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Abstract

This thesis formulates visualized field images by means of the classical field
theory, and it is composed of two principal chapters.

The first describes theoretical background. A key idea of the formulation
is that a pixel of a digital image is regarded as field potential in the clas-
sical physics. Scalar and vector potential fields represent monochrome and
color images, respectively. Vector operations lead to governing equations of
the images. Two types of image equations express any image: Poisson and
Helmholtz types of partial differential equations are considered as governing
equations of static and dynamic images, respectively. The image equations
derive system of equations by discretizations using partial derivatives and
fundamental solutions in electromagnetism. Solution strategies of the image
equations are described. The image Poisson equation results in reproduc-
ing/arranging the static images from their own image source densities. The
image Helmholtz equation generates the frames of dynamic images by means
of equivalent characteristic values. Furthermore, modal analysis of the sys-
tem of equations gives a novel idea for orthonormal transformation of the
image data representation. It allows of multi-resolution analysis like that by
wavelets.

The second presents several applications, taking up four kinds of field
images visualized by video/CCD camera, magnetic sensor, scanning electron
microscope (SEM), and infrared camera. At first, the image vector opera-
tions demonstrate sketch-like image generation and surface flaw classification.
Second, the image Poisson equation is applied to visualized magnetic field
data obtained by magnetic sensor in order to improve the spatial resolu-
tion. Third, the image Helmholtz equation makes it possible to visualize
magnetic domain dynamics of a grain-oriented electrical steel through SEM
observation. Finally, separation of the static and dynamic images from an in-
frared flow animation is accomplished by three-dimensional multi-resolution
analysis utilizing the orthonormal transformation derived from the image
equations.
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CHAPTER 1

Introduction

1.1 Background

The evolution of hardware performing computation and visualization inspires
this study to formulate image. Modern semiconductor technologies have
given high speed and performance of personal computers (PC) with reason-
able price. In the last decade, the hardware performance of PC has been
jumped up: from 66 MHz to over 3 GHz in CPU speed; from 16 MByte to
over 1 GByte in standard memory size [1,2]. For development of the hard-
ware, complicated phenomena in natural physics have been considered by
means of the numerical solutions of integral and partial differential equations.
This transfiguration enables us to analyze dynamics of three-dimensional
vector fields although enormous memory installation and CPU resources are
essentially required [3]. Thereby, computer-aided works are supporting the
human-oriented manners to design products and predict their behaviors more
efficiently [4].

On the other hand, the popularization of PC has stimulated to create
a tremendous computer network community based on the Internet. The
Internet enables us to send/receive/share binary coded data, characters, im-
ages, sounds, etc., bringing out a variety of the Web services. The advent
of the downsized mobile tools as terminals like personal digital assistants
(PDA) and mobile phones dramatically changes telecommunication scenes.
Exchanging messages, photos, and movies is being done in daily life of any-
one at anywhere. Computer network infrastructures spreading over the world
provide environment which facilitates communicating directly and instanta-
neously among places with long distances as if it were borderless. The In-
ternet has solutions to overcome distance as well as time in a quite efficient
manner.
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Whatever is performed, image is playing an important role in computer
systems with graphical user interface (GUI). The numerical calculations of
physical phenomena involves visualizing the results in order for us to grasp
what is happened. The Web-based communication receives benefit from in-
formation given as photos and movies. Consequently, visualization and im-
age handling techniques are invariably accompanied with modern computer
usage.

Imaging on computer screens may be divided into two major categories.
One is artificial illustration. The other is due to visualizing devices. The
former one has been worked out by computer graphics (CG), for instance.
CG has accomplished the frameworks to faithfully reflect objects and laid
the foundations of visualization [5,6]. Since CG makes it possible to reveal
invisibles, then many simulation software packages employ CG techniques as
their post-processing tools to display the simulated results with sophisticated
illustrations [7,8]. The latter one is carried out by cameras, microscopes,
and so on. Various kinds of visualizing devices are available at the present
time. For examples, X-ray, magnetic resonance imaging (MRI), etc., have
been utilized in medical diagnosis as professional use. Digital video cameras
employing charge-coupled device (CCD) come into wide use at relatively low
cost. The visualizing devices are capable of imaging the physical phenomena
according to their covering wavelengths, and then recording the images to PC
as digitalized data. Needless to say, applying image processing techniques
to the digitalized images assists us to clear up the visualized phenomena
effectively. Moreover, the recent data storage technology gives environment
to realize database systems constituting the digitalized images, expecting a
kind of expert systems by computers.

On the assumption that the powerful computers and visualizing devices
are available, the present study intends to develop the ultimate visualization
methodologies that make it possible to extract the rules and laws from visu-
alized physical systems. The rules and laws of the nature could be discovered
by the knowledge, experiences, etc., of human wisdom, and finally they have
been formulated, for example, with mathematical ways. This procedure is
a typical inverse problem that finds the causes from effects. The visualiz-
ing devices also measure the effects/results due to the rules and laws of the
nature. In order to extract them from data of the devices, the visualization
methodologies should take the nature of physical system into account to de-
rive the rules or laws. Thus, the present study investigates a model based on
the classical field theory for visualization.

2
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1.2 Strategy

The images obtained by the visualizing devices, so-called visualized images,
are displayed as different types like static and dynamic (animation) images.
In order to unify these various types of image in a most systematic manner,
an approach based on the classical field theory is proposed.

The classical field theory is the most important counterpart establishing
modern physics started with Newton mechanics, field problems such as theo-
ries of sound, light, and electromagnetism, resulting in solving for their field
governing equations. It has exploited the vector and variational calculus, and
led to modern quantum mechanics. The orthogonal functions representing
the solution of the field equations have led to the systematic formulation of
Hilbert space theory [9-11].

In much the same way as the formulation of modern physics, image pro-
cessing, compressing, animating, etc., are carried out by means of the field
theory. A key concept of the approach is that each of pixels representing
digital images is regarded as a kind of potentials in vector fields. As is well
known, the gradient of a scalar potential field yields a vector field. Further
spatial derivative of the vector field, i.e., the divergence, translates the vector
field into the scalar quantity called source density. Namely, the Laplacian
operation of the scalar potential field gives the source density. In electro-
magnetism, this source density corresponds to electric charge density, while
the scalar potential field corresponds to electric scalar potential field called
voltage distribution. The voltage distribution can be exactly evaluated by
solving for a partial differential (Poisson) equation having the electric charge
density as an input electric field source [12,13]. This nature is also held in
case of the images. An original image can be generated from image source
density which is derived from the Laplacian operation of the original image.
Since the Laplacian operation is the second order partial derivatives with re-
spect to the space, then the image source density conceals the constant and
first differentiable terms of the original image. This means that the original
image is compressed in terms of the image source density [14].

