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Abstract

This paper develops an application of two-dimensional orthogonal wavelets to turbulence for the identification
of multiresolution turbulent structures and coherent structures. The digital imaging slice photographs of a
turbulent jet in a far field with Re=4.5 x 10° and 9.0 x 10? are respectively decomposed into six image components
with different broader scales by wavelet multiresolution analysis. These image components provide visualized
information on the multi-scale structures in a turbulent jet. Tt was found that the edges of the vortices at different
resolutions or scales and the coherent structure might be easily extracted. In this problem, three types of image
structure, namely the large-scale structure near the center of the jet, coherent structure in the shear layer, and
the small-scale vortices throughout the entire flow field, which dominate the turbulent structure, were easily
extracted. By increasing the Reynolds number. the large-scale structure becomes weaker, and the scales of

active vortices and coherent structure decrease.

1. Introduction

Turbulent jets exhibit a complex structure with a
wide range of coexisting scales and a variety of shapes
in the dynamics. Coherent structures existing in turbulent
jets are responsible for most of the momentum transfer.
Many identification techniques, such as image process-
ing, spectral analysis, spatial correlation functions,
proper orthogonal decomposition, stochastic estimation
and pattern recognition, are well established to determine
complex structures. Recently, Catrakis and Dimotakis"
reported two-dimensional spatial measurements of the
jet-fluid concentration field. They presented the scale
distributions and fractal dimensions measured by level
sets of concentration. and showed the shape complexity
of irregular surface based on area-volume measurements
of images. However. the local scales with respect to
space-time change continuously for turbulence, and a
complex turbulent structure in terms of space, scale and
strength has not yet been clarified. It 1s well known
that the identification of coherent structures requires
the acquisition of detailed quantitative data on such
structural characteristics as location, size, strength, etc.
Until now, traditional analytical techniques could not
provide us sufficient or detailed information. Laufer?
pointed out that the conditional sampling measurement
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had been hiding very important features of turbulence.
To solve these problems, we should develop more pow-
erful identification or analytical techniques. Recent-
ly, Li et al.>~* applied one-dimensional continuous anc
discrete wavelet transforms to analyze the experimenta
velocity signals of a plane turbulent jet in the dimen-
sions of time and frequency. Additionally, Li® " !? then
proposed the wavelet correlation method and wavelet
spatial statistics based on wavelets, and revealed the
structure of eddy motion and coherent structures in tur-
bulent shear flow in both Fourier and physical spaces
These studies indicated that the wavelet technique offerec
the potential to extract new information from the tur
bulent field, however. they are limited to the analysi
of turbulent structure based on one-dimensional wavele
transform. To gain deeper insight into multi-scale struc
tures and coherent structures in turbulent flows, 1
is important to analyze the full field by image proces:
ing. Although there have been several studies'' ™!
that applied two or three-dimensional wavelet trans
form to full-field measurements or simulation data, the
have thus far been concerned with continuous wave
let transform. In spite of the fact that coeflicients ¢
continuous wavelet transform may extract the charac
terization of local regularity, it is not possible to re
construct the original function because the mothe
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wavelet function is a non-orthogonal function. In tur-
bulent flow image processing, it is of great significance
to study the image components of various scales that can
reconstruct the original image based on the orthogonal
wavelet transform.

One of the dominate principal analytical tools in
image processing is Fourier analysis, which can be used
to convert point data into a form that is useful for ana-
lyzing frequencies. In some problems, however, Fourier
analytic techniques are inadequate or lead to extremely
onerous computations. One case is that each Fourier
coefficient contains complete information about the
behavior of images at one scale of frequency but no
" information about its behavior at other scales or
frequencies. In contrast, many applications require the
analysis of a series on a broader scale. For example, a
region of rapid change in a series can only be detected
by examining many points at once. A wavelet is a
bandpass filter with additional space location capability.
In order to apply the wavelets to the field of image
processing, Mallat and Mever formulated the theory of
multiresolution analysis in the fall of 1986, and provided
a natural framework for the understanding and con-
struction of wavelet bases. The goal of the multi-
resolution analysis is to get a representation of a func-
tion that is written in 4 parsimonious manner 4s a sum
of its essential components. That is, a parsimonious
representation of a function not only preserves the
interesting features of the onginal function, but also
expresses the function in terms of a relatively small set
of coeflicients. Now, multiresolution analysis is mainly
applied to image compression. image editing, multiscale
edge detection, and texture discrimination.

