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Abstract

To evaluate unsteady eddy structures of a plane turbulent jet in the dimension of time and scale, velocity
signals were analyzed using continuous and discrete wavelet transforms in this paper. By analyzing the distribution
of coefficients of continuous wavelet transform, localized nearly periodic eddy motions with a=64, 100 and
180 ms were observed in the shear layer of x/d=8.5 in the time ranges of r=0-220, 280-600 and 680-1000 ms,
respectively. From multiresolution analysis or discrete wavelet transform, the peak that appears in the component
of fluctuating velocity represented the passing of eddy through the shear layer and concentration of the energy
of the flow at one instant. The intermittent eddy phenomenon or zero components of fluctuating velocity can

be observed at higher levels or smaller scales.

1. Introduction

The large-scale eddy motion in a plane turbulent jet
exhibits a symmetric, periodic and apparent flapping
motion in the similar region, and the evolution and
interaction of large-scale organized structures play an
important role in spreading turbulent jet and momentum
transfer. Until now, conventional statistical methods
such as space-time correlation functions, spectra,
coherent functions, conditional sampling methods and
visualization techniques, were well-established usual
techniques for gaining information regarding the nature
of turbulent structures or eddy motion. However, turbu-
lence or eddy motion is characterized by unsteady and
localized structures of multiple spatial scales. Some
important spatial information is lost owing to the
non-local nature of the Fourier analysis. The visualiza-
tion of organized motion in shear layers also showed
that conditional sampling measurement had been hiding
very important features of turbulence.

Within the last decade, there has been growing inter-
est in the wavelet analysis of turbulent signal, which
can combine time-space and frequency-space analyses
to produce a potentially more revealing picture of
time-frequency localization of turbulent structures. The
wavelet transform can either be continuous or discrete,
and yields elegant decompositions of turbulent flows.
The continuous wavelet transform offers a continuous
and redundant unfolding in terms of time and scale and
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can thus track coherent structures.!~® Besides these
application studies, several new tools and diagnostics
based on the wavelet transform, such as wavelet
correlation function,!’ wavelet Reynolds stress func-
tion,® wavelet triple velocity correlation,> and local
wavelet Reynolds stress function® have been developed.
They offer the potential to extract new information from
various flow fields. The coefficients of continuous wavelet
transform can extract the characterization of local
regularity continuously, but it is not possible to
reconstruct the original function because the mother
wavelet function is a non-orthogonal function. In signal
processing, it is important to reconstruct the original
signal from the wavelet composition and to study
multiresolution signals in the range of various scales.

The discrete wavelet transform allows an orthogonal
projection on a minimal number of independent modes
and is an inevitable, and in fact, orthogonal inverse
transform. Such analysis is known as multiresolution
representation and might be used to compute or model
turbulent flow dynamics. Li et al.”-® applied two-
dimensional orthogonal wavelets to turbulent images,
and extracted multiresolution turbulent structures and
a coherent structure. Li et al.? also employed the
orthogonal vector wavelet transform technique to
analyze multi-scale vortical structures in the turbulent
near-wake of a circular cylinder. However, few in-
vestigations concern the application of discrete wave-
let transform to turbulent signals.
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To evaluate the vortical structures in the dimension
of time and scale in a turbulent jet, continuous and
discrete wavelet transforms were applied to the velocity
signals of a plane turbulent jet in this paper.

2. Continuous Wavelet Transform

For any signal, f(t)e L*(#) 1<p <o (LX(A) denotes
the Hilbert space of measure) the continuous wavelet
transform can be defined as:

Wf(b,a)=1f’ f(t)l/7<t;b>di, (D

a

where W/(b, a) is called the wavelet coefficient, a is the
wavelet scale or dilation. and & is the analyzing position.
¥ (1) is a function of L-(#) called an analyzing wavelet
or mother wavelet (here ~ stands for complex conjugate).