When the field theory is applied to an animating image, the image source
density is simply assumed to be time-dependent data. However, animating
targets on the image are not only artificial but also physical objects pro-
cessed by the visualizing devices. In such cases, the animation must reflect
the physical constraints. The approach based on the field theory is capable
of expressing the physical movements. Instead of Poisson equation for the
static images, Helmholtz type partial differential equations such as diffusion
and wave equations becomes governing equations taking the initial conditions
as well as medium parameters into account. For examples, the diffusion and

3



4 1. Introduction

wave equations generate the spreading/shrinking and vibrating/repetitive
animations, respectively. This is the same as those of the simulation tech-
nologies in computational engineering and physics [15,16]. Therefore, the
field theory unifies the animation and simulation technologies. Furthermore,
discrete mathematical strategy to solve Poisson and Helmholtz equations
yields system of equations. Modal analysis of the system of equations gives a
general solution of the governing equations. In the other words, the express-
ible information on any images is represented in terms of the characteristic
vectors based on Hilbert spatial theory.

When the field theory is applied to a color image, it reduces to solving for
a vector Poisson or Helmholtz equation, while red, green, and blue (RGB)
components, light’s three primary colors, correspond to z-, y-, and z- compo-
nents of a vector potential in Cartesian coordinate system, respectively. The
governing equations in terms of RGB components can be solved indepen-
dently under normal condition that computers treat the RGB components
as independent data. And then synthesizing their solutions recovers the color
image. Thus, the field theory processes the color images in much the same
way as those of monochrome images.

To extract the rules and laws from the visualized images, an image model
having commonly considerable ideas is essentially required. As abstracted
above, images are represented by the systematic formulation of the classi-
cal field theory which is one of the succeeded approaches to generalize in
the history of science. Numerical methods, such as finite difference, finite
element, and discretized Green’s function methods, implement practical dif-
ferential and integral calculation for the scalar and vector potential fields
representing the digital images with satisfactory high accuracy. Because of
these strategies, the results of the extraction are referred by numerical values
like images. Therefore, it is possible to work out the targets of the present
study by using computers.
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1.3 Outline

This thesis is composed of four chapters as follows: Chapter 1 introduces
the present study and outlines this thesis; Chapter 2 gives the theoretical

background; Chapter 3 shows several applications; and Chapter 4 concludes
this thesis.
Chapter 2 consists of four sections, describing theoretical background to

propose an image modeling for the visualized targets.

Section 2.1 introduces image vector operations for the images in order
to derive image equations. A key concept is that a pixel of a digital
image is treated as a field potential. Scalar and vector potential fields
represent monochrome and color images, respectively. Image vector op-
erations, i.e., the gradient, divergence, and rotation, are introduced to
derive the governing equations for the images. Poisson and Helmholtz
types of partial differential equations are considered as the image equa-
tions of static and dynamic images, respectively. The image equations
derive the system of equations from discretizations based on partial
derivative and fundamental solutions in electromagnetism.

Section 2.2 demonstrates strategies to solve the governing equation of
static images, i.e., image Poisson equation. Finite differences, finite
elements, and Green’s function schemes are investigated. How to deal
with the boundary conditions is also discussed. The image Poisson
equation results in reproducing/arranging the static images from their
own image source densities.

Section 2.3 describes the governing equations for dynamic images. Im-
age Helmholtz equation generates animation frames at arbitrary time by
means of equivalent characteristic values. A series of frame images de-
rives a set of the equivalent characteristic values from a general solution
of the image Helmholtz equation, yielding the parameters representing
dynamics of visualized systems.

Section 2.4 proposes modal-wavelet transform as a novel orthonormal
transformation for image data representation. Modal analysis of the
discretized image governing equations leads to orthonormal bases that
allow of multi-resolution analysis like that by the conventional discrete
wavelets. It reveals that the bases are free from the problems on subject
data length because of the modeling based on differential as well as
integral forms of equations.

Section 2.5 summarizes the chapter.
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Chapter 3 demonstrates several applications of the approaches, consisting
of five sections.

e Section 3.1 shows a couple of applications employing image vector oper-
ations. One is to generate sketch-like images. Calculating vector norm
distribution of the image vectors derived by the gradient or rotation
presents sketch-like images. The other is to classify shapes of surface
flaws on the welded parts of structures. Orientation of the image vec-
tors classifies into the line and circle types of flaws.

e Section 3.2 gives an application of the image Poisson equation for mag-
netic field imaging. A color image represents a magnetic vector field
measured by magnetic sensor. The z-, y-, and z- components of the
measured magnetic field are projected onto the red, green, and blue
components of the color image, respectively. Solving a set of the image
Poisson equations refines the spatial resolution of magnetic field.

e Section 3.3 deals with magnetic domain dynamics of a grain oriented
electrical steel. A series of the magnetic domain images obtained by
scanning electron microcopy (SEM) is applied the image Helmholtz
equation to visualize iron loss distribution. Global and local magneti-
zation curves, moreover the arbitrary condition of domain images can
be generated from the solutions of image Helmholtz equation. It is
described that the equivalent characteristic values obtained from a se-
ries of distinct SEM domain images are related to the parameters or
functions of the conventional magnetization models.

e Section 3.4 demonstrates an application of the modal-wavelet trans-
form. Three-dimensional multi-resolution analysis separates an in-
frared flow animation into the static and dynamic parts of the infrared
animations. Comparison with the conventional wavelets is carried out.

Chapter 4 summaries the results given in each of the chapters and de-
scribes conclusions of the present dissertation.



CHAPTER 2

Image Modeling by the Classical
Field Theory

2.1 Image Vector Operators

2.1.1 Concepts

In order to apply the classical field theory to develop an unified approach
to the images, a pixel is assumed to be a kind of potentials to derive image
equations. All images in digital computers are rectangular boxes filled with
the discretized quantities in numerical values as square blocks. They are
classified into monochrome and color images.

A monochrome image is assumed to be a two-dimensional array com-
posing the numerical values like in Fig.2.1. In other words, a pixel of the
monochrome image has one numerical value like an element in matrix of
Fig.2.1(b) representing local brightness on computer screens. This leads that
the monochrome image can be regarded as a two-dimensional scalar potential

field U:

U = f(z,y), (2.1)

where = and y denote positions in the horizontal and vertical directions on
the field, respectively. The range of the pixel values treated in computers
corresponds to the number of brightness levels depending on hardware. In
order to satisfy the generality of approach, the normalized range, i.e., the
range is in real number from 0 to 1 as shown in Fig.2.1(a), is considered in
this study.

On the other hand, a color image consists of red, green, and blue (RGB)
color components, i.e., light’s three primary colors, as shown in Fig.2.2.

