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ASSTRACT

A new concept, that is to estimate inversely two kinds of
potential distributions from velocity distribution by means of
least norm method on restraint conditions, has been launched.
With this concept, the vector potential and the scalar potential
of spiral flow has been estimated actually from its velocity
distribution. As a result, it makes clear that the spiral flow has
the stronger vector potential near the axis. From Helmholtz’s
theorem, fluid velocity v consists of rotation component from
vector potential ¥ and divergent component from scalar
potential @ as v = rotV - grad ¢. The estimate of the
potentials from the velocity is a ill posed inverse problem. The
ill posed inverse problem almost has not been treated in the
fluid engineering because a unique solution is not acquired.
This study breaks through the drawbacks by means of least
norm method on restraint conditions. The least norm method
solutions indicate the lowest energy potential, that is the
potential of the spiral flow.

v YWORDS Spiral flow, Swirling flow, Least norm method,
Vector potential, Scalar potential

NOMENCLATURE
A Coeflicient matrix of system equation [m™]
C Coefficient matrix

between vector potentials Vand U  [-]
D, Coeflicient matrix between velocity v’

and scalar potential @ m™]
D, Coeflicient matrix between velocity v’

and vector potential V [m™]
U Vector potential matrix of U [m/s]
U Vector potential considering restraint condition [m/s]
\% Vector potential matrix of ¥ [m?s]
14 Vector potential [m%s]
X Matrix of U and ¢ [m¥s]
m Grid number in x direction [-]
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n Grid number in y direction [-]
v Velocity of spiral flow [m/s]
\ Velocity matrix of v’ [m/s]
v’ Velocity caused by vector potential [m/s]
v’ Velocity matrix of v’ [m/s]
v Velocity caused by scalar potential [m/s]
0] Scalar potential matrix of ¢ [m?s)
P Scalar potential matrix of ¢ [m%s]
@ Scalar potential [m?/s]
¢ Scalar potential considering restraint condition[m?*/s]
INTRODUCTION

Spiral flow is useful for industrial applications such as optical
cord installation [Horii et al. 1990], dispersion and
encapsulation of submicron powders [Horii et al. 1990], high
performance transportation [Takei et al. 1997] because the
spiral flow has steeper axial velocity and azimuthal velocity
with large free vortex region. The motivation behind this work
is to clarify the potentials in the spiral flow to improve the
performance of the industrial fields. The clarification of the
potential is a key point to resolve the mechanism such as
swirling motion production and swirling motion continuity for
long distance in multiphase spiral flow. '

From Helmholtz’s theorem, fluid velocity v consists of rotation
component from the vector potential ¥ and divergent
component from the scalar potential ¢ as v = rotV - grad 8.
The estimate of the potentials from the velocity is a ill posed
inverse problem. The ill posed inverse problem is treated in
material engineering [Kubo 1988]. The problem in electro
magnetics fields is treated by discrete inverse wavelet
transform([Saito 1966]. The ill posed inverse problem almost
has not been treated in the fluid engineering because a unique
solution is not acquired.

Most of the previous studies in fluid engineering focused on
solving the direct problem which is to resolve velocity
distribution from the potential distribution. With this idea, the
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direct problem to estimate the potential from N-S equation
exists[Tokunaga [991].

The originality of this work lies in the two view points. One is
to estimate the unknown potential distributions respectively by
resolving the ill posed inverse problem of the system equation.
The other is to apply the concept to the estimate of the spiral
flow.

In this paper, the new concept, that is to estimate inversely two
kinds of potential distributions from velocity distribution by
means of least norm method on restraint conditions, has been
launched as a first step to resolve the inverse problem. With
this concept, the vector potential and the scalar potential of the
spiral flow has been estimated actually from its velocity
distribution.

CHARACTERISTICS OF SPIRAL FLOW & ITS

INVERSE PROBLEM

= nozzle to produce the spiral flow is designed with an
annular slit connecting to a conical cylinder as shown in Fig. |
[Horii 1988]. Pressulized air is forced through the sides of the
device into the buffer area, and then through the annular slit into
the nozzle outlet. The suction force is generated at the back of
the nozzle by Coanda effect. The air, passing through the
conical cylinder, develops a spiral structure with a steeper axial
velocity and an azimuthal velocity distribution, even if it is not
applied tangentially.

