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ABSTRACT

Two dimensional stripe structure in turbulent boundary layer
has been clearly visualized by a combination of a shear stress
sensor using MEMS (Micro-Electro-Mechanical-Systems) and
discrete wavelets transform. The MEMS shear stress micro
chip is designed and fabricated by surface micro-machining
technology, contributing to obtaining the time-space two
dimensional shear stress data. The discrete wavelets transform
is a software technique to decompose the frequency level with
the time and space information of the wave form. The
experiments for the shear stress distribution were carried out on
Re = 6960, 12180 and 17400. This technique for a single phase
“aw is applicable to multiphase flow analysis.
INTRODUCTION

Our research group has been studying a spiral multiphase flow
which is a swirling flow with a large free vortex region, a high
concentration to the axis and high stability [Horii 1990]. From
the characteristics, the spiral flow is useful for a high
performance pneumatic transportation without particles
touching pipe inner wall due to the stable eddy structure [Takei
1997]. Accordingly, it is necessary to analyze near-wall shear
stress of the solid-air two phase flow to improve the system
because the particle stability in solid-air pipeline is affected by
eddy structure due to shear stress which occurs near the wall.
The presence of near-wall shear stress streaks in turbulent
boundary layer has been observed for many years in flow
visualization and experimental investigation [Cantwell 1891,

Kim H. T 1971, Falco 1980, Head 1981, Smith 1983]. At high
Reynolds numbers, these streaks are typically very small in size
and cannot be properly resolved by traditional measuring
techniques. Numerical simulations indicate that the streaks are
associated with streamwise vortices in the viscous sub-layer.
The rotational motion of these vortices imposes high
fluctuating surface shear stress on the wall [Kim, J. 1987].
There have been many measurement techniques for measuring
shear stress. The hot-film technique and its variants have been
widely used for the detailed investigations of fluctuating wall
shear stress [Alfredsson 1988, Bruun 1995]. The direction
sensitive laser Doppler anemometer is a candidate, which
enables to evaluate both magnitude and direction of the wall
shear stress, An optical method proposed by Naquwi is
supposed to be capable of measuring the wall shear stress with
high spatial resolution [Naquwi and Reynolds 1991]. No
matter the instrument, the requirements of fine spatial
resolution, fast frequency response, high sensitivity and
convenience need to be satisfied for turbulent boundary layer
research.

Recently, the availability of a new manufacturing process,
micro-electro-mechanical-systems (MEMS) technology, has
offered the possibility of sensing and controlling the small near-
wall streaks [Ho 1997]. A multidisciplinary research
collaboration between UCLA and Caltech has undergone to
design and fabricate a large-scale distributed control system
with integrated micromachined transducers and microelectronic
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circuits for surface shear stress control in turbulent boundary
layers [Tung 1995, Ho 1996].
However, the distribution of stripe structure with MEMS is the
integral value that is composed of various kinds of frequency
ingredients. It leads to make the stripe structure ambiguous.
Therefore, new techniques such as statistics analysis and
frequency analysis to the image data is necessary for analyzing
the structure in details. The stripe structure obtained with the
micro imaging chip is clearly visualized with the statistics
method [Kimura 1997]. In terms of the frequency analysis,
Fourier transform is a popular method; however, the transform
removes the time and space information of the stripe structure.
Currently, wavelets transform has been started using for time-
space frequency analysis instead of Fourier transform in
mechanical engineering fields. The merits of the wavelets
analysis is to be able to analyze the frequency not to erase the
time-space information. Wavelets transform [Moret 1989] is
roughly classified with two types, which are continuous
wavelets transform and discrete wavelets transform. The
‘ntinuous wavelets transform has been generally used for time
~mwequency analysis in vibration wave. For example, self-
similarity of a jet inner structure [Everson 1990], breakdown of
a large eddy and successive branching in a plane jet [Li 1995],
decomposition of Reynolds stress in a jet [Gordeyev 1995], and
multiple acoustic modes and shear layer instability [Walker
1995] were investigated. However, most of the researchers on
the time-frequency analysis carried out the continuous wavelets
transform. On the other hand, the discrete wavelets transform
has been mainly used for picture image processing. The
analysis enables to decompose and to compose picture image
data quantitatively because of the orthonormal transform. Saito
applied this idea to analyzing electromagnetic wave[Saito
1996].
The originality of this paper lies in applying discrete wavelets
transform to visualizing the wall shear stress obtained with
micro shear stress imaging chip. In this study, the stripe
structure of shear stress in a turbulence boundary layer are
extracted on various frequency levels with discrete wavelets
nsform.