The aim of this paper is to apply two-dimensional
orthogonal wavelets or multiresolution analysis to the
digital imaging photographs of a jet flow in a farfield
in order to reveal the multiresolution turbulent struc-
tures and to extract the most essential scales governing
turbulence.

2. Basic Theory of Two-Dimensional
Wavelets

Orthogonal

In this secuon. we introduce the definitions of
two-dimensional wavelet transform before applying them
to image analysis. Let us consider a two-dimensional
scalar field f(¥) and isotropic mother wavelet (%)
by treating x=(x,, x.) as a vector. The family of wave-
let functions 3 (X). which is translated by position pa-
rameter be R? (h=(b,. h~)) and dilated by scale param-
eter ae R™", is written as

] X—h
ll/(\ ) )
a a

W3 (X)

where Y(x)=
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Several functions, for example, 2-D Morelet wavelet,
Halo wavelet and so on, are often used as the mother
wavelet in the area of fluid mechanics.

The continuous wavelet transform of f(X) can be
defined as

d*d < oo, e (2)

f(x)l[/ba(\ Yd =%

L[ (e

The coeflicients of continuous wavelet transform
W{1(b, a) can be interpreted as the relative contribution
of scale a to the scalar field f(¥) at position 6.

If the mother wavelet is admissible, the inversion
formula can be written as

l ks 7. x . R
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The two-dimensional continuous wavelet transform
has proved to be useful in many applications!* "9 in
the area of fluid mechanics, but it is a non-orthogonal
decomposition. Therefore, for actual image analysis,
orthogonal or discrete wavelet transform is preferred. In
the discrete wavelet transform, the dilation parameter a
and translation parameter  both take only discrete values
in Eq. (3). For a scale a, we choose the integer (positive
and negative) powers of one fixed dilation parameter
ay>1 (ie., af), and different values of m correspond
to different widths of wavelets. It follows that the dis-
cretization of the translation parameter 5 should depend
on m: narrow wavelets (high frequency) are translated
by small steps in order to cover the entire field, while
wider wavelets (lower frequency) are translated by large
steps. Since the width of the wavelets is proportion to
ar, we choose therefore to discretize b by b=nbyal,
where b,is fixed. Starting from a one-dimensional wave-
let basis ¥, ,(x)=a,™*Y(a;"x—nby). the two-dimen-
sional wavelet basis simply takes the tensor product
functions generated by two one-dimensional bases :

:ll/ml.nl(xl)ll/mz.nz(xz) e (5)

For some very special choices of y(x) and «,, b, the
¥,...(X) constitutes an orthonormal basis. In particular,

Wrb, a) :jd
.. (3)
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if we choose a,=2, by=1, then there exists Y(x), with
good physics-frequency localization properties, such that

l}’ml.nl;mz,nz(xlv xl):
2TmAmDIZp T W2, —Ry) L. (6)

constitutes a two-dimensional orthogonal basis. In this
basis, the two variables x; and x, are dilated separately.
The oldest example of a function ¥(x) for which y,, (\)
constitutes an orthogonal basis is the Haar function.
constructed long before the term “wavelet” was coined.
In the last ten years, various orthogonal wavelet bases
have been constructed ; for example, Meyer basis. Dau-
bechies basis, Coifman basis, Battle-Lemarie basis.
Baylkin basis, spline basis, etc. They provide excellent
localization properties in both physical and frequency
spaces. In this study, we employ Daubechies basis to
analyze the flow image.

