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FIELD COMPUTATIONS BY THE COMPLEMENTARY  NETWORKS 

Y. Saito, S.Hayano  and  N. Tsuya 

Abstract - The method  of  magnetic  circuits has been 
proposed  for  evaluating  the 3-D magnetodynamic  fields 
in  electromagnetic  devices [ l - 3 1 .  In this  paper, we 
elucidate  that  our  previous  magnetic  circuit  method  is 
one  of  the  complementary  network  methods. Since the 
complementary network method  is  fundamentally  based on 
the  geometrical  dual  property  associated with the 
element discretizations, it  is  found  that  this  method 
is  quite  useful  to  give a circuit  interpretation  of 
field  computations [ 4 ] .  As an  illustrative example, 
the  dynamic  fields  in a toroidal  reactor  are  computed 
by  the  complementary  network  method. 

INTRODUCTION 

In order to implement  the finite element  method in 
the  most  efficient  manner, Penman and  others have pro- 
posed  the  dual finite element  method  based on the  in- 
herent property in vector  fields [ 5 ] .  The conventional 
first order  triangular finite element  method  is one of 
the  primal  energy methods, and has been given a circuit 
interpretation  by  Carpenter [ 4 ] .  The succesful  magnetic 
field  calculations have been  previously  carried out by 
the  circuit  representation method, which  has  not been 
based on any  energy  methods but one of the finite 
difference  methods [I-31. 

I n  this paper, we elucidate  that  our  previous 
circuit  method  is one of  the  complementary  energy 
methods. . Our  complementary  energy  method  proposed in 
this  paper  is  fundamentally  based on the  geometrical 
dual  property  associated  with  the  discretizations so  
that  the  implementation  of  complementary  energy  method 
proposed  by Penman and  others has to  use  the two types 
of  potentials  but  our  complementary  energy  method 
necessitates  only  one  common  potential  for  both  primal 
and  complementary  functionals. Furthermore, our  method 
is quite useful  to give a circuit  interpretation  of 
the  field calculation schemes. 

As an illustrative example, the  dynamic fields in a 
toroidal reactor are computed  by  the  complementary 
network method. 

BASIC  EQUATIONS 

The equations  governing  the  electrodynamic  fields 
are 

VXE = - aB/at, (1) 

VxH = J ,  ( 2 )  

where E,J,B,H are respectively  the  electric  field 
intensity,  current  density,  magnetic flux density  and 
magnetic  field  intensity. The electric  field  intensity 
E is  related  to  the  current  density J as 

E = oJ, ( 3 )  

where  is  the  resistivity of material. Furthermore, 
an auxiliary  relationship  between  the  magnetic flux 
density B and  field  intensity H is  given  by 

H = (1/u)B + (l/s)(aB/at), ( 4 )  

where p, s are respectively  the  permeability  and 
hysteresis coefficient of materials [ 3 , 6 ] .  

By  means  of (1)-(3), it  is  possible  to  derive a 
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following  diffusion  equation: 

ov H = aB/at, 
2 

( 5 )  

Generally, the  leakage  fluxes  from  iron  core in a 
toroidal  reactor are so small  that  most  fluxes  in a 
toroidal  reactor  may  be  regarded  to  flow  through an 
iron  core. This means  that  the  magnetic  flux  density 
B and  field  intensity H in (5) are  composed of their 
z-compoments as shown in  Fig. l(a). Thus ( 5 )  is 
reduced  to 

for a cross section of  toroidal  reactor. 