7



8 2. Image Modeling by the Classical Field Theory

Namely, a set of three two-dimensional arrays, as in Fig.2.2(b), displays
the color image. In other words, a pixel of the color image consists of three
numerical values. This leads that the color image can be regarded as a vector
potential field A:

A = Agi+ Agj+ Agk, (2.2)

where Agr, Ag, and Ap represent the red, green, and blue components of color
image, respectively. Moreover, 1, j, and k denote the unit direction vectors
corresponding to the a-, y-, and z- axes, respectively. Fig.2.2(c) illustrates the
vector potential representation of Fig.2.2(a). In this case, the magnitude of a
vector corresponds to brightness of the pixel, while it corresponds to the field
intensity in physics. Fach of the RGB components partly covers the same
wavelength domain as that of the other components, however, computers
treat them as independent data. Namely, the color image can be handled
as a set of three monochrome images independently. Thus, the color image
modeling by means of the field theory is essentially reduced into the similar
operations to that of monochrome images.

The field theory started with potential representation yields vector oper-
ations, i.e., the gradient, divergence, and rotation. The gradient of a scalar
field yields vector field E. The divergence can be applied to vector field. Ap-
ply the divergence operation to the vector field E, then the scalar quantity
called source density is obtained. Moreover, the rotation can be applied to a
vector field, curing around the orthogonal directions of the vector field. These
vector operators carry out spatial derivatives in order to derive differential
equations, as well as integral equations [17].

Since the plane of an image is filled with square blocks as pixels illustrated
in Fig.2.3, then numerical approximation such as finite differences and finite
elements works out the spatial derivatives. In order to denote the specific
pixel on a monochrome image at the position (z,y), the following notation
is employed:

U= f(xv y) — Ui,jv (23)

where the subscripts ¢ and j refer to the positions on the image with respect
to the horizontal (2-) and vertical (y-) directions, respectively. The distances
between the pixels in terms of the z- and y- directions are assumed to be
the same length, therefore, the subscripts 7 and j in Eq.(2.3) refer in positive
integers. The notation for a color pixel is also carried out in much the same
way as that for a monochrome pixel:
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(a) A monochrome image

(b) Scalar potentials represented by a matrix

Fig. 2.1. Monochrome image as a scalar field (16 x 16 pixels).
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(a) A color image

red green

(b) Red, green, and blue components

blue
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x 30 Low

(c) Vector potential representation

Fig. 2.2. Color image as a vector field (32 x 32 pixels).
10
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Fig. 2.3. Pixel value arrangement in a digital image.
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12 2. Image Modeling by the Classical Field Theory

2.1.2 Image Gradient Operator

Let a monochrome image to be a scalar field U, which is a function giving a
scalar value to each point in two-dimensional space. The gradient operation,

E = VU,
J. 0.

provides an indication of how rapidly the scalar field changes in each of the
directions, where 1 and j denote unit directional vectors with respect to the -
and y- directions, respectively. The symbol V is a differential operator com-
bining the partial derivatives in terms of the variables in space. As mentioned
in Section 2.1.1, the images in digital computers are discretized. Numerical
approximation of Eq.(2.5) is considered. As illustrated in Fig.2.3, the dis-
tances in directions of the z- and y- axes, i.e., Az and Ay, are supposed to
be the same value. Furthermore, assume Az and Ay to be unit length, then
the vector E;; based on Eq.(2.5) is approximated by the following central
finite difference method [18,19]:

Ui — Uiy 5. Uiivy — U i 4.
VUM ~ 1,5 ¢ 7]1_|_ 1,5+ ]

2Ax 2Ay I
Ugr;— Uiz, Uijyr — Um‘—1j

1+

. . (2.6)

When the differentiation is carried out to the boundary value problems, the
boundary condition should be imposed. Here, the zero Dirichlet boundary
condition is supposed at the edges of the images. Section 2.2 describes how
to deal with the boundary values in detail.

Figures 2.4 and 2.5 illustrate the results of gradient in case of a dot and a
line, respectively. In Figs. 2.4(b) and 2.5(b), the gradient fields are shown as
the arrows indicating their magnitudes and directions, and the zero vectors
are shown as the dots. In Fig.2.4, it is easy to find that four arrows diverge
from the origin of the pixel having large in value. Fig.2.5 also has the same
nature as that in Fig.2.4 and it follows the superposition principle. The
gradient of a scalar field in physics fundamentally gives the arrows in entire
region. However, the gradient shown here gives some zero vectors because the
central finite difference scheme in Eq.(2.6) employs four pixels to determine
the targeting vector. In order to carry out the gradient operation more
precisely, the larger area around a pixel should be taken into account by the
higher order approximation, fundamental solutions, etc [20].

12
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Low
(a) A dot (b) Gradient vectors
Fig. 2.4. Gradient field of a dot (16 x 16 pixels).
High
» A 4
S
‘::‘«::\
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4 * «“
Low
(a) A line (b) Gradient vectors

Fig. 2.5. Gradient field of a line (32 x 32 pixels).
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14 2. Image Modeling by the Classical Field Theory

2.1.3 Image Divergent Operator

The divergence is a differential operator for a vector field, giving a scalar field.
The value of the divergence at a particular point evaluates the tendency of a
vector field to point toward the point. The divergence of a gradient field E,

VeE = Ve (-VU),

a. 0. ou, oU,
_ _ov, oY 9.
(8x1+8y).( oz 6y)7 (2.7)

translates another kind of scalar field so called source density distribution.
The practical divergence at the pixel U;; is also carried out by the same
manner described in Section 2.1.2:

1 (Up; = U U;—=Uii;
VeVl =~ ( S ’])
¢ J 2Ax 2Ax 2Ax
n 1 U1 — U B Uij —Uij
2Ay 2Ay 2Ay ’
_ L Ui =205 + Ui 4 Uijer —2U;; + Uija
4 Az? Ay? ‘

(2.8)

Let the distances Az and Ay in Eq.(2.8) to be unit length, then Fig.2.6 is
obtained from the gradient fields of Figs. 2.4(b) and 2.5(b). In the practical
calculation of the divergence, the values of the result become both positive
and negative. If a negative value is assigned to a pixel, then the normalization
of the pixel values shows the figures in this thesis. These distributions are
so-called source density which yields a scalar potential field.

It is typically found in electrostatic field that the electric charge density
makes the voltage distribution. This relation can be described by partial
differential equation, as well as fundamental solutions with Green’s func-
tions. According to Coulomb’s law, which is the representative fundamental
solution in electric field, the gradient field E is given by,

g
[

E « (2.9)
where o and r denote the source density and position vector to the source
point toward the reference points, respectively. Fig.2.7 shows the gradient
fields based on Coulomb’s law with source densities in Fig.2.6. However, the
source densities derived from the central finite difference approximation af-
fects the accuracy of the gradient fields where the original scalar fields change
rapidly. Thus, the image modeling by the field theory essentially requires
higher order approximation of the spatial derivatives for precise operations.