It is well-known that several functions, such as Haar,
Paul, French hat, m-th derivatives of the Gaussian,
Mexican hat, Morlet and Gabor functions, are commonly
used as analyzing wavelets. The choice of the appropriate
wavelet function is of the flexibility and depends on the
kind of information that we want to extract from the
signal. In this paper, we employ the Morlet wavelet, a
complex-valued function. to analyze our problems. It is
defined as:

Y(H)=e e 2 and  Ylw) :V'Sﬁe"“"”’”)” .
e

Itis obvious that the Morlet wavelet is localized around
=0, and {(w) is localized around the central frequency
w.=m,. In practical applications of signal processing, it
has been found that a particularly useful value for the
central frequency o, is the one for which wavelet scale
a presents the period or frequency. Li'’ defined the central
frequency as w,=w,=2n. Hence. (1:a)y((t—b)/a) is
localized around position b and central frequency
2nja; ie., wavelet scale ¢ becomes a period parameter.
Therefore, the wavelet coefficient of Eq. (1) can describe
a signal as localized strength of the signal over a
time-period plane.

3. Discrete Wavelet Transform

In this section, we introduce the definition of discrete
wavelet transform from the view of a matrix.

The discrete wavelet transform is a transformation of
information from a fine scale to a coarser scale by
extracting information that describes the fine scale
variability (the detail coefficients or wavelet coefficients)
and the coarser scale smoothness (the smooth coefficients
or mother-function coefficients) according to:

{Sj}:[H]{Sj+1} and {Dj}:[G]{SjJrl} .
..(3)
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where § represents mother-function coefficients, D
represents wavelet coefficients, j is the wavelet level, and
H and G are the convolution matrices based on the
wavelet basis function. High values of j signify finer scales
of information. The complete wavelet transform is a
process that recursively applied Eq. (3) from the finest
to the coarsest wavelet level (scale). This describes a
scale-by-scale extraction of the variability information
at each scale. The mother-function coefficients generated
at each scale are used for extraction in the next coarser
scale.

The inverse discrete wavelet transform is similarly
implemented via a recursive recombination of the smooth
and detailed information from the coarsest to finest
wavelet level (scale):

{(Siv i} =[HIYS;} +[GI"{D;} , L4

where HT and G7 indicate the transpose of H and G
matrices, respectively.

Matrices H and G are created from the coefficients of
basis functions, and represent the convolution of basis
functions with the data.

Many different orthonormal wavelet basis functions,
such as Harr basis, Daubechies basis, Meyer basis, Spline
basis and Coiflets basis, were often used in the discrete
wavelet transform. Different wavelet basis functions will
preferentially move, between scales, different characteris-
tics of the target data sets. For example, use of the Harr
basis function may emphasize discontinuity in the target
data sets, and the Daubechies family may emphasize the
smoothness of the analyzed data. In this paper, we use
the Daubechies member with order 20 as the wavelet
basis function, which has either smoothness in physical
space or most localization in frequency space. For
illustration, the simplest (and most localized) Daubechies
member with order 4, having only four coefficients, c,,
¢y, ¢; and ¢y, 1s given by the following matrix:

Co €1 € €3
Cy —Cy ¢ —Cg
Co €1 € (3

¢y —C, € —C

3
Co €y € €3
‘ €3 —C¢; 0 —C
RS Co &y
Lo 0 3 —Cy

.5

where blank entries signify zero. The action of the matrix,
overall, is thus to perform two related convolutions, then
to decimate each of them by half and interleave the
remaining halves. It is useful to think of the coefficients
Co. €1, €3 and c¢3 as a smoothing filter called matrix H,
something like a moving average of four points. Then,
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because of the minus signs, coefficient, ¢;, —¢,, ¢; and
—¢g, call it matrix G, are not a smoothing filter.

4. Experimental Apparatus

A definition sketch of the plane jet is shown in Fig.
1, where x is the streamwise coordinate, and y is the
lateral coordinate. The jet is generated by a blower-type
wind tunnel having flow-straightening elements, screens,
and settling length, and a 24:1 contraction leading to a
350 x 25 mm nozzle (the nozzle width d is 25 mm). For
all measurements, the jet is operated at a constant
Reynolds number Re =3330 (exit velocity is 2m/s) based
upon nozzle width 4. The velocity of x-component of
the jet is measured simultaneously using a standard
hot-wire anemometer located in the (x,y)-plane. The
recording frequency is 2kHz. The measurements
presented in this paper were taken on the centerline and
in the shear layer.