The two-dimensional discrete wavelet transform 1s
given by

Wf;nl.nl:mz.nz:J‘u J ‘ f(_(-)le1'"1:,":_":(_{-)(13_(' e "-)

-

The reconstruction of the original scalar field can be
achieved by using

/‘(-{'): Z Z Z Z Wff;nhnl:mg.nzl}’ml.nl:mz.ng('(.) Ce S
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The total energy of the scalar field is given by summing
all of the scales and components as follows

Z (.f‘('xi‘ A‘é))z :Z Z Z Z ( Wf;’ll.lnillll.nz)l N

i my my ny ony

ce9)

3. Two-Dimensional Multiresolution Analysis

In mathematics, multiresolution analysis consists of a
nested set of linear function spaces ¥; with the resolution
of functions increasing with j. More precisely. the closed
subspaces V; satisfy

VeV, cVocV_ ¥V _ 5, R G0}
with
U V,=L*"%*) and () V;={o}.

jeZ JjeZ

St

The basis functions for the subspaces V; are called
scaling functions of the multiresolution analysis.
For every je Z. define the wavelet spaces W, to be the

orthogonal complement in V;_, of ¥, We have
V.i..=V,®oW, o (12)

and

if j#j',

WoLW, (13)

(i.e., any function in ¥;_, can be written as the sum of
a unique function in ¥; and a unique function in W)).
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In L*(R?), the orthogonal basis for W is the family of
wavelets ¥, . .ooa(X.. X5) that is defined in Eq. (6).
Thus, L*R?*) can be decomposed into mutually
orthogonal subspaces, and can be written as

LAWY= 2 W, ...(14)
Tz
The details regarding the wavelet transform and
multiresolution analysis can be found in many ref-
erences.'®

4. Multiresolution Image Analvsis of a Turbulent Jet

It is well known that an 1mage often includes too
much information for real-ime vision processing. The
multiresolution algorithm processes less image data by
selecting the relevant details that are necessary to perform
a particular recognition task.

In order to gain deeper nsight .nto the multi-scale
structures and coherent structures. we apply multi-
resolution analysis to the digitsi-tmaging photographs
of a turbulent jet that were expenmentally obtained
by Catrakis and Dimotukis - The onginal image is
decomposed into the warelet spaces.

The experiment was carned out on lhiquid-phase
turbulent-jet flows. and mmuages of slices that relied on
laser-induced fluorescence digital-imaging techniques
were obtained. Transverse sections in the far field of the
jet flow, at downstream position = d=275 (jet-nozzle
diameter ¢ is 2.54 mm). were recorded on a cryogenically
cooled 1024 x 1024 pixel CCD camera. The field of view
spans /y=42cm. resulung in a pixel resolution of
4, =420 um. More details are given in Catrakis and
Dimotakis.!’

In this paper, black-and-white images of jet flow slices
are expressed in a numenical torm as a function f(x, x,)
over two dimensions in which the function value f(x9, x9)
represents the “grav scale”™ value of the image at the
position or pixel values (v... v,,). The ““gray scale” values
are then normalized to one.

The procedure ot this multiresolution analysis can be
summarized in two steps:

(1) Wavelet coethicients or the wavelet spectrum of
an 1mage 18 computed based on the discrete wavelet
transform of Eq. (7).

(2) Theinverse wavelet transform of Eq. (8) is applied
to wavelet coefficients at each wavelet level, and image
compone 1ts are obtained at each level or scale or in the
wavelet spaces.