14
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(a) Divergence of Fig.2.4(b) (16x 16 pixels) (b) Divergence of Fig.2.5(b) (32x32 pixels)

Fig. 2.6. Divergence of the gradient fields.
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(a) Calculated from Fig.2.6(a) (b) Calculated from Fig.2.6(b)

Fig. 2.7. Gradient fields based on Coulomb’s law.



16 2. Image Modeling by the Classical Field Theory

2.1.4 Image Laplacian Operator

As described in Sections 2.1.2 and 2.1.3, the divergence of the vector field
given by the gradient of a scalar field becomes a scalar field again. This
process is referred to the Laplacian:

Ve (VU) = VU,
0*U  0*U
= — 4+ —. 2.10
Ox? + 0y? ( )
The practical Laplacian in a digital image can be carried out by the central
finite difference method. Let the distances between the pixels, Ax and Ay,
to be unit length, then the Laplacian derived from five pixel values is,

1 (Uz’+1,j —2U;; + Uiy n Usijyr —2U; 5 + Um’—l)

2 .. ~ —
Vil = 4 Ax? Ay?

1
1 (Uigr,j + Uicj + Us jpr + Us jor — 4Us )

I

(2.11)

This is the same result as Eq.(2.8). There are some discretization methods to
numerically approximate Eq.(2.10) [21]. In case of image processing based on
the field theory, numerical approximation of the spatial derivatives happends
to require higher accuracy using only the target pixel and its surrounding
ones. A nine-point finite difference formula in Eq.(2.12) is possible to meet
the request when the distances between the pixels, Az = Ay = A, are
assumed to be unit length, viz.,

1
@(Ui—l,j—l +4U;_1; + Uiy j1 +4U; 54

+4U; ji1 + Uiprjo1 + AUi1j + Ui j — 20U ),
1

E(Ui—l,j—l + AUi—1; + Uic1jp + 4Ui i

+4Ui i1+ Uigrjor 44U, + Ui jia — 20055). (2.12)

VQUZ'J ~

I

Figs. 2.8 and 2.9 show the source densities obtained by means of Eqs. (2.11)
and (2.12), respectively. The zero Dirichlet boundary conditions are set to
the edges of the images.

The Laplacian is one of the popular techniques to extract the edges of
target objects in image processing [22]. In this image modeling, the differ-
entiation of the images leads to the governing equations that constitute the
major frame part of this thesis.

16
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(a) Eq.(2.11) to Fig.2.4(a) (16x16 pixels) (b) Eq.(2.11) of Fig.2.5(a) (32x32 pixels)

Fig. 2.8. Laplacian of the monochrome images by means of Eq.(2.11).

(a) A dot (16x16 pixels) (b) Eq.(2.12) of Fig.2.5(a) (32x32 pixels)

Fig. 2.9. Laplacian of the monochrome images by means of Eq.(2.12).

17



18 2. Image Modeling by the Classical Field Theory

2.1.5 Image Rotational Operator

The rotation, another name is curl, is a differential operator for a vector field,
giving the vector field orthogonal to the original vector field. The rotation
of a vector field A is given by,

i j k
VxA = | & & 5 | (2.13)
Ar A Agp

Eq.(2.13) at a given point generates the vectors surrounding the point. When
a monochrome image is regarded as one component of the vector potential
field, then it is possible to demonstrate the nature of rotation on the images.
Let Ap, one of the vector potential component, be a monochrome image,

then Eq.(2.13) is reduced into,

0 0
VXA = | —1——]| 4s. 2.14

(ay 8:1;‘]) 5 (2.14)

The practical rotation in a digital image is also carried out by the central
finite difference method. Let the distances between the pixels, Ax and Ay,

to be unit length, then the rotation of monochrome images is implemented

by,

Agijv1— ABii1. A1, — ABic1.
v AZ . 2 3J 3J _ 3J 3J
A ( 2Ay ! 2Ax ’
Apijor — Apijor. Aoy — Aoy,
~ ( Bi,j+1 2 Bi,j 11 _ Bi+1, 2 B 17]‘]) . (215)

Figures 2.10 and 2.11 illustrate the rotational fields of a dot and a line,
respectively. In this case, the pixel value defines the positive vector potential
which is upward from the surface of page. Both of the rotational fields
shown in Figs. 2.10 and 2.11, therefore, make counterclockwise arrows. It is
obvious that the arrows trace around the pixels having the similar in value
and it follows the superposition principle as well.

There are two important mathematical relations in vector fields: One is
that the rotation of the gradient field is identically zero, and the other is that
the divergence of the rotational field is identically zero; namely,

VxVU = 0, (2.16)
and
VeVXxA = 0. (2.17)

Introduction of the image vector operations, proposed here, suggests one of
the systematic approaches to extract characteristics concerning with target
objects on the images [23,24].

18
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Fig. 2.10. Rotational field of a dot (16 x 16 pixels).
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Fig. 2.11. Rotational field of a line (32 x 32 pixels).
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20 2. Image Modeling by the Classical Field Theory

2.1.6 Image Equations

The image modeling by the potential field with the vector operations derives
governing equations.

At first, let us consider static images. The static image is the image
unchanging on computer screens. In the same way as in electrostatic field, a
static monochrome image can be represented by Poisson equation:

—eVU = o, (2.18)

where U, o, and ¢ represent a monochrome image, its image source density,

and a medium parameter, respectively [18,19]. The image source density o is

derived by the Laplacian of the monochrome image like in Figs. 2.8 and 2.9.

The medium parameter ¢ is used when image filter operations are applied.
In case of color images, the curl curl equation,

VWxVxA = vVVeA—vVA, (2.19)

represents a governing equation, since the vector potential field is employed
to represent color images. Where v is a medium parameter having the same
function as ¢ in Eq.(2.18). To solve Eq.(2.19) is quite hard task, however,
the idea of Coulomb gauge in electromagnetism:

VeA = 0, (2.20)

helps to remove this difficulty. In order to automatically satisfy Eq.(2.20),
every color pixel of the color images is defined by,

A = Ag(y,2)i+ Ag(z,2)j+ Az, y)k. (2.21)

This assumption gives that the divergence of the color images is identically
zero, namely,

o. o. 0 . .
VeA = (a_xl AT %k) o [ARr(y, 2)i + Aa(z,2)j + Ap(z,y)k],
 0Auly,2). | DAalze), | DAsle,y)
) (2.22)

Therefore, Eq.(2.19) is reduced into three independent Poisson equations in
terms of the RGB components,

—UVIA = ], (2.23)

20
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or

0*A 0*A
—I/RVQAR == I/R( al — R) == JR,

202 02

0?’Ac  0*Aq

0% A 0?A
—vpV*iAp = VB( axQB - ayzB) = Jg,

where J in Eq.(2.23) denotes color source density consisting of the source den-
sities of RGB components; the subscripts R, (¢, and B refer to the red, green,
and blue components, respectively. Thereby, the color image can be handled
as three monochrome images independently. Moreover, holding Coulomb
gauge means that the parallel computing/processing could be employed to
handle color images. A major difference between color and monochrome
images is that the color images require over three times greater size of com-
putation memory as well as CPU resources. However, this difference can be
reduced when a parallel processor machine is used. For example, if each of
the RGB components is processed in parallel like a monochrome image, then
the extra memories and CPU resources are only required to decompose and
compose the color image. This means that color images require a similar
CPU time to those of the monochrome image when using parallel processor
machines [26].