The characteristics of the spiral flow has been reported [Horii
1991]. According to the paper, the spiral flow has a steeper
axial velocity and an azimuthal velocity with large free vortex
region as shown in Figs. 2. In Fig. 2, x axis means the radius of
pipe and y axis means the normalized azimuthal velocity. The
divergence angle of the spiral flow issued from the nozzle outlet
is reduced 45 %, from 14.3 degrees to 7.8 degrees as compared
with typical turbulence flow. The turbulent fluctuation level of
the spiral flow is decreased about 55%, from 0.20 to 0.09 as
compared with that of the typical turbulence flow. These results

arly indicates the focusing characteristic and the high

TMability of the spiral flow. The particles in the two phase spiral
flow obtain high centripetal force. Then, the particles in the
spiral flow rotate without touching pipe inner wall as shown in
Fig. 3 (a) [Takei et al. 1997]. However, particles in typical
turbulence flow collide inside the pipe as shown in Fig. 3 (b).
At this experiment, Reynolds number is 1.0X10°, the pipe
diameter is 62 mm, the specific gravity value of the particles is
3,600 kg/m’

This paper treats the inverse problem to obtain vector potential
and scalar potential from the velocity distribution as shown in
Fig. 4 as a first step. The analysis using N-S equation is
complicated because the interaction between axial and
azimuthal velocities should be considered when the spiral flow
generates the swirling motion. The inverse problem is useful
for analyzing the spiral flow because the azimuthal velocity is
treated directly.
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Fig. 1 Nozzle to produce spiral flow
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Fig. 2 Azimuthal velocity of spiral flow

(b) Particles in
typical turbulence flow
Fig. 3 Rotating ball in spiral flow

(a) Particles in spiral flow
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Fig. 4 Inverse problem & direct problem
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ANALYSIS

lysis A . & Method
The analysis region is two dimensional cross section in a
rectangle pipeline with 2 : 1 ratio between length and height as
shown in Fig. 5. The coordinate system for analysis and the
flow direction are shown in Fig. 5. The counterclockwise
rotation is plus in terms of rotational component. The 16 X8
grid is set up on the cross section. Two dimensional vector vy,
v, and v; are located at each grid as two dimensional air
velocities. Values of vector potential ¥, ~V; and scalar
potential ¢, ~ &4 are shown distributed on the corners of three
adjacent squares (Ax by Ay) of the 16X8 grid to simplify the
explanation of the analysis method.
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Fig. 5 Coordinate system for analysis

From Helmholtz’s theorem, a velocity vector v consists of a
rotational component from the vector potential V and a
divergent component from the scalar potential & as,
v =rotV - gradgp —(1)

Vector potential is also called stream function. Scalar potential
is also called velocity potential. Firstly, the relation between
the velocity vector v’ from the vector potential and the vector
potential V is obtained. The velocity vector v’ from the vector
potential is expressed by

v'=rotV = [QZ’—} —[QKZ—)J'
oy ox

Where V, is a vector potential in z direction on the cross
section, i and j are unit vectors in x and y directions,
respectively.

—2)

The Eq. (2) is rewritten by central difference and matrix
expression as
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v’ =DyV —(3)

In this equation, the number of V is larger than that of v’. A
restraint condition in terms of Eq. (3), the amount of vector
potential magnitude are zero, is set up as

5% =0
i=1

From Eq. (4), using a matrix U, the vector potential V is

expressed by
laul
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Next, the relation between the velocity vector v’ from the
scalar potential and the scalar potential ¢ is obtained. The

velocity vector v’’ from the scalar potential is expressed by
M1 1 1 s

L 0 -— -—— 0 0 |4
o ] | A A A Ax
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In this equation, the number of ¢ is larger than that of v'". A
restraint condition in terms of Eq. (6) is considered as

Z $=0 —O

i=1

From Eq. (7), using a potential matrix ¥, the scalar potential @
is
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From Egs. (3), (5), (6) and (8), the system equation between the
potential and the velocity is

U
v=D,V+D,®=[D,C+ Dsc{w} = AX ®

A is a coefficient matrix of the system equation as A = D,C +
D,C . In this analysis, Ax =Ay = 1.0 is assumed.

/o Dimensional Velocity Model of Spiral Fl

From Figs. 2 and 3, the spiral flow has azimuthal velocity with
large free vortex region. Two types of two dimensional model
of spiral flow are analyzed. One with mean velocity is assumed

as
v, = [sin[Z’ﬂ] . v_vsjn[Z’l] . vy) [m/s]

Where, v, and v, = 1.0[m/s], i/ and ; are grid numbers in x and y
directions. Eq. (10) draws the velocity distribution in Fig. 6.
The highest azimuthal velocity is 1.0 m/s and the lowest
azimuthal velocity is 0.0 m/s. Flow pattern of typical
turbulence flow in a rectangle pipe is experienced. Eddy occurs
at four corners, resulting in divergence velocity component. In
this analysis, not only rotation component but also divergence
component are considered in order to compare the analysis
result easily as a preliminary study. The grid number in x and y
directions are m=16, n=8 respectively.