It is evident that the sum of all image components in
the wavelet spaces can reconstruct the original image. As
described above, there are several families of ortho-
normal wavelet basis that construct the wavelet spaces.
In this paper, we use the Daubechies family'®" with an
index of N=20, which is not only orthonormal but also
has smoothness and compact support.
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At first, the original image of the jet-fluid concentration
with Re=4.5x 10* at downstream position z/d =275, as
shown in Fig.l. is computed by the two-dimensional
orthogonal wavelet transform. The result of its wavelet
coefficients normalized to one is shown in Fig. 2. Back
and white pixels correspond respectively to smaller and
larger wavelet coefficients. It 1s evident that the larger
wavelet coefficients concentrate on the range of smaller
numbers of wavelet coeflicient (i.e., in the large-scale
range). This feature shows that large-scale motion is

Fig. 1. Original

g turbulent  jet  at
Re=45x10°,
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Fig. 2. Wavelet coefficients of image in a turbulent

jet at Re=4.5x 10°.
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active and contains turbulent energy. If wavelet image
compression is used. we may obtain a higher compressed
turbulent image that only contains information on the
most essential scales governing turbulence.

Then, the original image is decomposed into six wavelet
spaces based on the inverse wavelet transform. The scale
ol wavelet space is usually called the level, and levels 1
to 6 represent large- to small-scale in this study. The
image components with six levels are displayed in Fig.
3. The sum of six image components can completely
reconstruct the original image. In order to investigate
the frequency character of six wavelet spaces. image
components of six levels are respectively analyzed by
two-dimensional Fourier Transform. In this study. the
relationships between level and scale when using the
Daubechies [amily with index N =20 are listed in Table 1.

In Fig. 3, false colors have been assigned to the scalar
values of image components; the highest concentration
is displayed as deep red and the lowest as purple. These
images provide information on the multi-scale structures
in turbulent jet flow and the important scales that
dominate the flow structure may be easily extracted. In
the tmage component (Fig. 3a) of level 1, which
corresponds to the broader scale of ¢=43.0-107.5 mm.
the blue boundary of the large-scale flow region may be
clearly seen. A large peak that contains three peaks can
be clearly observed near the center of the jet flow. By
comparing the original image. these peaks imply that a
large-scale structure consists of three vortices. They are
the uppermost and energy-containing vortices. With the
broader scale of ¢= 14.3-43.0 mm. as shown in the image
ol level 2 (Fig. 3b), a lot of stronger peaks mainly appear
in the edge of the flow region. and correspond to the
positions of vortices at this scale range. These vortices
are more active in the shear layer and dominate the
turbulent mixing process. which are referred to as the
coherent structure of the problem. As the scale decreases
to a=7.2-14.3mm at level 3 in Fig. 3c, peaks mainly
concentrate on islands or lakes (as described in Catrakis
and Dimotakis') of the flow region edge. The distribu-
tion of peaks indicates that vortices also undertake the
turbulent mixing process within this scale range in
this region. When broader scaling reaches to ¢=3.6-
7.2mm, as shown in the image of level 4 (Fig. 3d), edges
of the vortex within this scale range can be clearly
observed. As resolution increases to a=1.8-3.6 mm, a
finer approximation of the original image can be ob-
tained at level 5 (Fig. 3e). A clear distribution of vortex
edges with smaller-scale can be observed. which is the
“zoom-in"the image of level 4. This is an important

Table 1. The relationship between level and scale for Daubechies bases with index N =20,
Level | Level 2 Level 3 Level 4 Level 5 Level 6
Seale (mm) 43.0-107.5 14.3-43.0 7.2-14.3 3.6-7.2 1.8-3.6 8- 1L8
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Fig. 0. Wavelet coeflicients of image in a turbulent
jet al Re=9.0 x 107,

feature of multiresolution analysis. The image of level 6
(Fig. 3f) describes the finest turbulent structure of the
original image with a broader scale of «=0.8-1.8mm.
The smallest-scale vortex in this probleni can be observed
everywherc i the interior of the flow. This means that
the smallest-scale vortices exist throughout the entire flow
ficld. From the above results, it can be said that the
edges of the vortices at different resolutions ot scales and
the coherent structure may be easily extracted by wavelet
multiresolution analysis.

To sum up the major characterististics of flow
structures. three types of flow structure, the large-scale
structure near the center of the jet flow, the coherent
structure in the shear layer and the small-scale vortices
throughout the cntire flow ficld, are of most significance
and domunate the turbulent structure in the jet flow.