Second, let us consider dynamic images. The dynamics image, that is
to say animation, is the image consisting of some static images changing
sequentially. In general, the display of dynamic images depends on time.
Since Poisson equation represents static images, then the dynamic images can
be expressed by time dependent partial differential equations, i.e., Helmholtz
type of equations,

Lo
2 A
eVaU + 0221 Gory = O (2.25)

where «, is parameters how much effective the time derivative terms work
in the dynamic images. The first term on the left in Eq.(2.25) expresses the
spatial expanse due to the Laplacian. The second term on the left concerns
about motion of the dynamic images [25]. On the right hand of Eq.(2.25), the
source density o contains also up to the ({ —1)-times differentiable functions.
Obviously for Eq.(2.24), it is possible to independently apply Eq.(2.25) to
each of the RGB components in case of color images.

21



22 2. Image Modeling by the Classical Field Theory

2.2 Static Image Equation

2.2.1 Governing Equations

The static image, which is the image unchanging on computer screens, is rep-
resented by Poisson type partial differential equations. The static monochrome
and color images are obtained by solutions of the image Poisson equations,

VU = —o, (2.26)
and,
vWVIA = T, (2.27)

respectively. If it is possible to recover an image from its source density, then
the modeling by Eqs. (2.26) and (2.27) is held.

As mentioned in the previous section, the color image can be handled
as three independent monochrome images. Therefore, it is possible to focus
on the solution strategies for the monochrome images. Since the image is
discretized, then the numerical approximation is essentially required. This
section discusses three approaches. The finite difference and Green’s func-
tion method demonstrate to solve Eq.(2.26), or Eq.(2.27). Fig.2.12 shows
monochrome images to verify the governing equation of static images by
means of the finite differences and Green’s functions [27]. The finite ele-
ments discuss the boundary conditions on the partial differential equations
for the images.

To denote the discretized Poisson equation leading to the discretized
source density F;; at the position of pixel (i,7), it is assumed that the fol-
lowing equation:

€m‘v2Um‘ = Fm‘, (2.28)

represents the local pixels of static image. Consequently, the discretized
Poisson equation gives a linear system of equations:

(2.29)

to be solved to generate the static images, where L, U, and F represent the
coefficient matrix corresponding to the Laplacian, solution vector containing
the pixel values, and input vector corresponding to the source density —o in

Eq.(2.26), respectively [18,25,28,29].

22
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(a) A dot (16x16 pixels) (b) Lenna (128x 128 pixels)

Fig. 2.12. Test monochrome images.

2.2.2 Finite Difference Method

The finite difference method is one of the powerful strategies solving dif-
ferential equations numerically. Direct substitution of the differential terms
by finite differences derives relevant formulas from the central difference ap-
proximation, Taylor series, and so on. To carry out Eq.(2.28), the pixels on
image are assumed to be nodal points of the finite difference method. Two
types of finite difference approximations with homogeneous medium param-
eter ¢; ; = 1 are discussed in the present study.
One is a five-points finite difference formula which determines a source
density [} ; from five pixel values around the pixel U, ;,
1
Fij 1 (Uivr; +Uicrj + U jpr + Ui j — AU ) (2.30)
The other is a nine-points finite difference formula which determines a source
density [} ; from nine pixel values around the pixel U, ;,

1

F;, = 6(U¢—1,j—1 +4U 1 ; + Uiy j41 +4U; 1

+4U; jp1 + Uis1jo1 + AUig1 5 + Uigr j41 — 2005 ;). (2.31)

Figures 2.13 and 2.14 show the source densities of Figs. 2.12(a) and
2.12(b), respectively. When the numbers of pixels along with the z- and
y- directions are m and n, respectively, then the number of elements in

23
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the vectors U and F to be solved becomes m x n. Therefore, the system
matrix L in Eq.(2.29) is a square matrix having (m x n)? elements derived
by Eqgs. (2.30) and (2.31). When the Laplacians in Eqgs. (2.30) and (2.31)
are carried out, the boundary conditions should be imposed. Here, the zero
Dirichlet boundary conditions are set to the edges of the images. More
precisely illustrated in Fig.2.15, add pixels outside of the image, then the
pixel values are set to zero. After that, the Laplacian is implemented.

If Eq.(2.26) is held, then it is possible to recover the original images from
the source densities by solving the vector U in Eq.(2.29). Namely, calculating
the inverse matrices of L yields the static images. To set up the inverse
matrices is quite inefficient and requires much memories due to the sparse
matrices in case of the image differential equations. Therefore, a successive
over relaxation (SOR) method employing equi-meshed nodal points solves
these problems [21]. Figs. 2.16 and 2.17 show the recovered images from the
source densities shown in Figs. 2.13 and 2.14, respectively. When Eq.(2.29)
is solved, the zero Dirichlet boundary condition is also set to the edges of
the images in much the same way as when the Laplacian is carried out. The
correlation coefficients become 1 within computational error of 107® order in
every pair of the original images and the source densities, suggesting that
Eq.(2.26) is possible to consider as monochrome image representation.

On the other hand, the color image is represented by a vector Poisson
equation Eq.(2.27) assuming each of the RGB components to be independent
data, as expressed in Eq.(2.24). Let us consider Fig.2.18 as a test color image.
At first, the Laplacian is applied to each of the RGB components to obtain
the color source density J. Fig.2.19 shows the color source densities by
means of Eqgs. (2.30) and (2.31). The Laplacian removes the constant and
first differentiable terms so that most of part in Fig.2.19 is gray color, while
the high intensity of color pixels outlines the target, i.e., where higher rate
of pixel value variation can be seen. Second, solving Poisson equations with
the color source density recovers each of the RGB components. Finally, they
are synthesized to display the recovered color images in Fig.2.20.