/x 

THE COMPLEMENTARY  NETWORK  THEORY 

Local one dimensional  method 

When the  problem region is  subdiyided  into  the 
triangular finite elements shown in Fig. l(b), then 
the lines  connected  the  vertices  i,j  and  the  centers 1, 
2 of  outer circle are  always  perpendicularly  inter- 
secting  each  other. Thereby, two  indipendent  trial 

0 NODE POINT 

Fig. l(b). General subregion in a cross-section  of 
a toroidal  reactor. 
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functions are possible; one takes  the  vertices i,j as 
the  node points; and the  other  takes  the centers 1,Z of 
outer circle as the node points. In the other wokds, 
on the  local x-y coordinate system shown in Fig. l(b), 
it i s  possible to assume  that ( 5 )  is divided  into  the 
following two  parts: 

o(a2H/ay2) = (l/z)(aB/at), ( 7 )  

o(a2H/ax2) = (l/z)(aE/at). ( 8 )  

In most cases, one of  the equations ( 7 )  and (8) 
is sufficient to represent  the  magnetic fields, 
therefore, it may  be possible to assume  that whole 
field  in  Fig. l(a) consists of the  solutions  obtained 
by  the local  one  dimensional  equation (8). One of 
the  methods  based on (7) is a first  order  triangular 
finite element method whose node  points coincide 
with  the vertices of principal  triangles. 

Functional and boundness 

The nodes 1,2 are  located on the x-axis in 
Fig. l(b). This means  that  the  rate  of change 
o(aH/ax) must be continuous  from  the  regions 1 to 2 in 
Fig. l(b). Thereby, a complementary functional G(H) 
is  given by 

G(H) = -i(l/o)(aaH/ax)2dxdy + Ii(aB/at)dxdy, ( 9 )  

A 

where H denotes  the value of magnetic  field  intensity 
at node points, and  the integrations  are  carried  out 
over the hatched  regions 1,2 in Fig. l(b). 

To show that the functionnal G(H) in ( 9 )  reaches to 
a maximuol  at true solution of (8), let H denote  the 
true solution of (8), and (p is some diffferentiable 
function which takes non-zero value in the  regions 1,2 
in  Fig. l(b) but vanishes at  all  prescribed baundaries, 
then  the approximate functional G(H+c(p) is.written by 

G(H+cp@) = G(H) - El[Zo(aH/ax)(acp/ax) + q(aB/at)ldxdy 

- E Jo(acp/ax) dxdy, 
2 2 (10) 

where E is a numerical parameter. Extremization of  (10) 
yields 

6G = lim[<G(H+q) - G(H)>/E] 
E+o 

= -Jtzo(aH/ax)(acp/ax) + cp(aB/at)ldxdy 

= -jZocp(aH/ax)dy + lq[2a(a H/ax ) - aB/atldxdy 
= 0. (11) 

2 2  

By means of  (ll), it is revealed  that an exteremi- 
zation of (10) enforces the  second  term on the  right 
of (10) to be  zero  and  reaches to the ture solution of 
( 8 )  - The third  term on the  right  of  (10)  is  always 
negative value so that  the  approximate functional G(H+ 
ET) is always smaller than  the  true functional G(H), 
that  is 

G(H+q) 5 G(H). (12) 

In the other words,  a maximw will  be  reached  when 
E has zero value. 

Node  equations 
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The complementary functional G ( H )  in (9) has been 
derived by preconditioning a following relation: 

ol(aH/ax) 1 = o,taH/ax) 1 ,  (13) 
REGION 1 REGION 2 

where 0 ,u are  respectively  the resistivities of the 
regions '1 2and 2 in Fig. l(b). According to ( 2 )  and 
( 3 ) ,  ( 5 3 )  means  that  the  electric  field intensities in 
a  y-direction at the boundary  must  be common to both 
regions 1 and 2 in Fig. l(b). Furthermore, it is 
obvious  that  the first and  second  terms on the right 
of ( 9 ) .  are corresponding to  the dissipative and input 
powers, respectively. 

