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Abstract. This paper proposes a method of data set representation by potential field equations. The principal idea of the
representation is to regard a numerical data set as a kind of potential/source fields, leading to the governing equations. The
modal analysis of the equations derives the orthonormal linear transform matrix. It is described that the matrix corresponds to
that of discretewavelets performing an efficientwavelet multi-resolution analysis.

1. Introduction

The spread of high performance and reasonably priced computers has yielded a large scale Internet
community as well as information resources. Data handling technologies based on the digital computers
are of main importance to realize more efficient networking and computing. Discrete wavelet transform
(WT) becomes a deterministic methodology to handle the digital signals and images, e.g., compressing
data quantity, extracting their characteristics, etc. [1]. Moreover, their applications to electromagnetic
field calculation, solving for forward and inverse problems, have been investigated and spurred to faster
calculation algorithm [2,3]. The conventional WT, however, sometimes suffers from limitation on subject
data length which must be to the power of 2. Thereby, the applications depend on employed wavelet
basis, and need an enormous memory installation for implementation. The aim of this study is to propose
a new concept of representation to handle a numerical data set in most efficient mannar. As a result, the
wavelet-like linear transform matrices are derived from the modal analysis of potential field equations.
This paper proposes the modal-wavelet transform (MWT) as one of the WTs. The bases of MWT are
derived from a modal analysis of the field of equations. Regarding a numerical data set as a potential
field leads to a partial-differential-equation-based data modeling, i.e., the data set can be represented
by Poisson’s equations. Then, the modal analysis of the discretized Poisson’s equation gives a modal
matrix constituting characteristic vectors. The modal matrix enables us orthogonal transformation in the
same way as WT. MWT uses this matrix as a wavelet basis. Because of the differential equation based
modeling, MWT yields an optimal basis to the subject data length. We demonstrate two types of MWT
based on differential equation and Green-function. One dimentional Fourier analysis to each of column
vectors in the transformation matrix shows that MWT has the similar nature to Fourier transform not
having complex numbers.
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Fig. 1. Source density representation of a 2D image and image recovery from the image source density (128×128 pixels). (a)
Original image. (b) An example of source density. (c) Recovered image by Poisson equation. (d) Recovered image by Green
function.

2. Data representation by field calculus

2.1. Data governing equations

We consider a discrete data modeling based on the classical field theory. Namely, a numerical data
set is assumed to be the potential or source fields. According to the field theory a scalar fieldu caused
by source densityσ could be obtained by a solution of Poisson equation or a fundamental solution with
green functions:

ε∇2u = −σ or u =
1
ε

∫
g(r)σdr, (1)

whereε is the medium parameter of the field. Moreover,g(r) andr denote a Green function and the
distance from the source to reference points, respectively. Practical data setU is represented by following
system of equations:

LU = f or Gf = U, (2)

wheref andU denote the vectors corresponding to the source densityσ and the scalar fieldu; L and
G denote the coefficient matrices derived from the Laplacian operator and a Green function in Eq. (1),
respectively. Our data representation employs the governing equations of potential fields like above.
Since the calculus gives solutions as the functions, then it is possible to arbitrarily change the resolution
of data sets, i.e., number of the data, from the solution of Eq. (2).

As an example, let each pixel value in Fig. 1(a) be a scalar potential assuming the medium parameter
ε to be a constant on the entire field, then applyingL or G−1 to Fig. 1(a) yields the source density
distribution like Fig. 1(b). Solving Eq. (2) with the source density as vectorf reproduces the image as in
Figs 1 (c) and (d).

Concretely, Figs 1(a) and (c) are identical in values. (About detail of the image generation, please see
reference [4].) Therefore, our discrete data modeling based on field equation is capable of representing
numerical data sets.

