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Previously, modeling magnetodynamic fields, taking into account dynamic hysteresis loops, was
proposed for predicting three-dimensional magnetodynamic fields in electromagnetic devices. This
method is now applied to work out the lumped circuit model for a nonlinear inductor exhibiting
dynamic hysteresis loops. This lumped circuit model for a nonlinear inductor is introduced into the
simulation models for typical nonlinear circuits, whose dynamic hysteresis loops as well as current
responses are calculated and compared with experimental measurements. Good agreement is obtained.

0. Nomenclature

A cross-sectional area normal to the flux R., Dj/(nA), magnetic resistance,
path, r electric resistance of coil [€2],
B magnetic flux density [Wb/m?], ra diode,
C capacitance [F], r: electric resistance of the free wheeling
D mean length of flux path, diode [],
d! infinitesimally small distance along the r. electric resistance of the rectifying
flux path, diode [Q],
E {e, 0}, voltage vector, S magnetic hysteresis parameter matrix,
F  {Ne/r, 0}, magnetomotive force vector, S magnetic hysteresis parameter,
G electric conductance matrix, s hysteresis coefficient [()/m],
H magnetic field intensity [AT/m], t time [sec],
i i, +i, current flowing through the ve  terminal voltage of capacitor C,
coil, ' v terminal voltage of resistance R,
i; current due to the hysteresis loss, W [N, NY, winding matrix,
i, magnetizing current, @ {¢, vc}, magnetic flux vector,
L N?R,, inductance [H], ¢ magnetic flux [Wb],
M magnetic resistance matrix, At stepwidth in time [sec],
N number of turns of exciting coil, 4 magnetic permeability [H/m],
R N?/S,, electric resistance [€1],

Subscripts ¢, t + At refer to the time ¢, ¢ + At, respectively. Superscripts (K + 1), (K), (K- 1)
refer to the number of iterations; and t denotes the transpose of matrix.
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1. Introduction

In the design and simulation of electric circuits containing hysteresis elements it is necessary
to work out a lumped circuit model that simulates closely the hysteresis phenomenon. In
conventional circuit theory there are three basic types of passive elements: (1) resistances that
dissipate electric energy as heat; (2) inductances that store magnetic field energy; and (3)
capacitances that store electric field energy. The hysteresis phenomenon occurs notably in the
inductances and capacitances. In other words, the hysteresis phenomenon always occurs in the
elements storing field energy. Some part of stored energy in the electric or magnetic field will
be lost when the energy flows out from the inductances or capacitances, and this energy loss is
called as hysteresis loss. Depending upon the circumstances, it may be sufficient to assume that
the hysteresis loss can be represented in terms of a resistance loss. However, it is most difficult
to construct a model having the accuracy for analysis of nonlinear circuits such as the
ferroresonant circuit [1].

Chua and Stromsmoe worked out the hysteresis model for electronic circuit studies [2].
Talukdar and Bailey worked out the hysteresis model for system studies [3]. Their model is
based on the fact that the trajectory A (magnetic flux linkage)-i (exciting current) is uniquely
determined by the last point at which the flux linkage derivative dA/d¢ changed sign. However,
the parameters of their model are determined by the set of A—i trajectories, and this makes
their model useless for the wide range problems. A recent paper has proposed a model for
magnetodynamic fields taking into account dynamic hysteresis loops are predicting three-
dimensional magnetodynamic fields in electromagnetic devices [4]. The parameters of this model
are determined by the set of A — i trajectories as well as the set of (dA/dt)~i trajectories.

The principal purpose of this paper is to work out a lumped circuit model for a nonlinear
inductor exhibiting dynamic hysteresis loops from the magnetic field equation. and to
demonstrate the effects of dynamic hysteresis phenomena in the typical nonlinear circuits. The
voltage across a capacitor is commonly assumed as being linearly independent; in other words,
the capacitance is assumed to be constant. In practice, this is usually closely true, and at least
much more so than the assumption of linear inductance for devices involving stored magnetic
energy.

In order to check up the validity of our nonlinear inductor model we examine a simple R-L
series electric circuit. As an example of the nonlinear oscillations in electric circuits we apply
our nonlinear inductor model to the R-L-C series ferroresonant circuit. Moreover. as a
practical example, our nonlinear inductor model is applied to the half wave rectifier circuit
with a free wheeling diode.