—_—

THEORY OF DISCRETE WAVELETS TRANSFORM
Basic Concept Using Simple Base Function
Basic concept of discrete wavelets transform is described using
matrix expression instead of integral expression.  One
dimensional input data matrix with four elements X and an
analyzing wavelets matrix of Haar base function W are used to
simplify the expression. For example, the input data matrix X is
one dimensional shear stress data. The wavelets transform
matrix S that indicates wavelets spectrum is expressed by

S, 1 1 1 1

Dl (1¥[1 1 -1 -1 —

d | (ﬁ) V2 -2 0 0
d, 0 V2 -2

a

[ o

or S=W-X —Q2)
Where, WT+W=I, I is a unit matrix and W” is a transpose
matrix of W. The analyzing wavelets matrix is an orthonormal.
In Eq. (1), the first element in the wavelets spectrum S, shows a
transform to obtain a mean value with a weight on the all input
data, a+b+c+d. The second element in the wavelets spectrum
D, shows a transform to obtain a difference value between the
fast half and the latter half with a weight on the input data,
{(a+b)-(ctd)}. It means that this element includes the lower
frequency level of the input data. The third element d; shows a
transform to obtain a difference value on the first half of the
input data, (a-b). The fourth element d, is a transform to obtain
a difference value on the latter half, (c-d). The third and forth
elements include the higher frequency level of the input data.
Therefore, the input data is able to classified to a range from
higher frequency level to lower frequency level. Because of the
orthonormal function, the inverse discrete wavelets transform is
expressed by,

X=W'-S —(3)
Moreover, from Eq.(3), the input data X is decomposed by
multiresolution. The matrix expression is

a 11 V2 o s S, 0 0] —(4)
bl (1 ST -¥2 o D w0 - Dy 7 0

. _(EJ | -1 0 ﬁ 4 =W 0 +W 0 +W 4

d 1 -1 0 —-y2]4, 0 0 d,
or X =W'S=WT'S,+wT's, + WTs, —(5)

Where, So=[5,000)” §;=[0D,00]" S,=[004d,d]".
W'S, , WTS, and WS, are called Level 0, Level 1 and Level 2,
respectively.

Generalization of Discrete Wavelets Transform

Many orthonormal wavelets analyzing functions are found
[Molet 1989]. The basic concept of the discrete wavelets
transform is generalized by using fourth Daubechies function.
The analyzing wavelets matrix is also an orthonormal function.
The analyzing wavelets matrix W is acquired by a cascade
algorithm on the basis of a function matrix C. The matrix C is
shown in Eq.(6),

G ¢ 6 ¢ 0 0 -0 0 0 0, =1+~B
0
6 ¢ ¢ ¢ 0 0 -0 0 0 0 42 —(6)
00 ¢ ¢ ¢ ¢-0 0 00 3+43
_ =
0 0 ¢ ¢, ¢ -¢-0 0 0 0 42
C= .o . . Lo _3—\5
00 0 000 ¢ ¢ & 6|2 4p
0 000 - ¢ -6 -5 1-43
g ¢ 0 0 0 0 0 0 ¢ ¢ |67 P
q ¢ 0 0 0 0 -0 0 ¢ -q
C_;-C2+C[-Co=0—‘_(7) 0C3'1C2+2Cl—300=0 _(8)