2.2. Modal-wavelet transforms

As is well known, the matricesL andG in Eq. (2) derived by available discretizing methods, e.g., finite
elements, etc., become the symmetrical as well as positive definite matrices. In case when the vectorU
hasq elements, it is possible to obtain the characteristic valuesλ i, i = 1, 2, · · ·, q, of the matricesL andG
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Fig. 2. Modal-wavelet matrices (64× 64). (a) Dirichlet type boundary condition. (b) Neumann type boundary condition. (c)
Green function type.

and their respective characteristic vectorsvi, i = 1, 2, · · ·, q. The matrix composed of the characteristic
vectorsvi, i = 1, 2, · · ·, q as its columns is called the modal matrix:

Mq =
(

v1 v2 · · · vq

)
. (3)

Because of the orthogonality, the following relationship holds

MT
q Mq = Iq, (4)

where the superscriptT refers to a matrix transpose andIq is aq by q identity matrix. The modal matrix
derived from the coefficient matrixL orG has the same nature as those of the conventional WT matrices.
Moreover, a linear combination of the characteristic vectors is possible to represent the value distribution
in a data set. Thus, MWT employs this modal matrix as WT matrices.

2.3. Modal-wavelet transform matrix and basis

The MWT matrices can be derived various methods of discretizations. The MWT matrices introduced
in the present paper are classified into two types. One is differential equation type assumed the subject
data to be a potential field. The other is integral expression type assumed the subject data to be the field
source distribution.

At first, let us consider MWT derived from differential equation. The simplest system matrixL can
be obtained by one-dimensional Laplacian operation with equi-meshed three points finite difference
approximation. Namely, the matrixL in Eq. (2) is given by

∇2u =
∂2u

∂x2
� Ux−1 − 2Ux + Ux+1, x = 1, 2, · · ·, q. (5)

Then, applying the Jacobi method yields a modal matrixMq in Eq. (3). Therefore, the dimension of
matrixMq depends on number of subdivision of Eq. (5). This means it is possible to generate an optimal
basis to the subject data. In the Laplace partial differential equation, two types of boundary conditions
should be considered, i.e., the Dirichlet- and Neumann- type boundary conditions. Figures 2(a) and (b)
illustrate the typical differential equation type MWT matrices. As shown in Figs 3 and 4, the bases having
the Dirichlet- and Neumann- type boundary conditions become odd- and even- functions, respectively.
The bases of MWT look like sinusoidal functions, however, the bases are composed of the multiple
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Fig. 3. Elements of row vectors in the matrix shown in Fig. 2(a) and their Fourier amplitude spectrum. (a) The first row vector.
(b) The second row vector.

(a) (b)

Fig. 4. Elements of row vectors in the matrix shown in Fig. 2(b) and their Fourier amplitude spectrum. (a) The first row vector.
(b) The second row vector.

Fig. 5. Elements of row vectors in the matrix shown in Fig. 2(c) and their Fourier amplitude spectrum. (a) The first row vector.
(b) The second row vector.

frequency components. Moreover, the elements constituting the transform matrices never become the
complex numbers like in the Fourier transform.

Second, let us consider MWT derived from integral expression. We consider a three- dimensional
Green functiong(r) in Eq. (1). However, the three-dimensional Green function takes infinity wheng(0)
due to integral kernel. In order to remove this difficulty the matrixG in Eq. (2) is given by assuming the
minimum distanceri,i = 1, since the equi-grid image matrix is considered. Thus, we have

g(r) �



1/ri,j i �= j
if

1 i = j
, i = 1, 2, · · ·, q, j = 1, 2, · · ·, q. (6)

where the subscriptsi andj refer to the source and reference points, respectively. Thereby,r i,j represents
the distance between them. Since the system matrix derived from Eq. (6) becomes symmetrical, then



H. Endo et al. / Data representation by field calculus 157

the Jacobi method can be applied to obtain its modal matrix in much the same way as the MWT based
on differential equation. Figures 2(c) and 5 show the MWT matrix and its bases. They have the similar
patterns to that of the MWT matrix derived under the Dirichlet boundary condition.

3. Conclusions

We have proposed MWT derived from the data representation by equations for potential field. As
shown above, MWT gives the transformation matrix having arbitrary dimension, so that it is possible
to provide an efficient wavelet analysis from a viewpoint of memory consumption. Our approach has
versatile capability not only to information resource handling but also smart computing.
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