In order to gain decper insight into the dominant
structures, the following computation is performed. The

Vol 42

sum of level 1 and level 2 produces the image in o =
(a). the sum of level 3 and level 4 produces the im:
Fig. 4(b) and the sum of level 5 and level 6 produce:
image in Fig. 4(¢). Figure 4 describes a turbulent =i
ture within three important broader scales: that 1=
energy-containing structure within large broader scal:
«=143-107.5mm, the coherent structure and dom
ting turbulent mixing process in the shear layer with
the medium broader scale of «=23.6-14.3mm, and !
smaller-scale structure within small broader scale
a=0.8-3.6mm.

By increasing the Reynolds number to Re>~9.0 x 1!
the original image of the jet-fluid concentration at the
same downstream position. as shown in Fig. 5, is als
analyzed by the two-dimensional orthogonal wavele
transform, and the distribution of its wavelet coefficient«
is plotted in Fig. 6. Similar to Re=4.5 x 10, the wavelet
cocfiicients exhibit higher magnitude within the large-
scalc range.

Figure 7 shows the images of multiresolution structures
of @ turbulent jet flow slice, which are obtained by
decomposing the original image (in Fig. 5) into image
components of six levels or scales using wavelet
multiresolution analysis. Only one peak can be observed
near the center of the jet flow within the broader scale
of «=43.0-107.5mm (at level 1) in Fig. 7a. This peak
magnifies a large-scale, energy-containing structure.
Compared to Fig. 3b, the number of peaks that appears
in the edge of the flow region decreases within the broader
scale of ¢=14.3-43.0mm (at level 2) in Fig. 7b. This
mecans that the large-scale motion becomes weaker as the
Reynolds number increases. However, in the scale range
of «=7.2-14.3mm, at levels 3 in Fig. 7¢, many stronger
peaks can be observed in the edge of the flow region, and
the scalar-concentration is higher than that of Re=4.5 »
10°. This implies that vortex motions become more active
in the shear layer and dominate the turbulent mixing
process. It 1s appropriate to say that the coherent
structures appear in this broader scale. When consider-
ing (he image of level 4 in Fig, 7d, edges of vortices
and positions of vortices within the scale range of
a=23.6-7.2mm can be clearly observed. which zoom in
the image structure of Fig, 7c (at level 3). As resolution
increases to level 5 (Fig. 7e), a finer resolution of the
original image can be obtained within ¢ =1.8-3.6 mm. A
clear distribution of vortex edges with smaller scale can
be observed everywhere in the interior of the flow. The
image of level 6 (Fig. 7f) shows the finest structures of
light. Tt is obvious that the smaller-scale motion within
the broader scule of ¢=0.8—1.8 mm becomes weaker.

Using the same method as above, six multiresolution
images can be summarized into three image components
within three important broader scales m Fig. 5. This
ficure clearly provides wvisualization on the energy-
containing structure, the coherent structure and the
smaller-scale structure within the broader scales of 14.3
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107.5, 3.6-14.3, and 0.8-3.6 mm, respectively. Compared
with Fig. 4, Fig. § exhibits that the scalar concentration
within medium and small broader scales becomes higher
with increases in Reynolds number. It is evident that
medium and small vortices are more active and dominate
the flow structure at Re=~9.0 x 10>

5. Concluding Remarks

The major conclusions are summarized as follows:

(1) The image components of different scales can be
obtained using two-dimensional orthogonal wavelets,
and provide information of the multi-scale structures in
jet flows.

(2) The edges of the vortices at different scales and
the coherent structure can be easily extracted from the
multiresolution images.

{3) Three types of image structures, namely large-
scale or energy-containing structure near the center of
the jet flow, coherent structure in the shear layer and the
small-scale vortices throughout the entire flow field,
Jominate the turbulent structure in jet slices.

(4) When the Revnolds number is increased, the
large-scale motion becomes weaker, and the scales of
sctive vortices and coherent structure decrease.
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