5. Results and Discussion

5.1. Visualization of eddy motion Figure 2 shows
images of the plane turbulent jet in our experiment, which
were obtained by a high-speed video camera. The vortex
street structures are clearly observed, and the large-scale
eddy motions are unsteady and localized structures. The
scale of the eddy is always changing with respect to time
at any position.

5.2. Identification of unsteady eddy motion utilizing the
continuous wavelet transform In general, structure
features were inferred from the statistics analysis of

y
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Fig. 1. Sketch of the experimental configuration.
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measurements, and the analysis of unsteady structures
was made from visual observations. Yule!® presented
experimental evidence to show that when an eddy current
moves close to the centerline, the local fluctuating velocity
appears as unusually large positive and negative peaks.
However, from these peaks of velocity signals, local or
unsteady information at different scales (i.e., the localized
eddy structure of multiple scale) is unable to be
determined. To identify the local characteristics of flow
structure in a plane jet, we analyze the fluctuating
velocity, which was measured on the centerline at
x/d=8.5, by continuous wavelet transform. Figure 3
shows the decomposition of the fluctuating velocity in
both period and time spaces with the help of the Morlet
wavelet. The unsteady flow structure is represented using
the real part W1 (¢, a) and phase 6 Wf(z, a) of the wavelet
coefficient (abscissa : time #, ordinate : period «a, black &
white for magnitudes of wavelet coefficients), and the
velocity fluctuation is also plotted at the bottom of the
figures. Figure 3 displays that every positive or negative
peak in the large-period region consists of positive and
negative peaks in the smaller period region. and gives us
amap of the successive branching structure. For example.
a peak at a=190ms around r=470ms consists of
negative and positive peaks at ¢ =100ms. This means a
large eddy contains two smaller eddies at this time ¢. In
Fig. 3, it is also evident that the strong periodic peaks
appear around a=64, 100 and 180ms in the ranges of
1=0-220, 280-600 and 680—1000 ms, respectively. These
peaks imply the passing of eddy through the shear layer.
The periods of peaks (i.e. scales of eddy) increase with
time. This indicates that although the local scale of
motion always changes, localized nearly periodic eddy
motions exist in unsteady turbulent jet. Making a
comparison between Wf(t, a) and fluctuating velocity,
we found that the successive negative and positive peaks
in fluctuating velocity from ¢=110-140ms correspond
to successive negative and positive peaks of H7Y(t. a)
around a=64ms. This implies the passing of nearly
periodic eddy with ¢=64 ms through the shear layer at
this time interval. The same phenomenon may also be
observed in the ranges of /=280-600ms and ¢=680-
1000 ms. From the distribution of H7(r. «) it can be
observed that two stronger positive peaks with a=100

(a) t=0ms
Fig. 2.

(b) 1=24ms

Flow images of a plane jet.
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Fig. 3. Continuous wavelet transform of fluctuating velocity on the centerline at x/d=8.5.

and 180ms appear in the neighborhood of r=850ms.
These two peaks correspond to two peaks within a small
peak at t=850ms and a larger peak within the range of
t=_800-900 ms, respectively. This structure in Wf(t, a)
indicates that two eddies with a =100 ms and 180 ms pass
through the shear layer at this instant, and a larger-scale
eddy contains a smaller-scale eddy.

It is well-known that § W/ (¢, a) expresses the phase of
wavelet coefficient or the phase of a signal at various
periods, and is emploved to search the irregular part of
signals. From the definition of O Wf(t. a). the discontin-
uous constant phase lines correspond to the zero lines
of Wf(t,a) . It is found that the region of the positive
or negative peak in Wf(t, a) is equivalent to the range
of zero W[ (¢, a). Tt is obvious that 8Wf(t, a) exhibits
the regular pattern for scale a>140ms. This indicates
the periodic large-scale eddy motions, which can also be
observed from the distribution of alternative peaks in
Wf(t, a) around a=180ms.