The other model with random fluctuation from -0.3[m/s] to
+0.3[m/s] is set up as

< 22, o) 8] D

Eq. (11) draws the velocity distribution in Fig. 7. vf” is random
fluctuation.

—(10)
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Fig. 6 Veloc1ty distribution of spiral flow
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Fig. 7 Velocity distribution with fluctuation

The way to obtain the vector potential V and the scalar potential
® from the velocity v is to resolve the ill posed problem
because the equation number is 256 and the unknown number is
306 in Eq. (9). This paper applies the least norm method to
acquiring the approximate resolution. Least norm resolution
with regard to Eq. (9) is expressed by

x=[1ﬂ =A"(AsAT)"v

The coefficient matrix on the right term in Eq. (12) is an inverse
matrix of A in Eq. (9). The norm of X is square root of square
sum of each element as shown in
"X[[=\[U,2+U22+U32+o"¢,2+(p22+(p32+on —(13)
Each element resolution by least norm method shows the value
when the norm is the lowest. That is assumed to be a potential
of spiral flow.

Fig. 8 shows the vector potential V (a) and its velocity
distribution v’ (b). Fig. 8 (a) indicates the contour map whose
darker part is a smaller value, and whiter part is a larger value.
The maximum potential is 1.765[m%s), the minimum is —
3.075[m?%s]. Fig. 8 (b) is obtained from Eq. (3). Fig. 9 shows
the scalar potential ® (a) and its velocity v’ (b) . Fig. 9 (a)
shows the contour map whose maximum potential is
2.086[m%s], the minimum is -2.062[m%*s]. Fig. 9 (b) is
obtained from Eq. (6). Adding the velocity vectors from the
vector potential and the scalar potential is completely the same
as the model velocity in Fig. 6.

From Fig. 8 (a), the center of the potential contour is minimum
in counterclockwise rotation, that is maximum in clockwise
rotation. The potential value is decreased in proportion to
going outside. The spiral flow has the stronger vector potential
near the axis. From Fig. 8(b), it is possible to estimate the
direction and length of the velocity vector.

From Fig. 9 (b), the velocity at the four corner is the same as
the divergence direction in Fig. 6. At the upper left in Fig. 9
(b), the velocity from scalar potential indicates the opposite
direction against the model velocity in Fig. 6. Because the
model velocity decreases in proportion to x at the part, the
opposite direction of the scalar velocity is reasonable.

—12)
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(b) Velocity distribution from vector potential
Fig. 8 Vector potential and its velocity distribution
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Fig. 9 Scalar potential and its velocity distribution

The model in Fig. 7 is analyzed by Eq. (12). Fig. 10 shows the
vector potential V (a) and its velocity distribution v’ (b). The
maximum potential is 2.022[m%s] and the minimum is -
3.194[m%/s] in Fig. 10 (a).

Fig. 1l shows the scalar potential @ (a) and its velocity
distribution v*’ (b). In Fig. 11 (a), the maximum potential is
2.319[m?/s] and minimum is —2,135[m%s]. Adding the velocity
vectors from the vector potential and the scalar potential is
completely the same as the model velocity in Fig. 7. From
these figures, even though the model includes the fluctuation,
the potentials and their velocities can be extracted clearly.

To discuss the results, a mean velocity difference between the
original velocity v; and the velocity with fluctuation vf, at each
grid is defined as

— [Zz(>] E—

men 7=t i=l

Substituting v, and v/, at each grid in Figs. 8 (b) and 10 (b) for
Eq. (14), the mean difference of the vector potential velocity
can be obtained as 0.1246. On the other hand, substituting v,
and vf; at each grid in Figs. 9 (b) and 11 (b) for Eq. (14), the
mean difference of the scalar potential velocity can be obtained
as 0.1429. From these results, the vector potential velocity is
less affected by the fluctuation than the scalar potential velocity
because the fluctuation is random value that is scalar value.
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(b) Velocity distribution from vector potential
Fig. 10 Vector potential and its velocity distribution
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(b) Velocity distribution from scalar potential
Fig. |1 Scalar potential and its velocity distribution

CONCLUSIONS .

A new concept, that is to estimate inversely two kinds of
potential distributions from velocity distribution by means of
least norm method on restraint conditions, has been launched.
With this concept, the vector potential and the scalar potential
of the spiral flow has been estimated actually from its velocity
distribution. As a result, (1) It is possible to extract each
potential and its velocity. (2) It makes clear that the spiral flow
has the stronger vector potential near the axis. (3) The vector
potential is less affected by fluctuation than the scalar potential.
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