In this case, assuming Coulomb gauge in Eq.(2.22), three systems of equa-
tions having the vectors U and F with order of m x n are essentially solved
when the numbers of pixels in terms of the - and y- directions are m and n,
respectively. If some relations among the RGB components are given, then
the vectors U and F in Eq.(2.29) have 3 x m x n elements at most. Thus,
the curl curl operation in Eq.(2.19) basically results in a system matrix L
having (3 x m x n)? elements.
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(a) Five-points formula Eq.(2.30) (b) Nine-points formula Eq.(2.31)

Fig. 2.13. Source densities of Fig.2.12(a) (16 x 16 pixels).

(a) Five-points formula Eq.(2.30) (b) Nine-points formula Eq.(2.31)

Fig. 2.14. Source densities of Fig.2.12(b) (128 x 128 pixels).
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Zero-value pixels

Fig. 2.15. Boundary condition for finite difference method. Extra pixels are
added to set up the boundary condition for differential operations. After the
operations, the added pixels are removed. Blue and red points represent the
original and added pixels, respectively.
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(a) Five-points formula Eq.(2.30) (b) Nine-points formula Eq.(2.31)

Fig. 2.16. Image recovery from the source densities in Fig.2.13 by finite
difference method (16 x 16 pixels).

(a) Five-points formula Eq.(2.30) (b) Nine-points formula Eq.(2.31)

Fig. 2.17. Image recovery from the source densities in Fig.2.14 by finite
difference method (128 x 128 pixels).
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Fig. 2.18. Test color image (128 x 128 pixels).

(a) Five-points formula Eq.(2.30) (b) Nine-points formula Eq.(2.31)

Fig. 2.19. Color source densities of Fig.2.18 (128 x 128 pixels).
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(a) Five-points formula Eq.(2.30) (b) Nine-points formula Eq.(2.31)

Fig. 2.20. Color image recovery from the color source densities in Fig.2.19
by finite difference method (128 x 128 pixels).

2.2.3 Green’s Function Method

As is well known, Poisson equation Eq.(2.26) has a fundamental solution:

1

U= - /ﬁ g(r)od 2, (2.32)

where (2 is the entire surface containing the source densities in Figs. 2.13
and 2.14; g(r) is Green’s function given by,

g(r) = : (2.33)

In Eq.(2.33), r denotes a distance between the source and field points [30].
Green’s function schemes are free from boundary conditions of the differen-
tial equations. However, consideration of this distance r reveals a serious

difficulty,
r—0, g(r)— occ. (2.34)

The condition Eq.(2.34) gives an integral kernel to the solution methodology
of Eq.(2.32). This is the intrinsically difficult problem always encountered
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30 2. Image Modeling by the Classical Field Theory

in the integral type of solutions. Instead of discussing this problem, the
minimum distance is supposed to be r = 1 in Eq.(2.33) to discuss the nature
of solutions employing Green’s functions. Let r(; ;) s js) denote the distance
between the reference pixel point (7, ) and the source density point (s, js).
The pixel U; ; from the source densities is recovered by means of,

m n 1
Uj = >3,

is=1 7s=1 Eis,js

g(r(i,j),(is,js))Fis,js- (235)

Eq.(2.35) gives Figs. 2.21 and 2.22 from the source densities shown in Figs.
2.13 and 2.14, respectively. Figs. 2.21 and 2.22 employ the minimum dis-
tance r(; ;) 6 = 1 to avoid the problem on the integral kernels described
above. Moreover, the medium parameter ¢ in Eq.(2.32) are homogeneous.
In Fig.2.21, the correlation coefficients between the original and the recov-
ered images are 1. However, in case of Fig.2.22, the correlation coefficients
for Figs. 2.22(a) and 2.22(b) are 0.39553 and 0.39314.

Although the rough approximation Eq.(2.34) applies to solve the integral
kernel problem, the major errors are mainly composed of the corners of image
due to the source densities given by finite difference methods. Figs. 2.21 and
2.22 demonstrate that the continuity of Green’s function ¢(r) works a smooth
and continuous potential distribution, suggesting that great possibility of
Green’s solution strategy.

On the other hand, consider the system of equations derived from Green’s
function Eq.(2.35), otherwise Eq.(2.32), then it reduces into:

GF = U, (2.36)

where the order of the vectors U and F is m x n when the numbers of pixels
along with the z- and y- directions are m and n, respectively. Moreover,
the matrix GG is a system matrix constituting Green’s function. It is obvi-
ous that the inversion of matrix (¢ is equivalent relation to the matrix L in
Eq.(2.29). This means that the inverse matrix G~! gives the Laplacian based
on Green’s function. Namely, producting G=! and U yields the source den-
sity F. Fig.2.23 shows the source densities of the test monochrome images in
Fig.2.12. Moreover, Fig.2.24 shows the recovered images from Fig.2.23 with
exact reproducibility. Fig.2.23(a) reveals that the source densities spread all
over the image, and it is similar pattern to the nine-points finite difference
approximation just around the targeting pixel. In case of the finite differ-
ence method, it is assumed that the solution can be expanded by Taylor
series. Higher order approximation of the finite difference method is realized
by considering coefficients of higher order terms on Taylor series, whereas
Green’s function strategy yields a kind of the generalized discretization for
the Laplacian that takes all the reference points into account.
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(a) Five-points formula Eq.(2.30) (b) Nine-points formula Eq.(2.31)

Fig. 2.21. Image recovery from the source densities in Fig.2.13 by Green’s
function (16 x 16 pixels).

(a) Five-points formula Eq.(2.30) (b) Nine-points formula Eq.(2.31)

Fig. 2.22. Image recovery from the source densities in Fig.2.14 by Green’s
function (128 x 128 pixels).
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32 2. Image Modeling by the Classical Field Theory

(a) A dot (16 x 16 pixels) (b) Lenna (128 x 128 pixels)

Fig. 2.23. Source density distributions by the Laplacian derived from Green’s
function.

(a) A dot (16 x 16 pixels) (b) Lenna (128 x 128 pixels)

Fig. 2.24. Image recovery from the source densities shown in Fig.2.23 by
means of Green’s function.
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2.2. Static Image Equation 33

2.2.4 Finite Element Method

A formal solution of Eq.(2.26) by the variational principle is given by mini-
mizing following functional:

W(U™) = %/ge(VU*)st - /SUU*dS, (2.37)

where s denotes the entire surface containing all of the source densities in
Figs. 2.13 and 2.14; and U* is an approximate solution interpolated by a set
of the space variables @ and y. Eq.(2.38) gives the approximate solution U*:

U =U+¢&p, (2.38)

where ¢ and ¢ are the numerical parameter and differentiable function; and
£p denotes an error, respectively. Substituting Eq.(2.38) into Eq.(2.37) di-
vides into the functionals of true and excess terms:
2
wwr) = W)+ f/(aSVU o Vo —op)ds + %/5(V<p)2ds.
(2.39)

The first variation of Eq.(2.39) gives,

N
1
= %1_1;% [/S {eVU eV —oplds + §/S§(V<p)2ds] ,
= /{5VU oV —oplds,
- (2.40)

Y

Green’s theorem rewrites Eq.(2.40) to,

ou
AW = —/go(ev?UJra)derj{@a dl,
s c Ne

= 0, (2.41)

where 0/dn. and 1 are the normal derivative and line enclosing the target
area s, respectively. Thus, the first variation of the functional Eq.(2.37) finds

eVU = —o, (2.42)
ou
o = 0. (2.43)
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Apply a triangular mesh system and the first order interpolating function of
the variables x and y for the approximate solution,

U (x,y) = a+br+cy or (1 x y)(a b c)T, (2.44)

then the first variation AW derives a system of equations, in Eq.(2.29), giving
the finite element solution of Eq.(2.26).