In order to derive  the  trial  functions which satisfy 
the condition (13), let Ho denote  the  magnetic  field 
intensity at the origin of  local coordinate system 
shown in  Fig. l(b), then  the  trial functions H and Hb 
for  tha tegions 1 and 2 are  respectively  assumed to 

Ha = Ho + (HO - H1)(X/b), (14) 

Ha = Ho + (H2 - Ho) (X/C), (1.5) 

where H and H are  respectively the field intensities 
of  the node points 1 and 2 ;  and the  lengths b,c are 1 2 

shown in Fig. l(b). Substitution (14) and  (1 
(13) yields 

By means of  (17), (14)  and  (15) are respectively 
reduced to 

By introducing (18)  and (19) into (9), a functioual 
G(H ,Hb)  becomes to 

where B ,B are  respectively  the  flux  densities i.n the 
regions $ and 2;also  the  length a is shown in Fig.l(b). 2 

Maximizing ( 2 0 )  gives  the  following node equations: 

aG(Ha,Hb)/aH1 = (H2-Hl)/[(b/ao,)+(c/ao2)1 

- (ab/2)(aBl/at) = 0 ,  ( 2 1 )  

aG(Ha,Hb)/aH, = (H1-H2)/[(b/aol)+(c/ao2)~ 

- (ac/z)(aE,/at) = 0,  ( 2 2 )  

( 2 1 )  and ( 2 2 )  are  respectively corresponding t o  the 
nodes 1 and 2 in Fig. l(b). The node equations of the 
other regions  can be obtained  in  much  the same way as 

can be Obtained as 
(21) 9 Hence,  a equation  for  the node 1 in Fig. l ( b )  
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4 

where the angles $lk, Skl and  area S are  shown in 
Fig, l(b). 1 

- Complementary networks 

'To derive  a  network model, let Az denote  the  length 
of iron  core  in a  z-direction of Fig. I(a) , then ( 2 3 )  
is  modified  to 

4 
I: [(ik~il)/<(l/Rlk)+(l/Rk~)>l-(a~l/~t) = 0, (24) 
k= 2. 

where the  currents ik, flux G1 and electric  resistances 
Rlk, Rkl are 

ik = azHk, k=1,2, . f  ,4 

= SIBI, ( 2 5 )  

Blk = 2~ltan81k/Az, R =20 tan8 /Ai! ,k=2,3,4 kl k kl 

By  means  of ( 2 4 ) ,  it is possible  to  depict  a 
network  model of Fig. l ( b )  as shown in Fig. l(c). I n  
order  to derive a network model  of whole regions shown 
in Fig. l(a), it  is required  to  introduce an auxiliary 
relationship for an exciting  coil region, and  this  is 
given by 

m 
xeie + n t a / a t )  z@,< = v ,  (26) 

k=l 

where R ,n,i  ,v are  the  electric  resistance of coil, 
number bf  t&ns of coil, exciting current, impressed 
voltage; Gk (k=1,2, .. ,m) are  the fluxes; and m is 
the total  number of node points,  respectively. Further- 
more, according to (2) and ( 4 ) ,  the  exciting  current i 
and  eddy  currents ik (k=1,2, .. ,m) are  related  witg 
the  magnetic  circuits  as 

nie + ik = I f k  Gk + N,(a/at)@,, (27) 

k = 1,2, . .  , m 

where Azk,Sk,uk,sk are  respectively  the  length in a 

1 - ?ig. l ( c ) .  Equivalent networks of general  subregions. 

z-direction,  area, permeability,hysteresis  coefficient 
o f  the  subregion k; and 

By  combining (24)-(28), it is possible t o  obtain  the 
following  system  of  equations: 

where a  superscript T refers  to  the  transposed matrix. 
The current  vector I in (29),(30) consists  of  an 

exciting  current i in (26) and eddy  currents ik (k=l, 
2 ,  . . , n) , and i: a column vector  of  order  mtl. The 
voltage  vector V in  (29)  consists of a  source  voltage  v 
and the  other  elements have zero values, and is a 
colomn vector of order  mil. The flux  vector C, in (29), 
(30) consists of the  fluxes Gk (k=1,2, .. , m), and  is 
a column vector o f  order m. The resistance  matrix R 
consists  of the eLectrica1  resistance R in (26)  and 
electric  resistances of eddy  current path:  e.g. R in 
(24), and is  a  square  matrix of order m+l. The wi?iiing 
matrix W consists of the  number of turns n in (26) and 
unit  turn f o r  eddy  current paths, and is  a  rectangular 
matrix  with m+l rows and m columns. The magnetic 
resistance  matrix M in (30) consists of the  magnetic 
resistances Mk (k=1,2, .. , m) in ( 2 8 ) ,  and is a 
diagonal  matrlx of order m. Finally, the  hysteresis 
parameter  matrix N consists  of  the  hysteresis 
parameters N (k=1,2, .. ~ m) in (28),and is a  diagonal 
matrix of  or'6er m. 