Where, CT+C=I. The first line in Eq.(6) is called scaling
coefficients and second line is called wavelets coefficients.
Forth Daubechies function has four coefficients in a line. The
first line shows a transform to obtain a mean value with weights
of ¢y, ¢;, c;and c; on the input data. The second line shows a
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transform to obtain a difference value with weights of ¢, ¢, ¢;
and c; on the input data. The third line shows a transform to
translate the first line by two steps. The fourth line is a
transform to do the second line by two steps. Eqs.(7) and (8)
show the transformed values are zero when the input data are
constant or are simply increased. To explain easily the process
to acquire the analyzing wavelets matrix W from C, the matrix
X is assumed to be one dimensional 16 elements,
X =[xy X3 X3 X4 X5 X5 X7 Xg X9 X1g X 11 X12 X3 X14 %15 x16]T
From Egs. (6) and (9), the transformed matrix X’ is
X' =CX=|[s;d;s,d;s5d35,d,55dsssdss7drszdz T —(10)
Where, Cy6 is 16X16 matrix of C. The element s indicates the
mean value and the element d indicates the difference value.
The elements in the matrix X’ are replaced by a matrix Py .
PiX’' =P CrX=[5,5,535,5555575sd, dyds d; ds ds d; ds ]T‘_(“)

—0)

Where, Py is defined as
10000000000 0O0O0GO0COO
00100000000000O00O
0000100000600 000O00
00000601 0000060G00O0OO
000000001 0000O0GOTOO

~ 00000000001 00000
0000000000001 00GQ

p_[0000000000000010

701 0000006 O0OO0O00O0O00
000100000000 O0O0O0OD
0006001000000000GC
00000001 00000O0OO0TO
06000000001 0000GD0T0D
000000000O0COTI1 000G
000000DO0O0CDOO0O0O0O0T1O00D —(12)
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Moreover, from Eq.(11), the transform is continuously carried
out by C and P without any operations to the difference values,
WOX =(S,S,8;S,D,D; D;D,d, dy dy dy ds ds dy dg)’ ~——(13)
S=W®X=[S,S,D,D, D, D, D; D, d; dy ds dy ds ds d; dg]" —(14)
Where,
W = (Py5’C’16)(P16Cis) —(15)
W = (P Ci6”)(P1g” C16”X(P16Cio) —(16)
B0 ¢ 0] TP, 0] ., [C, 0 —(17)
Py =|:0 Isjicls 2':0 IB]PIG ={0 Inj'Cm ={ 0 Ilzj'
WO is a analyzing wavelets matrix that is W in Eq.(2). The
_~avelets spectrum S in Eq.(2) is W®X in Eq. (14). In Eq.(13),
S; indicates the mean value from s; to s, in Eq.(11). S; indicates
the mean value from s; to s4 that translate by two steps. D,
indicates the difference value from s, to s,. In Eq.(14), S,
indicates the mean value from S; to S, in Eq.(13). D; indicates
the difference value from S, to S, in Eq.(13). From Eq.(14), the
input data are transformed to the mean values and the difference
values with valuable resolution levels by the discrete wavelets
transform. The input data are divided into a range from high
frequency to low frequency.
From Eq.(14), the inverse wavelets transform is,
X = [(W's
W T=[(P15” C16”)(P16’Ci16")(P16Ci6)]"
=Cys"P16"(C16”) '(P1") (C16”) (B16™)” —(19)
From Eq.(18), the multiresolution is,

—(18)

X = [WTS = (WS, + (WS, + [W)"s,+ (WS,
—(20)
Where,
So=1[S;5,00000000000000)"
$;=[00D;D,000000000000]"
$,=[0000D,D,D;D,00000000]"
$;=[00000000d,d,d; d,ds ds d» dg}’ ——(21)
In the case of sixteen input data and fourth Daubechies,
multiresolution indicates from Level 0 to Level 3.
The two dimensional wavelets spectrum S is obtained from
S=W, X‘W,," —(22)
Where, W,," is a transpose matrix of W,. From Eq.(22), the
discrete inverse wavelets transform is expressed by
X=w,T-s-W, —(23)
In general, in the case that input data is 2” and Daubechies
function is kth, the algorithm to obtain the frequency levels is
shown in Fig.1. The final wavelets spectrum is obtained after
the wavelets transform in Eq.(14) continues until the number of
final summation elements is less than £.
In this study, 16th Daubechies function is used instead of the
fourth Daubechies function that is explained the above as
analyzing wavelets. Scaling coefficients of the first line in
Eq.(6) are shown in Fig.2. The fundamental properties are
similar to fourth Daubechies function. In the case that 16th
Daubechies function and the space data number 32 (all space
9.6mm; pseudo-space are included) and the time data number
512 (all measurement time 51.2ms), the wavelets level of the
multiresolution is decomposed from level O to level 6 in the
time, and from level 0 to level 3 in the space.
The absolute values by Fourier transform to the analyzing
wavelets of this case are shown in Fig.3 and Fig.4. The each
level operates a kind of band pass filter.

