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ABSTRACT

Discrete wavelets transform is widely used for the wave and image analyses.
Particularly, data compression ability is useful tool for the image data analysis. On the other
side, discrete wavelets analysis can be applied to the linear systems, because wavelets
transform is one of the linear transformations in linear space.

In the present paper, we propose an inverse approach employing the discrete
wavelets transform. An optimal sensor position can be decided by means of the
correlative analysis for the wavelets solution of ill posed system equations. Our
method was applied to an estimation of the high frequency current distributions on a film
conductor. Intensive experimental verification shows the validity of our method.
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INTRODUCTION

Continuous wavelets transform based on the concept of Fourier analysis has been
recently proposed. However, it is difficult to perform an inverse transformation of the
continuous wavelets, because their base functions are not orthogonal. On the other side, base
functions of the discrete wavelets transform are orthogonal. This discrete wavelets transform
is simply linear transformation and has been usefully applied to the data compression of the
wave and image data [1].

With the developments of modern superconducting quantum interference device
(SQUID), it becomes possible to measure the magnetic fields around a human brain
accompanying with brain operation. To clarify the human brain operation, searching for the
magnetic field source distributions from the locally measured fields is of paramount
importance. This means that it is essential to solve an ill posed linear system of equations.
Various numerical methods have been proposed solving for the ill posed systems. In
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biomagnetic fields, the least squares and minimum norm methods are widely used [2-4]. The
former is applied to finding the most dominant single field source, i.e. current dipole, and the
latter is used to identify the field source distributions. Further, new techniques have been
proposed in order to evaluate the reliable and unique solutions [5-6].

Previously, we have proposed a wavelets approach solving for the ill posed linear
system of equations [7-8]. Key idea of this approach is that the two dimensional wavelets
transform is applied to the system matrix and collecting the most dominant elements on the
system matrix yields an approximate inverse matrix in the wavelets spectrum domain.
Inverse wavelets transform of this approximate inverse matrix gives an approximate inverse
matrix in the original domain. Thus, it is possible to obtain the approximate solution of ill
posed linear systems. However, this wavelets approach has a serious difficulty that a set of
dominant elements in wavelet spectrum domain does not always have an inverse matrix.

To overcome this difficulty, this paper proposes a novel method that assumes a
positive definite part wavelets spectrum matrix. After recovering the original size spectrum
matrix, inverse wavelets transform of the spectrum matrix yields a reasonable system matrix.
Correlative analysis between this reasonable and practical system matrices changing the
field measuring conditions gives the best sensor layout for the wavelets solution. As an
example, we have applied this new strategy to an estimation of the high frequency current
distributions on a film conductor. As a result, it is revealed that the computed values
correspond well to the experimental ones.

BASIS EQUATIONS

A relationship between magnetic field H and current density J is given by

H=jGJdv , 0
14

where G'is space derivative of Green function and v is the volume containing the current
density J .

Now, assuming the sufficiently small volume A v, Eq.(1) can be discretized as

X=DY (2)

where the vectors X, Y and system matrix D are respectively
X= [H , H, . H "]T’
Y=[aw, A, . A,

m

=[i & . 0], i=Aw,i=12,.m,
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where n is the number of field measured points, m is the number of subdivisions Av, and a
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condition n<<m is held.

APPROXIMATE SOLUTION OF THE ILL POSED LINEAR SYSTEMS

WAVELETS TRANSFORM
Equation (4) is the wavelets transfromed system equation of (2).

X=DY,
X=WX, Y=WY, D=WDW'

m?

C)

where D' and D are the transformed(spectrum) matrix and original matrix with order n by m,
respectively. Wn and Wm are the wavelets transform matrices with order n by n and m by m,

respectively.

APPROXIMATE SOLUTION

The transformed system matrix D’ is a still singular matrix, because the original

system matrix D is a singular matrix. According to the nature of wavelets transform, D' is
approximated by a part matrix d which is composed of the top n’ by n’ square part in the
wavelets spectrum matrix. By means of a reasonable selection of n', it is possible to obtain a
positive definite matrix d. Then, the approximate inverse matrix is given by

Datpro=d " ®)
Similarly, vector X' is approximated by X'appro from the first to the n'th elements.

The spectrum solution vector Y' is given by
Y Appro =D /_\;)pru X Appro* (6)

After adding the (m-n')th zero elements to Y'4ppro , We have an approximate solution

vector Y a,pr, in the original space, viz.,

T
Y"Appm = [Y' Appro 0’ el 0] ’
YAppru = erY”Appm . (7)

This is the basic principle of ill posed linear system solution strategy employing
wavelets transform.