Figures 2.25 and 2.26 show the recovered images by the finite elements
employing zero Dirichlet boundary conditions around the edges of the images.
These images are also obtained from the source densities derived by Eqgs.
(2.30) and (2.31). In Fig.2.25, the correlation coefficients among the original
image and the recovered images, i.e., Figs. 2.25(a) and 2.25(b), are 1 and
0.99326, respectively. In case of Fig.2.26, the correlation coefficients for Figs.
2.26(a) and 2.26(b) are 1 and 0.99877, respectively. The original image used
in the demonstration of Fig.2.26 is a pixel-resampled image of Fig.2.12(b).
The coefficient matrices of L in Eq.(2.29) derived from the five-points finite
differences and the finite elements employing right-angle isosceles triangular
elements are identical. Therefore, the source densities by means of Eq.(2.30)
give exact solutions.

As is well known, the finite elements result in solving a linear system
of equations like in Eq.(2.29). Employing fine mesh systems is inefficient for
image handling because a large size sparse system matrix is always associated
with finite elements. However, one of the advantages to use finite elements
is that adaptive mesh systems can be applied to reduce the number of pixels
to be computed. An example of coarse mesh systems is shown in Fig.2.27.
Non-zero value of the source density given in Fig.2.27(b) determines where
the nodal points should be set up. In this case, the number of nodal points
can be reduced to 36.3 % of pixels in the original image.

Finite element method is also convenient to discuss the boundary con-
ditions in this image modeling because it automatically satisfies Neumann
type boundary condition expressed in Eq.(2.43). Obviously, setting the sym-
metrical boundary condition to all edge of the image gives a singular system
matrix L in Eq.(2.29), resulting in solving an ill-posed linear system [31].
Let us consider a zero-and-symmetrical mixed boundary condition to check
up the effect of boundary conditions. Fig.2.28 shows a verified set of bound-
ary conditions and the recovered image. The right side of Fig.2.28(b) where
Neumann boundary condition is imposed becomes large in pixel values. The
effect of boundary condition plainly destroys the original image. This is be-
cause the boundary condition differs from the operation of the Laplacian.
Thus, the boundary condition should be the same as that of the source den-
sity calculation.
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2.2. Static Image Equation 35

(a) Five-points formula Eq.(2.30) (b) Nine-points formula Eq.(2.31)

Fig. 2.25. Image recovery from the source densities in Fig.2.13 by finite
element method (16 x 16 pixels).

(a) Five-points formula Eq.(2.30) (b) Nine-points formula Eq.(2.31)

Fig. 2.26. Image recovery from the source densities in Fig.2.14 by finite
element method (64 x 64 pixels).
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36 2. Image Modeling by the Classical Field Theory

(a) Original image (b) Source density by Eq.(2.30)

(c) Coarse mesh system (d) Recovered image

Fig. 2.27. Coarse mesh system to recover image (16 x 16 pixels).
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Zero Dirichlet Boundary
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(a) Verified boundary conditions
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(b) Recovered image

Fig. 2.28. Verification of boundary conditions (64 x 64 pixels). The original
image is the same as that in Fig.2.26.
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38 2. Image Modeling by the Classical Field Theory

2.2.5 Image Modification

One of the attractive contents of the image modeling is that solving the
partial differential equation and Green’s function systemizes the image pro-
cessing.

At first, employing fine mesh system to solve Eq.(2.26) or Eq.(2.27) with
low resolution source densities enables to generate high resolution of images.
Figs. 2.29 and 2.30 show the demonstration of image resolution enrichment.
After Laplacian is applied to the original images in Figs. 2.12(a) and 2.12(b)
to obtain their source densities, then the image recovery is carried out. The
fine mesh system to the source densities is used to increase the number of
pixels. In these cases, the number of nodal points is increased to 150 %
when solving Eq.(2.29) with the source densities. It is obvious that the
image Poisson equation is able to change the number of pixels and smoothly
generates the images.

Second, the image Poisson equation makes it possible to change aspect
ratio of the images in much the same way as demonstrated above. Fig.2.31
shows examples of aspect ratio modification. The finite difference method
performs the modification from the source density derived by Eq.(2.31). In
these cases, the subdivision ratio of spatial stepwidths with respect to the hor-
izontal or vertical directions determines the aspect ratio of images. Although
the pixels are discretized, solving the image Poisson equation is capable of
modifying resolution as well as aspect ratio of the images according to the
partial differential equations.

Finally, a method of image emphasis/deemphasis is demonstrated. Con-
sidering the medium parameter ¢ when the image Poisson equation is solved,
then the points where the new medium parameters are reset up are targets to
be emphasized /deemphasized. Namely, the image recovery is carry out after
applying the medium parameter to each point on the source density distri-
bution. Figs. 2.32 and 2.33 demonstrate image emphasis and deemphasis
by means of the image Poisson equation, respectively. Both figures show the
arranged source densities and emphasized/deemphasized images. Fig.2.32
emphasizes around Lenna’s eyes so that the value of source density around
her eyes is amplified. The recovered image looks smoothly and accomplishes
the image emphasis. On the other hand, Fig.2.33 deemphasizes her face so
that the value of source density on her face is attenuated. The recovered
image looks also smoothly and works out the image deemphasis.

The demonstration, shown in this section, reveals that the medium pa-
rameter ¢ works as a kind of image filters that make it possible to carry out
image processing. Thus, the image source density representation systemizes
image processing.
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2.2. Static Image Equation 39

(a) Five-points formula Eq.(2.30) (b) Nine-points formula Eq.(2.31)

Fig. 2.29. Image resolution enrichment from 16 x 16 pixels-source densities
in Fig.2.13 to the images having 24 x 24 pixels.

(a) Five-points formula Eq.(2.30) (b) Nine-points formula Eq.(2.31)

Fig. 2.30. Image resolution enrichment from 128 x 128 pixels-source densities
in Fig.2.14 to the images having 192 x 192 pixels.
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(a) V:H=1:1.5
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(b) V:H=1.5:1

Fig. 2.31. Aspect ratio modification from Fig.2.12(b). V and H denote the
expansion ratios in the horizontal and vertical directions, respectively. The
resolution of the original image is 128 x 128 pixels.