2. Modeling of a nonlinear inductor

A magnetic field equation taking into account dynamic hysteresis loops is given by

golp,1dB

n s dt (1)

where H, B, u, s and t denote the magnetic field intensity, magnetic flux density. magnetic
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permeability, magnetic hysteresis coefficient and time, respectively. For further details of (1)
you may refer to Appendix A. In order to derive the lumped circuit model for a nonlinear
inductor consider a simple toroidal inductor as shown in Fig. 1(a). By considering (1) and Fig.
1(a) it is possible to write the following equation

p Pri _ 1dB
Hdl=J' [—B+———]dl 2
J'o o Lpm s dt )

where D and d!/ denote the mean length of magnetic flux path and infinitesimally small
distance along the magnetic flux path D, respectively. With A denoting the cross-sectional
area normal to the flux path the relationship between magnetic flux density B and magnetic
flux ¢ is given by

B=¢/A. 3

® =

L

Fig. 1. A model for a nonlinear inductor. (a) Schematic diagram of a toroidal inductor; (b) electric circuit model for
an inductor; (c) magnetic circuit model for an inductor.
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By means of (3) the right-hand term in (2) can be rewritten as
Pri 1dB7,, do
jo [MB+Sdt]dl—Rm¢+Smdt @)

where the magnetic resistance R., and magnetic hysteresis parameter S,, are defined by

R.=D/pA, (5)
S.= D/sA. 6)

Moreover the left-hand term in (2) can be represented in terms of the impressed voltage e,
electric resistance of coil r, magnetic flux ¢ and number of turns of coil N, that is

f Har=Se-n ). o

By substituting (4) and (7) into (2), it is possible to write the following relation

d
Ventt]-resdt

By considering the magnetic circuit equation (8) and Fig. 1(a) it is possible to derive the
lumped electric circuit model for a nonlinear inductor as shown in Fig. 1(b). Since the currents
i, and i, in Fig. 1(b) are respectively corresponding to the terms (1/N)R.,¢ and
(1/N)S..(d¢/dt) in (8), the inductance L and resistance R in Fig. 1(b) can be represented in
terms of magnetic resistance R, magnetic hysteresis parameter S,, and number of turns of
exciting coil N, that is,

Noé N2

L= WNR$ "R ®
___Nd¢idy _N?

R = {N)Sm(a/dn = s (10
Moreover the current i in Fig. 1(b) can be represented by

i=1i,+i,= (1/N)Rumd + Smdp/d1] . (11)
By considering (8)-(11) it is possible to write the integral form of nonlinear inductor model

as
e _[L 17, 1(
7—["+R]U+LLUdI (]2)

where the voltage v is the terminal voltage of R as shown in Fig. 1(b). On the other hand, by
rearranging (8) the differential form of the nonlinear inductor model can be written as
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(N/r)e = R + [Sm+ N¥/r] de/dt . (13)

By means of (13) it is possible to draw the magnetic circuit model for a nonlinear inductor
as shown in Fig. 1(c). The electric circuit model for a nonlinear inductor (Fig. 1(b)) coincides
with Chua’s one [2].

3. Numerical method of solution

As shown in Appendix A, the magnetic permeability 4 and magnetic hysteresis coefficient s
in (1) are, respectively, the functions of magnetic field intensity B/u and (1/s)(dB/dt). Since
the relationship between flux density B and magnetic flux ¢ is given by (3), the magnetic
permeability u and magnetic hysteresis coefficient s are formally represented by

m = fuld), (14)
s = f:(dg/dr), (15)

where f(-) denotes the single valued function of (). As shown in (14) and (15) the nonlinear
parameters w and s are directly related to the magnetic flux ¢, therefore it is preferable to use
the magnetic circuit model of a nonlinear inductor. Thus, in this paper, we employed the
magnetic circuit model of (13). By considering (14) and (15) the magnetic circuit equation (13)
can be represented as following form

de/dt = f(d, dd/dt, t) . (16)

Equation (16) means that the magnetic circuit model of a nonlinear inductor is a nonlinear
differential equation whose coefficients are the functions of the magnetic flux ¢, the time
derivative of the magnetic flux d¢p/d¢ and time ¢.

