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Estimation of Iron Loss Distribution by Image
Helmholtz Equation Method
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Abstract—This paper proposes the image Helmholtz equation
method to visualize iron loss distribution of magnetic materials.
The Helmholtz-type equations carry out dynamic image analysis
of a series of distinct magnetized domain images. The domain
images derive the state transition matrices of which imaginary
parts correspond to the phase lag components of magnetization.
In the present paper, iron loss distribution of a grain-oriented
electrical steel is studied by utilizing its scanning electron micro-
scope (SEM) images. The result of analysis visualizes iron loss
generating parts reflecting on the magnetic domains. Moreover,
the solution of image Helmholtz equation demonstrates computing
magnetization curves, which well agree to experimental result.

Index Terms—Grain-oriented electrical steel, image Helmholtz
equation method, iron loss, magnetization curve computation,
SEM.

I. INTRODUCTION

A lot of magnetic domain observation methodologies are
available to clarify the physics of magnetic material

behavior [1]. The understanding of magnetic domain behaviors
such as domain structure and boundary displacement leads to
the evaluation of magnetic materials. Since the magnetized
states can be visualized as the contrast of images, then in-
vestigation on microscopy-based measurement such as Kerr
effect has been spurred [2]–[4]. Therefore, experts could only
accomplish iron loss evaluation based on elaborate analyses.
The target of the present paper is to develop a simple means
to visualize and to quantify the local iron loss as well as the
domain motion dynamics.

We propose a novel dynamic image analysis methodology,
i.e., image Helmholtz equation method, to visualize iron loss
distribution from a series of distinct magnetized domain images.
The image Helmholtz equation is a Helmholtz type of partial
differential equations and performs an effective methodology to
process the digital dynamic images [5]. Its state transition ma-
trix equivalently represents the characteristic values of physical
dynamic system visualized by finite number of images as an an-
imation. In this magnetic domain image analysis, assuming the
averaged contrast of domain image as an entire flux density
leads that the characteristics of domain motion deduces from the
state transition matrix.
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In the present paper, a series of scanning electron microscope
(SEM) domain images of a grain-oriented electrical steel is
studied to take into account the domain structure in depth
of the specimen. The imaginary parts of the state transition
matrix visualize iron loss generating parts. The solutions of
image Helmholtz equation reproduce the magnetization curves
in any magnetized state. As a result, comparison between
computed and experimented magnetization curves verifies our
methodology.

II. IMAGE HELMHOLTZ EQUATION FOR DOMAIN ANALYSIS

A. SEM Domain Images

Fig. 1 shows the SEM domain images of a grain-oriented
electrical steel under the distinct magnetized states [6]. The
specimen is the ORIENTCORE HI-B (Nippon Steel Corpo-
ration product) without surface coating and its thickness is
0.23 mm. The backscattered electron observation (Type-II) is
carried out at 160-kV acceleration voltage. At this condition,
the domain patterns about 10 m depth from the surface of
specimen could be visualized as shown in Fig. 1 [7]. The
external field is applied to rolling direction with sloping
excitation. The conditions of domain image measurement used
in this paper are listed in Table I.

B. Image Helmholtz Equation

To analyze the domain images, we propose a Helmholtz-type
equation. The principal idea is that a pixel constituting the dig-
ital image is regarded as a scalar potential. Namely, suppose that
a domain image as Fig. 1 consists of a two-dimensional (2-D)
scalar field , and then the dynamics of domains can be repre-
sented by the image Helmholtz equation [5].

In magnetized state, since the domain motion is caused by
applied external field , then the image Helmholtz equation
takes into account a derivative term of the applied external field

(1)

where and , respectively, denote a domain motion parameter
and an image source density given by the Laplacian of final
image in (2) [8].

(2)

Therefore, the first and second terms on the left-hand side (LHS)
in (1) express the spatial expanse and transition of image to the
variable , respectively.
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Magnetic domain images of a grain-oriented electrical steel observed
by high-voltage SEM (100� 100 pixels, 0.1 mm/pixel). (a)–(f) are the domain
images numbered as 1, 2, 3, 4, 10, and 19 in Table I, respectively. y direction is
the rolling direction and applied external field axis.

In (1), the parameter is unknown. Calculation of the param-
eter is the key to visualize the characteristic of domain motion
dynamics as well as iron loss generating parts.

C. General Solution

Discretization of (1) using pixel arrangement as nodal points
derives the system of equations. The modal analysis of (1) gives
a general solution [5]

(3)

where and are an initial image and a diagonal state
transition matrix, respectively. Because of the parameter in
(1), the state transition matrix is unknown as well. This means
that we have to determine the state transition matrix from the
given domain images shown in Fig. 1.

D. State Transition Matrix

If we have the solution , then modifying (3) yields the
elements in the matrix

(4)

Since the matrix is a diagonal matrix, then (4) is carried out at
each corresponding pixel value of three distinct domain images.

TABLE I
CONDITIONS OF OBSERVED SEM DOMAIN IMAGES H : EXTERNAL MAGNETIC

FIELD INTENSITY, B: FLUX DENSITY

Thereby, the elements in the th matrix are determined from
a set of three sequential domain images

(5)

The subscript refers to a domain image numbered in Table I.
The domain images and correspond to and

in (4), respectively. Finally, substituting (5) into (3)
gives the solution with piecewise linear approximation.