Thus, a  consideration of  (29)  and ( 3 0 )  gives an 
equivalent  circuit of  the toroidal  reactor  as  shown in 
Fig. l ( d ) .  

Time discretization 

By means  of (29)  and ( 3 0 ) ,  it is  possible  to  write 
a  system  of  equations  as 

WTR-lV = Ma + (WTR-'W + N)(d/dt)q, (31) 

where a  superscript -1 referes  to  the  inversed  matrix. 
(31) is-  discretized in time t in the  following 

way : 

where At is  a  stepwidth in time; and the  subscripts t, 
t+nt, t+(At/z) refer to  the  time t, t+At, t+(At/2), 
respectively. It must be noted  that  the  elements in 
magnetic  resistance  matrix M and hysteresis  parameter 

~~ ~~ - 

Re e- ie 
Fig. l ( d ) .  Equivalent networks of whole cross-section 

of a  toroidal  reactor. 



2283 

2oo T 
- EXPCRI.ENTED 
- - - - -  COMPUTED 

matrix N are  generally  nonlinear  functions  of  flux  and 
time derivative of flux, so  these nonlinearities are 
taken into  account in  (32). 

Results 

Various constants used  in  the calculations are 
listed  in Table 1, and the  magnetization curves for 
the permeability u and hysteresis  coefficient s are 
shown in [ 31. 

For comparisons, (32)  was  iteratively  solved in  two 
typical cases. One is  with  solid core, and the 
other is with  laminated  core. As a result, it has 
been  found  that  the  eddy currents strongly  dominate  the 
dynamic  fields  in a solid core, but the nonlinear 
magnetization characteristics of material dominate the 
dynamic fields in a laminated  core.  Fig. 2(a) shows 
an example of  transient  fluxes in a solid core, also 
Fig. 2(b) shows  the  local fluxes in a solid core. Fig. 
2(c) shows an example of the  dynamic magnetizations in 
a laminated  core. 

CONCLUSIONS 

As shown above, we have proposed a new method which 
is  based on the complementary functional and geomerical 
dual  property  associated  with  the  discretizations. The 
complementary network method  makes  the  source  term,e.g. 
%B/at in (16), in  each  of the  elements  be  independent 
to the  other elements, and this  gives an equivalent 
circuit which  is  well  corresponding to the  physical 
picture of fields.  Our  method  has been.exploited 
f o r  designing  the devices utlizing a new magnetic 
material [ 7 ] .  

Finally, the authors  greately  appreciate to  Mr.  M. 
Matsueda for  his  programing and experimental  works. 
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g. 2(a). Transient of total flux together with th 
experimented  values  in a solid core, wher 
a start  angle is  33.0  degree. 
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g .  2 ( b ) .  Transient of  local fluxes in a solid  core 
where a start  angle is 33.0 degree. 
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COMPUTED  EXPERTMENTED 
g. 2(c). Transient magnetization characteristics in 

laminated core, where a start  angle  is -5.6' 
degree. 

Table 1. Various  constants used in the calculations. 
Number of node points ( 7 2  right- 
angled  isoscels  triangles) m = 36 

Number of turns of coil n = 900 

Outer radius of core 0.05 [n] 
Inner radius of core 0.04 
Cross-sectional area of core 0.0001 $1 

Resistance of coil- Solid  core R = 6.52[Q] - Laminated  core R: = 6.23[Q] 

Resistivity of core- Solid  core 0 = 20.6 [~Qcm] 
- Laminated  core 0 = m [am1 

Source voltage (sinusoidal  wave) v = 30 [VI 
Frequency f = 50  [Hz] 

Stepwidth At = 0.2 [nsec] 