For numerically solving (16), this nonlinear differential equation (16) is replaced by the
following divided difference equation

(¢1+At - d)t)/At = f(%(¢t+At + d)t)’ (d)t+At - d)t)/At, t+ %A[) (17)

where At denotes the stepwidth in time f; and subscripts ¢ + At, ¢ refer to the time ¢+ At ¢,
respectively. With the superscripts (K + 1), (K), (K — 1) denoting the number of iterations, (17)
is iteratively solved by

GEL = o+ A Fiact o), (DFa— b)/AL t+3A1) (18)
where ¢} 4, is
d);‘;At = d)g(A_tl) + %[ Elfgt - d)g(;tl) . (19)

Fig. 2 shows the flow chart of this iteration method.
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START
READ VARIOUS CONSTANTS
T = TIME LIMIT
E = LIMITS OF DISCREPANCY
[ -
—

t =t + At

CALCULATE biiat WRITE

STOP

Fig. 2. Flow chart of the iteration method.

4. Numerical solutions

(1) R-L series circuit. In order to check up the validity of the lumped circuit model for a
nonlinear inductor we examined a simple R-L series circuit. In this case, the schematic
diagram, electric circuit model and magnetic circuit model are essentially similar in Figs. 1(a),
1(b) and 1(c), respectively. By rearranging (13) the magnetic circuit equation is formally
written in the form of (16) as

(d/dt)p = —[Sm+ (N?/1)] '[Rmdb — (NIT)e] . (20)
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Fig. 3. Magnetization curves used in the calculations.

The magnetization curves for the magnetic permeability u and magnetic hysteresis
coefficient s in (14) and (15) are shown in Fig. 3. In carrying out the calculations these curves
are represented by linear interpolation. The stepwidth At in (17)~(19) was determined as
At =0.25[msec] by the numerical tests when the convergence and accuracy of the solutions
were taken into account. Various constants used in the calculations are listed in Table 1.

Table 1
Various constants used in the calculations; all the initial magnetic flux and current are set to zero

Toroidal inductor

Area normal to the flux path A =0.0001 [m?]

Mean length of magnetic flux path D =0.2827 [m]
R-L series circuit

Number of turns of coil N =900 [turns]

Electric resistance of coil r=630[Q]

R-L-C series ferroresonant circuit

Number of turns of coil N = 1500 [turns]

Electric resistance of coil r=16.4[Q]

Capacitance - C=50.0[nF]
Half wave rectifier circuit

Number of turns of coil N = 800 [turns]

Electric resistance of coil r=5.86[Q]

Limit of discrepancy & = 0.001 [percent]
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Fig. 4(a) shows the steady state dynamic hysteresis loops when the three different voltages
with frequency 50 [Hz] are impressed. Fig. 4(b) shows the transient state dynamic hysteresis
loops as well as currents flowing through the coil. Moreover, comparisons of experimental and
computational results were made for the transient state values when the impressed voltage
contained a fifth harmonic wave. The results are shown in Fig. 4(c). Because of the difficulty in
obtaining a good supply voltage wave containing a fifth harmonic wave, the discrepancies
between the experimental and computational results are not necessarily as small as those of
Figs. 4(a) and 4(b).

(2) R-L-C series ferroresonant circuit. The circuit containing a nonlinear inductor leads to
nonlinear phenomena [1]. As an example of the nonlinear phenomena we examined a R-L-C
series ferroresonant circuit. The schematic diagram, electric circuit model and magnetic circuit
model of this case are shown in Figs. 5(a), 5(b) and 5(c), respectively. In this case, the magnetic
circuit equation becomes to a system of equations involving the magnetic flux vector @, the
externally impressed magnetomotive force vector F, the magnetic resistance matrix M and the
magnetic hysteresis parameter matrix S, that is,

(d/dt)yd = —S7[MP - F) (21)
where
® ={p, vc}, (22)
F ={(N/r)e, 0}, (23)
_[Rs Nir
M= [ PR ] , (24)
[Sm+(N?/r) 0
s_[ s _NC]. (25)
FLUX
1/6 T [(mWb]

—1 t {[A]
. } 0.4 0.8
1)

4/ -1/12 CURRENT

4 -1/6 1 15

-1/12 CURRENT

EXPERIMENTED COMPUTED
IMPRESSED VOLTAGE e=/2VSIN(2nft)