E. Principle of Iron Loss Visualization

As is well known, the state transition matrix of state variable
equations represents the physical parameters and/or constants of
the dynamic systems. Similarly, the state transition matrices
derived from a series of domain images by means of (5) is pos-
sible to extract the parameters representing domain dynamics
of magnetization region from to . Due to a logarithmic
function in (5), we have to discuss various cases of the element
in the matrices . Let us consider (6), which is the value under
the logarithmic function in (5)

(6)

1) Case 1:
The logarithmic function takes a positive real number

or zero. Such an element in the matrices just represents
attenuation or no change term even though (1) is held.

2) Case 2:
The logarithmic function takes a negative real number.

Such an element in the matrices represents divergence
term.

3) Case 3:
The logarithmic function becomes indeterminate. This

means that the pixel values and are identical
not holding (1), i.e., the pixel value takes a constant during
the state transition.

4) Case 4:
The logarithmic function takes a complex number com-

posing of the negative real and positive imaginary parts.
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This imaginary part means the phase lag to the variable
. Thus, iron loss can be visualized in this case.

5) Case 5:
The logarithmic function takes a complex number com-

posing of the positive real and imaginary parts or a pure
positive imaginary part. This complex number means the
phase lag to the variable . Thereby, iron loss can be vi-
sualized the same as Case 4.

III. RESULTS AND DISCUSSIONS

A. Iron Loss Visualization

Fig. 2 shows the elements in the matrices . The arrange-
ment of the elements is the same as the domain pattern in Fig. 1.
The elements become complex numbers due to the logarithmic
function in (5) as described in Section II-E. The real and imag-
inary parts, respectively, represent in-phase and 90 difference
phase components to the applied field. Namely, visualization of
iron loss generating parts can be accomplished by the imaginary
part of the matrices .

At first, let us consider the real parts of the matrices in
Fig. 2. In the weak field, the moving parts of the negatively mag-
netized parts (black parts in Fig. 1) relatively take larger in value.
This magnetization process is mainly carried out by the mag-
netic boundary displacements [LHS of Fig. 2(a)] and magnetic
domain movements [LHS of Fig. 2(b)]. Increasing the field, the
magnetization process by domain movement is finished. The el-
ements in the matrices correspond to the rotation of magne-
tization [LHS of Fig. 2(c)–(e)]. In highly magnetized state, the
elements shown in the LHS of Fig. 2(f) takes relatively small in
value due to saturation.

Second, consider the imaginary parts of the matrices in
Fig. 2. In the weak field, the real part of this region corresponds
to the magnetic boundary displacement. However, in case of
imaginary part, the elements in the right side of Fig. 2(a) are
close to zero. This means that the magnetic boundaries move
without delay components. In the right sides of Fig. 2(b) and
(c), the values represent at the grain boundary. This is consid-
ered to be the friction among the grain boundaries. Increasing
the field results in the closure domains. In this region, these el-
ements are then related to iron loss [right sides of Fig. 2(d) and
(e)]. Moreover, in highly magnetized state as in Fig. 2(f), mag-
netization proceeds at the closure domains although the satura-
tion. The iron loss in this region can be visualized at these kinds
of domain parts.

B. Major Magnetization Curve

Substituting the matrices of (5) into (3) yields domain im-
ages as the solution . Computing the averaged contrast
of an entire domain image gives a flux density. Fig. 3 shows the
computed magnetization curve. Even though the domain images
represent a limited area of the specimen, the experimental mag-
netization curve is close to the computed result.

C. Local Magnetization Curves

Focusing on the particular points on the domain images, it is
possible to generate the local magnetization curves as shown in

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 2. Elements of the state transition matrices derived from (5). The left
and right columns are real and imaginary parts, respectively. The elements are
normalized by each maximum value. (a) � : H : 0:0 ! 2:85 A/m, B :

0:0 ! 0:10 T. (b) � : H : 2:85 ! 9:26 A/m, B : 0:10 ! 1:63 T; (c)
� : H : 24:16! 30:23 A/m, B : 1:73 ! 1:78 T; (d) � : H : 54:59!

84:92 A/m, B : 1:84 ! 1:86 T; (e) � : H : 84:92 ! 115:39 A/m, B :

1:86! 1:88 T; (f) � : H : 160:69! 236:32A/m, B : 1:90! 1:92 T.
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Fig. 3. Magnetization curves reconstruction by means of (3).

Fig. 4. Local magnetization curves. Plotted points are shown in Fig. 5.

Fig. 4. Fig. 5 shows the selected parts for drawing local magne-
tization curves. The local magnetization curve in this method-
ology is based on that of entire specimen. Our methodology
makes it possible to estimate the magnetization processes re-
flecting on the physical condition of the specimen.

Fig. 5. Selected parts to calculate the local magnetization curves in Fig. 4.

IV. CONCLUSION

This paper has proposed a method of iron loss visualization
from a series of distinct domain images. The evaluated state
transition matrices derived from the image Helmholtz equation
enable us to visualize magnetization processes on the domain
images. Since the imaginary part of the state transition matrix
corresponds the 90 phase different components to the applied
field, and then iron loss generating parts have been visualized
in particular. As a result of comparison with conventional mea-
surement, we have succeeded in reproducing the magnetization
curve with fairly good accuracy.
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