Input elements number 2"

v

Summation elements . -
t IS Difference elements number 2™

number 2™/ ]

F * = Levelm

Difference elements number 2™
= Level m-/

v

Summation elements
number 22

n-m <
Summation elements Difference clements
number 2™ number 2™"
= Level 0 = Level I

Fig. 1 Algorithm of discrete wavelets transform
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EXPERIMENTS
Micro Shear Stress Imaging Chip
A micro shear-stress imaging chip, which is composed of
multiple thermal type sensors [Jiang et al. 1996], is shown in
Fig.5. The imaging chip has three rows of micro sensors, which
ontain an array of 25 sensors. Fig. 6 shows a top and a cross
“sections of the micro shear stress sensor. Each micro sensor
consists of a 150 pm long, 3 um wide and 0.45 pm thick
polysilicon resistor wire, and a 1.2 um thick and 200 x 200 um?
silicon nitride diaphragm that seals off a 2 um deep vacuum
cavity underneath. The purposes of the cavity are to reduce
heat transfer from the resistor wire to the substrate and to
increase the sensitivity of the sensor [Huang et al. 1996]. The
sensors are connected to external constant temperature mode
circuits which are used in a hot-wire anemometer, to drive at a
1.1 overheat ratio, through gold bonding wires. Output from
the anemometer circuits is digitized by a 64-channel Keithly
Metrabyte ADC board in a Pentium based PC. The sensitivity
of the shear stress sensor is about 1.0 V/Pa with a frequency
response of 25 kHz at a 10 gain.

views of the micro shear stress sensor

Experimental Setup

This experiment was carried out in a turbulent channel flow
facility. The channel, constructed of 13 mm Plexiglas, is 610
mm X 25.4 mm in a cross-section and 4880 mm long. An axial
blower controlled by a DC power generates the air flow in the
channel. Previous hot-wire measurement indicates that the
channel flow, at a centerline velocity of 10 m/s, consists of a
laminar entrance flow and a fully developed turbulent flow at
the downstream half channel. The micro shear stress imaging
chip was flush mounted into the wall at 4267 mm from the
channel inlet where a fully developed turbulent channel flow
exists. One array consisting of 25 micro shear-stress sensors
that covers a 7.5 mm distance measures the instantaneous
spanwise distribution of the turbulent surface shear stress. The
Re number (=hu./v, where h is half width of the channel, u, is
centerline velocity) ranged from 6,960 to 17,400.

Shear-Stress Distribution

Statistics values of a wall shear stress measured by this imaging
chip are confirmed [Kimura 1999] to be similar to the data
obtained by the previous experiments [Obi 1995] [Alfredson
1998], and those by the numerical computation [Kim 1987].
Fig.7 shows the contour of 2-D shear stress distributions
measured by the imaging chip. The horizontal axis covers a 7.5
mm wide area (data number 25), and the vertical axis dose
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512.2 ms area in time (data number 512) in three different Re
numbers. Each shear stress is normalized by

o TTa —(24)
T,

max

using the maximum value t 5, and minimum value 7 ., in
each Reynolds number as shown in these figures (a), (b) and
(c). In other words, the shear stress values are normalized with
the minimum value 0.0 and the maximum value 1.0 in each Re
number. The areas with high shear stress are marked by light-
gray while dark-gray represents low shear stress with 11 contour
colors. Fig.7(d) indicates the original data before the
normalization in vertical direction at the point where maximum
T max appears. From Fig.7(d), the transverse scale of the
longitudinal high shear-stress streaks varies with Re numbers.
The streaks are narrower and packed more densely as Re
number increases. They also appear at the shorter time interval
as Re number increase. The shear stress fluctuation near wall
increases rapidly, resulting in a steep peak in a turbulence
boundary layer, because a velocity gradient is rapidly increases
‘¢ to the influence of eddy guided by bursting events. From
~r1ig.7(a) to (c), an area of a white part (a relatively large value)
in Re=17400 is smaller and an area of a black part (a
comparatively small value) is larger than the lower Re number.
The peak of shear stress is smoothed in Re number because the
areas are normalized with the maximum and minimum values.