V=30 [V]
— - —— v=20{v]
—————— v=10[V]
FRENUENCY f£=50[Hz]
STEPWIDTH At=0.125[msec]

Fig. 4(a). Steady state dynamic hysteresis loops of R-L series circuit.
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FLUX
8/45 [mWb]
CURRENT
1.5 T [A]
4/45 1.0 EXPERIMENTED
EXPERIMENTED os
i L . " ~4[A] 0 N . ,////?\\ '[msec]
- + t + — s
-0.4 0.4 0.8 1.2 1.6 10 20 30 20
CURRENT -0.5 TIME
-4/45
FLUX
8/45_ [mWb]
CURRENT
1.5 [A]
4/4c
/45 1.0 COMPUTED
COMPUTED
0.5
- + ——t - (a] 0 [msec]
-0.4 0.4 0.8 1.2 1.6 40
CURRENT -0.5 TIME

~4/45

IMPRESSED VOLTAGE e=/7VSIN(2ﬂft+W), v=20[V], £=50[Hz]}, ¥=-21.4[deg.]
STEPWIDTH At=0.125[msec]

Fig. 4(b). Transient state dynamic hysteresis loops and currents of R-L series circuit.

EXPERIMENTED LU CURRENT
1/15 1 imWb] 0,37 (2] EXPERIMENTED
\ : s /Q . /N . /J-.[ms cl
— . = ¢ 1 a] 0 - N Jnse
-0.48 -0.32 -0.1§ 0.16 10 20 30 40
CURRENT TIME
| -0.34
—2/15 L —0.6-L
FLUX CURRENT
COMPUTED k COMPUTED
1/15 v [mWb] 0.37 [A]
7:41 [A] 0 — N L msec]
0.16 10 20 30 40
CURRENT TIME
-0.34
| -0.61

IMPRESSED VOLTAGE e=/IVISIN (2wft+¥)+(1/2)SIN[5(2nft+¥) ]}, v=15[V], £=50[Hz), ¥=153[deg.]
STEPWIDTH At=0.1(msec]

Fig. 4(c). Transient state dynamic hysteresis loops when the impressed voltage contains a fifth harmonic wave.



194 Y. Saito et al., Lumped circuit model for nonlinear inductor

— A

" .
-—ICI r
e R L
| b

2

N
[; + sm] (d/dt) NC (d/dt)

Fig. 5. Modeling of a ferroresonant R-L-C series circuit. (a) Schematic diagram; (b) electric circuit model; (c)

magnetic circuit model.

In (22) the terminal voltage of capacitance C is denoted by vc.

In order to get the resonant frequency about 25 [Hz] associated with the maximum
magnetic permeability we selected the capacitance C = 50 [pF] and number of turns of coil
N = 1500 [turns]. This selection of number of turns of coil made the electric resistance of coil
r = 16.4 [(}]. Various constants used in the calculations are summarized in Table 1.

Both calculations and experimentations were carried out under the transient state when
three different voltages with amplitude of 40, 35, 30 [V] were impressed on the R-L-C series
ferroresonant circuit. Ferroresonant oscillation always occurred by the voltage with amplitude
of 40 [V], but never occurred by the voltage with amplitude of 30 [V]. Ferroresonant
oscillation occurred by the phase angle ¥ = 35.1 [deg] of voltage with amplitude of 35 [V] as
shown in Fig. 6(a). However, as shown in Fig. 6(b), ferroresonant oscillation did not occur by
the phase angle ¥ = 53.4 [deg] of voltage with amplitude of 35 [V]. Therefore. when the
voltage with amplitude of 35 [V] is impressed, ferroresonant oscillation depends on the phase

angle of input voltage.
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(3) The half wave rectifier circuit with a free wheeling diode. As a practical application of
our lumped circuit model for a nonlinear inductor we applied our model to the half wave
rectifier circuit with a free wheeling diode. This example is very useful and interesting for
studying the dynamic hysteresis phenomena, because this example produces the minor
hysteresis loops under the transient state, and current flowing through the coil of the inductor
never takes negative values.

