994’s summer in comparison with
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Fig.14 Monthly mean wind data on July 1993.
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Fig.15 Monthly mean wind data on July 1994.

the mean location. The number of data is 64 x 128, so the
studying region is not the whole earth , but is limited from 75<S
to 82.5¢N and O+E to 42.5*W. In order to show clearly the
difference of the Jet Stream in both years, Figures 16 and 17
show the wind distributions around Japan in detail. In July, the
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Fig.16 Monthly mean wind data around Japan on July 1993.
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Fig.17 Monthly mean wind data around Japan on July 1994.

mean speed of the Jet Stream is about 30m/s in Northern
Hemisphere, while it is 40 to 50m/s in Southern Hemisphere in
winter.

Figure 18 shows the wavelet spectra of wind calculated
under the second-order Daubechies base function. It is
recognized that the high velocity vectors gather near the mother
wavelet. Figure 19 shows the dominant wind vector field
extracted from the top 32 x 64 region in Fig.18. The global
wind field is very similar to that by the raw data shown in
Fig.16. Thus, VIM fields are reproduced by the wavelet
transform method as well. The recovery ratio is 0.99 which
means excellent reproductivity. The omitted noise vector data
by compression are shown in Fig.20, and their magnitudes are
about one-tenth smaller than those of the vector shown in
Fig.19. In addition, the direction of the vector is at random
(Fig.20). The wind vector, which is reproduced by the inverse
transformation of the higher two level frequencies, is shown in
Fig.21. The wind data are small in magnitude and at random in
direction as well. Figure 22 shows the wind vector after removal
of the noise data. Its distribution is very similar to the raw data
shown in Fig.16, and therefore, the recovery ratio is 0.99. These
are the results in July 1993, and these are the same
characteristic in July 1994 as well.
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Fig.18 Wavelet spectrum vectors are calculated by the second-

order Daubechies base function.
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Fig.19 Wind vectors recovered from the top 32 x 64 region
shown in Fig.18.
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Fig.20 Wind vectors omitted for the compression.
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Fig.21 Wind vectors of the high frequency level on July 1993.
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Fig.22 Wind vectors after removal of high frequency level on
TJuly 1993.
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5. SUMMARY

As shown above, through the wavelet transform method,
we can present the extraction of the dominant frequency or
wave number from such observational vector fields as the
velocity in ocean and atmosphere. This method compresses the
data effectively, so it is suitable to transmission of vast amounts
of vector data such as the wind and current.
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