= Tonin

Flow direction

Time[ X 0. 1ms]

[ . J N
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Fig.7 Shear stress measured with the imaging chip

ANALYSIS AND DISCUSSION

Analysis Method

The multiresolution analysis is carried out to the wavelets
spectrum by the inverse wavelets transform in Eq.(23), after the
wavelets transform in Eq.(22) is operated to 25x512 shear stress

distribution data in Fig.7. Zero is put into the matrix position
from 26 to 32 in x coordinate in Fig.7 intentionally because the
data number of discrete wavelets transform is subject to nth
power of two. In the case of sixteenth Daubechies function and
512 (=2°) input data, the multiresolution classifies to seven
levels as shown in

X =[Wo O]T-S:[Wp, ] = [W, O] S [We O]

HWa OFT =81+ [Wy O] +[W, O+ 8, [Wi O]

H[Wa O1T -85 [Wo O1HW, O]+ 8,4+ [Wn )]

+ [Wo LTS5 [Wy, O] +{W, OS¢ [WW O] —(25).
W® indicates the five times operation to obtain Daubechies
matrix from a matrix C in Eq.(6). The values from 1 to 25 in x
coordinate are extracted afier the calculation.

Analysis Results
Figs.8, 9 and 10 (see the final page) show the multiresolution

with 11 contours in the low Re number, the middle Re number
and the high Re number, respectively. The low shear stress is
shown with black, the high shear stress is shown with white
from -0.2 to 0.4. The minus values are produced because they
are normalized beforehand with the minimum value 0.0. Level
6 is not shown because the noise is dominant. The patterns
adding all levels from Level 0 to Level 6 recover completely the
original shear stress distributions in Fig.7, because Daubechies
analyzing wavelets are orthonormal functions. The relation
between the representative frequency, which is calculated with
the maximum P.S.D. in Figs.3 and 4, and each wavelets level is
shown in Table 1. From these figures, the original input data
are decomposed from a low frequency component Level 0 to a
high frequency component Level 5. The stripe structures due to
a series of bursting events in the low speed shear stress area are
visualized clearly on each frequency level without erasing the
time and space information. In particular, the light and shade
appear more clearly on Levels 0 and 1 in low Re number than
high Re number. The shear stress distribution appears until
Level 3; however, the wave pattern shades on Levels 4 and S.

Table 1 Relation between wavelets level
and representative frequency

Time frequency Space frequency
Representative frequency on 2.0 1.04
Level 0 X 10" [Hz] X107 [mm ]
Representative frequency on 1.4 7.00
Level 1 X 10°[Hz] X107 ']
Representative frequency on 2.3
Level 2 X 10*[Hz]
Representative frequency on 4.5
Level 3 X 10°[Hz]
Representative frequency on 8.8 1.2
Level 4 X 10?[Hz] X 10°[mm ']
Representative frequency on L7
Level 5 X 10°[Hz]
Representative frequency on 4.7
Level 6 X 10°[Hz]
Maximum frequency on Level 6 4.7 1.6
Jax X 10°[Hz] X 10°[mm™']
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Discussion By Kolmogorov Turbulence Theory

The relation between wavelets level and wavenumber is
discussed by applying Kolmogorov turbulence theory
[Champman 1979] to the time axis on discrete wavelets
multiresolved resolution. Kolmogorov wavenumber &, that
indicates the highest viscous dispersion rate is expressed by

- (%)5 —26).