The schematic diagram, electric circuit model and magnetic circuit model of this case are
shown in Figs. 7(a), 7(b) and 7(c), respectively. The diode r, in Fig. 7(a) is introduced into the
rectifier circuit models of Figs. 7(b) and 7(c) as a nonlinear resistance whose terminal
characteristic curve is shown in Fig. 8. Since the current (which is the horizontal axis of Fig. 8)
is a function of magnetic flux ¢, the time derivative of magnetic flux d¢/dt and time ¢, the
diode r4 is reduced to a function of ¢, d¢p/dr and ¢ In carrying out the calculations the
resistance of diode ry is represented in linear interpolation. Depending upon the operating
conditions the resistance of diode ry takes a different value. Therefore, in Figs. 7(b) and 7(c)
the diode operating as a rectifier and a free wheeling diode are denoted by r, and r;,

FLUX
0.2 +— [mib]
EXPERIMENTED
CURRENT
0.
1 2 T (Al EXPERIMENTED
1
| .
y — = (] 0 [msec]
-2 1 2 10 20 30 40
CURRENT -1 PTME
-2
FLUX
0.2 o [mWb]
COMPUTED CURRENT
0.1 2 = (A] COMPUTED
1
o — + - [A) 0 (msec]
2 -1 1 2 10 20 30 40
CURRENT -1 TIME

ool

IMPRESSED VOLTAGE e=/2VSIN(2nft+Y¥), V=35[V], £=50(Hz], ¥=35.1[deq.]
STEPWIDTH At=0.25[msec]

Fig. 6. Dynamic hysteresis loops and currents of ferroresonant R-L-C series circuit.
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- : 4 (2] [msec]
-2 1 2
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0.27T [mWb]
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CURRENT
0.14 2
} 1 COMPUTED
, ' ' — A [msec]
-2 -1 1 2 TIME
CURRENT
-0 ™
-O.Zl

IMPRESSED VOLTAGE e=/2VSIN(2nft+V¥), V=35[V], £=50(Hz], ¥=53.4[deg.]
STEPWIDTH At=0.25[msec]

Fig. 6. Contd.

respectively. The magnetic circuit equation involving the winding matrix W, the electric
conductance matrix G and the voltage vector E is written by

(d/dt)e = =[S+ W'GW] '[Rnd — W'GE] (26)
where
W =[N, NJ, (27)
+r, -1
G= [’ r Ht rf] ’ @8
E ={e 0}. (29)

Various constants used in the calculations are listed in Table 1. Fig. 9(a) shows the dynamic
hysteresis loops containing minor loops and transient currents flowing through the coil. Fig.
9(b) shows the steady state dynamic hysteresis loops and currents.
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N2
G) %.Ne (s + 7.1(d/dt)

a = rf/(rr+ rf), rc =r + a.r_

Fig. 7. Modeling of a half wave rectifier circuit with a free wheeling diode. (a) Schematic diagram; (b) electric
circuit model; (c) magnetic circuit model.
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Fig. 8. Terminal characteristic curve of the diode.



Y. Saito et al., Lumped circuit model for nonlinear inductor

198

"opoip Fureaym
901) B ylim JINOID ISYNOII dARM JleY Oy JO SJUdLIND pue sdoO| SISaI91sAy owweuAp 91eis judisuel], (v)g ‘Fig

[Oosu] 17 0=3v HLAIMAALS

[*boplor0=4 ‘[2H]04=3 ‘[A]JO1=A (i+330Z) NISAZA =9 UOVLTIOA TISSAAAWI
WI
HWIL o€ 0¢ 0T 0 1 870 7o 0
[ooSUl]{m + $ + (v] + +
INALAND
470
450 Axwo.o
AALNdWOD
AAILNdWOD
-1
LNTZEND
[amu) Lo1-g
X014
HWIL oy o€ 0z 0t 0 ARt 870 b0 0
[oosu] t + : (¥] b= t t
LNTIIND
470
870 45070
AQALNINIIIIXE QALNINTIIIXKT
471
LNAHAND
ﬁnzeggrwa.o

XN71d



199

Y. Saito et al., Lumped circuit model for nonlinear inductor

"apotp

3UI[9YM 231) B 1M JINOIIO 19111001 dARM J[2Y Y1 JO SJUSLIN pue sdoo] sisoraisky atureuAp aiess Apeals (q)g “S1q