THE ESTIMATION OF THE HIGH FREQUENCY CURRENT DISTRIBUTIONS ON A
FILM CONDUCTOR

MODEL
As shown in Fig.1, a film conductor is represented by one dimensional current array
model having m conductors. Magnetic field distribution above this current array is measured
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at n locations. In Fig.1, Lris the film width, AY is the hight of the magnetic field measured

position and L,, is the length of the measurement surface.

Measurement
Surface

Film Conduntor

Fig.1 Modelling of current distributions on a film conductor

SIMULATION

Film width Ly , measurement region Ly, , AY and AX were set respectively at 8.0,
8.0, 5.0 and O[cm]. Fig.2(a) shows the system matrix obtained by setting n=16 and m=32.
The magnetic fields in the direction of parallel to the film surface were measured.
Employing Daubechies 8 order base function, the system matrix D was transformed into
spectrum matrix D’ shown in Fig.2(b).

Taking only 8 X 8 elements from the left bottom corner of Fig.2(b) resulted in a well-
conditioned matrix d. The condition used for deriving the matrix 4 is relative error of the
Gaussian elimination processes for the matrix d inversion. In this case, the relative error was
6.0 X'10-9%] for the matrix d. Figures 3(a) and 3(b) show respectively the calculated value
and the exact solution.

By comparison of the results in Figs.3(a) with 3(b), simple wavelets solution strategy

yields a vibrating solution. This means that the accuracy of inverse matrix d-/ is not
sufficient.
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Fig.2 1ll posed system matrix and its spectrum matrix, (a)System matrix D, (b)Wavelets
spectrum matrix D’

0.11 0.11
< 0.1 < 0.l
= 0,09\ = .09\
f=1 \L = .
o 0.08 © 0,08 AN
: \ 71 oo
- 0.07 = 0.07 ,
3 N s 0t
¢ 0.06 v U 0.06
N/ : L7
0.05 it 0.05 —
¢ 5 10 15 20 25 30 0 S5 10 15 20 25 30
Position Position
(a) (b)

Fig.3 Comparison of approximate and exact solutions, (a)Wavelets solutions, (b)An exact
solution

OPTIMAL SENSOR LAYOUT
To improve the accuracy of the approximate inverse matrix, we change the field

measuring condition. Let us consider the wavelets transformed spectrum matrix D’ shown in
Fig.4(a). Obviouly, the part spectrum matrix 4 in the wavelets spectrum has assumed to be
idendity matrix. Accordingly, a reasonable system matrix D can be derived by applying the
inverse transform to this spectrum matrix D'. Fig.4(5) shows the reasonable system matrix

using Dabechies 8 order base function. Fig.4(c) shows a result of correlative analysis
between this reasonable and the practical system matrices changing sensor height. There is a

peak in the correlative coefficients, apparantly. The height AY to this peak represents an
optimal sensor position. Fig.4(d) shows the practically optimized system matrix D. Fig.5(a)
shows the wavelets spectrum D' of the practically optimized system matrix D using
Daubechies 8 order base function. The relative error of the part spectrum matrix 4 taken only
8 X 8 elements from the left bottom corner of Fig.5(a) is 4.2 X10-14{%]. Fig.5(b) shows the

computed current distributions.
Comparison of the results in Figs.5(b) with 3(b) reveals that well solutions could be
obtained.

(@) (b)
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An optimal sensor position
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Fig.4 Optimal sensor layout and optimal system matrix, (a)Reasonable wavelets spectrum,
(b)Reasonable system matrix, (¢)Sensor position vs correlative coefficient, (d)Practically
optimized system matrix
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Fig.5 The wavelets spectrum and solution under the optimized sensor position, (a)Wavelets
spectrum matrix D', (b)Optimal wavelets solution

EXPERIMENT

In order to measure the current in the film conductor, enameled wires in stead of the
film conductor have been put parallel as shown in Fig.6. Thus, the each current in the
enameled wires can be measured directly.

Film width Ls, measurement region L, AY and AX were fixed respectively at 8.0,

8.0, 0.3 and 0 [cm]. The system matrix has been obtained from n=16 and m=32. Fig.7
shows the comparison of the computed and experimental current distributions. Obviouly, the
solution obtained from the optimal sensor layout corresponds well to the experimental one.
Changing the driving frequency demonstrates the difference of skin effect.
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Fig.6 A schematic diagram of the experiment
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Fig.7 Comparison of the experimental and computed current distributions, Solid and dotted
lines refer to the experimental and computed solutions, respectively, (a)50kHz, (b)100kHz,

(c)200kHz, (d)300kHz

CONCLUTIONS

As shown above, we have proposed a new wavelets solution strategy for the ill posed
linear systems. Application of our method to the estimation of current distributions in a film

conductor has demonstrated the usefulness of our approach.
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