Where, v is a kinematic viscosity, ¢ is an energy transportation
rate, that is,

€=Aﬁ v, =02v —(7).
0
Where, v, is a representative velocity fluctuation that is
assumed to be 0.2 times of the mean velocity v, and J, is a
length scale in the energy contain region that is assumed to be a
radius of the pipeline (=D/2). In this study, the constant 4 is
assumed to be 1.0. The representative wavenumber on wavelets

level m is obtained by
A
— vo
Where, fz is a representative frequency which is the maximum
power spectrum density in Fig.4. The relation between the
wavelets level and the representative wavenumber is shown in
Table 2. From this table, Level 0 indicates a wavenumber under
the energy contain region, and Level 6 indicates the vicinity of
Kolmogorov wavenumber k;,. The wavelets level covers from
the energy contain region to the viscous dispersion region.
In next, all shear stress on each wavelets level are defined by
512 25 —
D W A
j=li=l
to consider the relation between the stress and Re number. iisa
position on the time axis, j is a position on the space axis.
Fig.11 shows the results. The horizontal axis is the
representative wavenumber in Table 1 normalized with
Kolmogorov wavenumber &;.
In this figure, the shear stress gets small in the energy contain
region equivalent to Level 0 as Re number increases. From
'ig.7(d), the slope of shear stress is steep at high Re number in
~the energy contain region; therefore, the value becomes small
when it is normalized. On the other hand, the shear stress gets
large in the viscous dispersion region equivalent to Levels 4 and
5 as Re number increases. That is because the eddy dispersion
is less influenced by the viscosity in high Re number. This
visualization technique is realized to be proper from the above-
mentioned qualitative consideration.

——(28).

Table 2 Relation between wavelets level
and representative wavenumber

v=8m/s v=14m/s v=20m/s

Re=6960 Re=12180 Re=17400

Representative 7.7 4.4 3.1
wavenumber on Level 0 X107 [em™] X 10" [em™] X107 [em™]

Wavenumber in energy 8.0 8.0 8.0
contain region &, X 107" [em!] X 10" {em™] X107 [em™]

Representative 5.4 3.1 2.1
wavenumber on Level 1 X 10"[cm™] X 10°[cm™!] X 10%[cm™]

Representative 9.2 5.3 3.7
wavenumber on Level 2 X10'[em™] X 10°[cm] X 10°[cm™]

Representative 1.8 1.0 7.1
wavenumber on Level 3 X 10'[cm'] X 10 [em™] X10'[em™']

Representative 3.4 2.0 1.4
wavenumber on Level 4 X10'[cm™'] X 10'[cm™] X 10'[cm']

Representative 6.7 3.9 2.7
wavenumber on Level 5 X 10'{em™] X 10'[em ] X 10 em )

Representative 1.9 1.0 0.7
wavenumber on Level 6 X 10°*[em™] X10%[cm™] X 10°[cm™]

Maximum wavenumber on 1.96 L 12 0.79
Level 6 Ky X 10*[em™] X10*[em] X 10*[om']

Kolmogorov wavenumber 3.49 2.67 1.76
ke X 10°[em] X10*[cm] X 10*[cm']

10000
ﬁo
1000 ﬁoﬁo
oo
100 |- “‘—Oﬁo*"*i

ORe=6960 |

10 ——ARe=12180} - — ——
JRe=17400

1

0.001 0.01 0.1 1

Whole normalized shear stress log

Normalized wavenumber k,/k; log

Fig.11 Relation between whole normalized shear stress
and wavenumber on the time-space

CONCLUSIONS

A micro machine shear-stress imaging chip was used to measure

the instantaneous shear-stress distribution in a turbulent wall

boundary layer in conditions from Re number 6,980 to 17,400.

The two dimensional shear stress distributions are visualized

with discrete wavelets transform. As a result, the following

becomes clear.

1) Structures of wall shear stress are able to be
decomposed and be clearly visualized on each frequency
level without erasing time-space information.

2) The whole shear stress on Levels 0 and 1 relevant to
near energy contain region in high Re number is smaller than
that in low Re number. The slope of shear stress is steep at
high Re number in the energy contain region; therefore, the
value becomes small when it is normalized.

3) The whole shear stress on Levels 4 and 5 relevant to
near viscous dispersion region in high Re number is higher
than that in low Re number. It is reasonable because the
structure is less influenced by the viscosity in high number.
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