[9®sw] T 0=3V HIAIMAALS

[2H]05=3 ‘[A)0T=A ‘(334Z)NISAZ =9 HOVITOA AHSSTIAWT
0z ST 0T S 6T 0°1 "0 0
[oosu) b— —+ ~+— —+ [¥]F— } +
AWIL INITIND
AILNEWOD
AALOAdHOD
+38°0 +10
tvilo-t _gza_-ﬁm.o
INTAIND X014
0z ST 0T S ST 0°1 S0 0
[oosu]p +— +— -+ (Y] t }
AWIL INFEIND
AHLNIWIYIdX I
QIININIIIIXE
F 870 +71°0
(v] L-m.ﬁ _nza_;-m.o
INTIEND X014




200 Y. Saito et al., Lumped circuit model for nonlinear inductor

5. Conclusion

As shown we have derived one specific nonlinear inductor model exhibiting dynamic
hysteresis loops, and demonstrated its applicability to the nonlinear electric circuits. Parti-
cularly, our magnetic circuit approach has enabled us to simulate the nonlinear circuit
containing diodes without considering their switching problems [S]. This means that it may be
possible to work out a computerized design of power electronic circuits. For further study, the
authors plan to work out the digital simulation of a single phase parallel inverter.

The time required to obtain the results of Fig. 9(a) was about 20 minutes on the Micro
Computer SORD M243 Mark 4 (Z80A CPU).

Appendix A. A magnetic field equation exhibiting dynamic hysteresis loops

Fig. 10(a) shows a typical magnetic hysteresis loop. When we consider an arbitrary point
(H,, B,) in Fig. 10(a), it is possible to consider that the magnetic field intensity H, is composed

Q,
e+]

+__

L/cam \//m

4

a b
dm
B It s = dB/dt
il
- B
YT g
dB
atcd
B ——
m
H H H ' 8
C m c HC Hm

Fig. 10. Modeling the magnetic field equation taking into account dynamic hysteresis loops. (a) A typical hysteresis
loop; (b) the relationship between dB/dt and H; (c) the construction of magnetization curves.
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of two magnetic field intensities H, and H,, that is,
Ha = Hp. + Hs‘ . (A'l)

The relationship between the magnetic field intensity H, and magnetic flux density B, is
assumed to take the following form

H, = (1/p)B, (A2)

where u denotes the magnetic permeability of the material. When the permeability u is
introduced into (A.2) as a function of the magnetic field intensity H, or magnetic flux density
B,, then (A.2) represents the magnetic saturation property of the material. Therefore, the
remaining term H; in (A.1) has to represent the dynamic hysteresis property. Hence, at least,
the magnetic field intensity H; has to satisfy the following conditions: (1) when the magnetic
flux density B is increasing from —B,, to +B,, H, must take positive values; (2) when the
magnetic flux density B is decreasing from +B,, to —B,, H, must take negative values; (3)
when the magnetic flux density B reaches to the positive or negative maximum value *B,,, H,
must die out; and (4) the area bounded by the hysteresis loop must be equivalent to the loss of
energy per unit volume. Fig. 10(b) shows the relationship between the magnetic field intensity
H and time derivative of magnetic flux density B. By considering the above conditions (1)-(4)
and Figs. 10(a) and 10(b) it is possible to assume that the magnetic field intensity H, depends
on the rate of change of the magnetic flux density B, in time ¢, that is,

_ias,
5 og dt

(A3)

where the hysteresis coefficient s is introduced to relate H; with dB,/d¢ and has the unit of
ohm per meter. The magnetic hysteresis loss of power P, (watt per volume) at a point (H,, B,)
in Fig. 10(a) is given by

_ g (4B _1 /By
Pa—Hs< dt)—s(dt) . (A.4)

By means of (A.1)-(A.4) the magnetic field equation exhibiting dynamic hysteresis loops is
assumed to take the following form

H=&B+%%—?. (A.5)

When we consider the peak point (Hn, B,) in Fig. 10(a), the permeability wu, can be
calculated by pm = B, /H,, because the time derivative of the magnetic flux density B in Fig.
10(b) is reduced to zero at the point (H,,, Bm) in Fig. 10(a). Also, the hysteresis coefficient s,
can be calculated by s, = (dB./dt)/H,, because the magnetic flux density B in Fig. 10(a) is
reduced to zero at the point (H,, dB./dt) in Fig. 10(b). Similarly, the permeabilities and
hysteresis coefficients in the other points can be obtained, and their results construct the
magnetization curves as shown in Fig. 10(c).
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