From the above analysis, we can say that an important
purpose for using continuous wavelet transform is to
extract peak distributions from the wavelet coefficient
because they correspond to the maximum or minimum
strength of velocity fluctuation at various periods and
represent the eddy motions with various scales.

5.3. Analysis of unsteady eddy motion utilizing the
discrete wavelet transform Differing from the contin-
uous wavelet transform, the inverse discrete wavelet

transform can be easily carried out due to the existence
of the orthonormal wavelet basis functions. In this paper,
we first compute the wavelet coefficients of fluctuating
velocity using Eq. (3) with the help of the Daubechies
wavelet of order 20. Then the inverse discrete wavelet
transform 1s applied to wavelet coefficients at each
wavelet level, and components of fluctuating velocity are
obtained at each level or scale. This procedure is called
multiresolution analysis or orthogonal decomposition
of the signal. The components of fluctuating velocity on
the centerline at x/d=8.5 ranged from wavelet level 1 to
7. which correspond to the scale range a =200-1ms, and
are shown in Fig. 4. This figure represents the time
behavior of the fluctuating velocity within different scale
bands. and gives their contribution to the total energy.
It 1s apparent that large peaks distribute in the range of
level 1 to 3, which correspond to scale a=200-65ms
approximately. These peaks imply the passing of dom-
inant eddies through the shear layer. This scale range
is dynamically quite important and concentrates much
of the energy of the flow. The apparent peaks appear at
every level around ¢r=0.5s, which corresponds to the
large peaks in the original fluctuating velocity. This
indicates that a large-scale eddy containing eddies of
various scale is passing the shear layer of this position
at these two instances, because the time interval of a
large positive peak at level 1 contains several positive
and negative peaks at other levels or smaller scales. This
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Fig. 4. Multiresolution decomposition of fluctuat-

ing velocity on the centerline at x/d=8.5 based
on discrete wavelet transform.

flow structure contains the large energy at this moment,
and the flow image may be inferred as Fig. 2(b). At a
higher level (level 6 and 7) or smaller scale, the zero
fluctuating velocity appears in some time range, for
example =0.4-0.48 s, which is similar to the intermittent
phenomenon. This indicates that the flow structures don’t
exist in the passing eddy at this scale band and time
interval, and only have mean or convective velocity. This
phenomenon may be called the intermittent eddy.
Figure 5 plots the components of fluctuating velocity
with wavelet levels 1--7 in the shear layer of x/d=5 and
y/d=0.4, which also correspond to the scale range
a=200-1ms. It can be observed that the largest positive
peak appears at level 2 around time ¢=2.2s, which
corresponds to the large positive peaks in the original
fluctuating velocity, and the peaks at other levels are
smaller. This phenomenon indicates that this level or
scale band concentrates much of the energy of the
turbulent flow at this instant. Although a large positive
peak appears at level 1 in the range of 1=0.85-1s, large
peaks can also be observed at other levels. This means
that the energy of the turbulent flow distributes among
various scales and smaller eddies exist in a large eddy.

Fig. 5. Multiresolution decomposition of fluctuat-
ing velocity in the shear layer of x/d=35 and
v/d=0.4 based on discrete wavelet transform.

6. Summary

In this paper, the vortical structures of a plane
turbulent jet were evaluated in the dimensions of time
and scale using continuous and discrete wavelet
transforms. The following results can be summarized.

(1) The distribution of coefficients of continuous
wavelet transform indicates that localized nearly periodic
eddy motions with «=64. 100 and 180 ms appear in the
shear layer of v d=28.5 in the time ranges of =0-220,
280-600 and 680-1000 ms, respectively.

(2) From multiresolution analysis, the peak of
fluctuating velocity component represents the passing
of eddies through the shear layer and concentration of
the energy of the flow at one instant.

(3) At a higher level or smaller scale, the zero
components of fluctuating velocity appear in some time
ranges, which are called intermittent eddy phenomenon.

(4) A large peak appears at some level and com-
ponents of fluctuating velocity at other levels are smaller
at some time. This phenomenon indicates that this level
or scale band concentrates much of the energy of the
turbulent flow at this instant.
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