40



2.2. Static Image Equation 41

(a) Arranged source density (b) Recovered image

Fig. 2.32. Image emphasis by arranged source density around Lenna’s eyes

(128 x 128 pixels).

(a) Arranged source density (b) Recovered image

Fig. 2.33. Image deemphasis by arranged source density around Lenna’s face

(128 x 128 pixels).

41



42 2. Image Modeling by the Classical Field Theory

2.3 Dynamic Image Equation

2.3.1 Governing Equations

As verified in the previous section, the static image can be represented by
the image Poisson equation. The solution of image Poisson equation gener-
ates any types of images from their image source density representation and
accomplishes image resolution enrichment, image emphasis, and compression
accompanied with the solution strategies.

On the other hand, dynamic images, i.e., animations, never work contin-
uously, but they contain a large number of static images, so-call frames, to
smoothly play back. For instance, two frames, shown in Fig.2.34, are a min-
imum set to realize a dynamic image by switching them. This means that
representation for dynamic images also relates to the governing equation of
static images. Therefore, a Helmholtz type governing equation can be con-
sidered since it includes Poisson equation itself. Helmholtz type of equations
covers most of representation for physical dynamic systems, for instance, fluid
dynamics in mechanical engineering, electromagnetodynamic field expressed
by Maxwell’s equations, Schrodinger’s equation in quantum mechanics, etc.
The image modeling proposed in the present study also results in the same
manner [25,32].

The Helmholtz type partial differential equation consists of the spatial as
well as time derivative terms. The representative Helmholtz type equation
in physical systems is as follow:

ou 0*U
eVU + Mo targs = o (2.45)

where ¢, &, a1, az, and o express the time, medium parameter, velocity
parameter, repetitive moving speed parameter, and time-dependent source
density, respectively. The Helmholtz type equation in Eq.(2.45) is classified
into two types. One is the diffusion equation when «; # 0, a9 = 0, and the
other is the wave equation when oy = 0,9 # 0. The former represents a
spreading or shrinking animation, and the latter represents a vibrating or
repetitive animation. Furthermore, when oy = 0, a3 = 0 is considered, then
Eq.(2.45) is reduced into the image Poisson equation in Eq.(2.26), meaning
that stopping animation, i.e., static images, can be obtained from Eq.(2.45).
Thereby, the image Helmholtz equation Eq.(2.45) is able to generate any
types of animation.
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2.3. Dynamic Image Equation 43

(a) Initial frame (b) Final frame

Fig. 2.34. A couple of sample images for the initial and final frames of
dynamic image (240 x 240 pixels).

2.3.2 Discretization

The dynamics image in digital computers is composed of static images se-
quentially changing with a switching time step At. Therefore, discretization
of Eq.(2.45) is also essentially required in terms of not only spatial derivatives
but also time derivatives.

For the discretization on spatial derivatives, Section 2.2 discusses how
Laplacian works in the image modeling. On the other hand, an approach of
the state variables reduces higher order time derivative terms into the first
order time derivative form. Thereby, a system of equations having the first
order time derivative term is considered.

Since L denote a coefficient matrix corresponding to the Laplacian in
Eq.(2.29), as well as Eq.(2.45), then the discretized Helmholtz equation is
given by,

[L + QT] U = F, (2.46)
ot
where T, U, and F denote the coefficient matrix corresponding to the time
derivative terms, vector representing pixel values, and input vector corre-
sponding to the source density, respectively. When the numbers of pixels
with respect to the x- and y- directions are m and n, respectively, then the
number of elements in the vectors U and F becomes m x n. However, it de-
pends on the needed order time derivatives of the image Helmholtz equation.
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44 2. Image Modeling by the Classical Field Theory

In case that the first and second order time derivatives are considered, these
vectors are constituted by 2 x m X n elements. In this section 2.3, the case of
the first order time derivative, i.e., a diffusion equation, is discussed to show
a procedure to derive a general solution for the dynamic images.

2.3.3 Modal Analysis

In order to derive a general solution of Eq.(2.46), a modal analysis is carried
out [33].

At first, apply the inverse matrix 7~! to both side of the system equation
in Eq.(2.46). Denoting T~'L as I' simplifies the time derivative term:

0
[F + —I] U = T7'F, (2.47)
ot
where [ is an identity matrix with order m x n.
Second, let us consider the following homogeneous equation:

lr+%J]U = 0. (2.48)

If the matrices L and T"in Eq.(2.46) are symmetric forms and L is a positive
definite matrix, then it is possible to evaluate the m x n-th characteristic
values and their associated characteristic vectors v;, 1 = 1,2,---,m x n. The
modal matrix M consisting of the characteristic vectors as its column vectors
is defined as,

M = [vi,Va, ..., Vinxn] - (2.49)

Third, the linear transformation of the vector U, namely,

U = MC, (2.50)

rewrites Eq.(2.48) to,
[M—IFM+%(M—11M)]C — M 'T'F, (2.51)

where

M_IFM = diag[)\l,)\g,...,)\an], (252)
MM = I, (2.53)
M7 = [g1,02s -2 Gxn) (2.54)
(2.55)

C = [C1,Ch ..., Cosnl®.
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2.3. Dynamic Image Equation 45

Thereby, the elements of vector C, C;,1 = 1,2,....,m X n, are given by the
first order differential equations:
gi

C; = ———. 2.56

Let C;(0) be an initial value of C;, then the solution C;(t) results in,

Cit) = [ci(()) - i—] ot 4 9 (2.57)

Finally, the general solution U(¢) can be obtained by means of Eq.(2.50),

U(l) = e M[U(ts) — U(ty)] + Ully), (2.58)
A = diag[M. Az s A s (2.59)

where U(tg) and U(¢z) denote the initial and final frames in animation,
respectively; and A;,2 = 1,2,...,m X n, are the characteristic values of ma-

—Atis a diagonalized state transition matrix

trix I' in Eq.(2.47); moreover, e
concerning with the time transition of animation. If the initial frame, final
frame, and relevant state transition matrix are given, then it is possible to

generate any frame of animation analytically.

2.3.4 Equivalent Characteristic Value

The general solution of the image Helmholtz equation given by Eq.(2.58)
requires a couple of frames and state transition matrix at least. Since the
medium parameters concerned with the time derivative terms are not given,
then the state transition matrix is unknown.

Here, one of the methodologies to determine the state transition matrix
from the given frames of animation is proposed. If the solution U(¢) is
assumed to be one of the frames of animation, then it is possible to determine
the elements in the matrix A by rearranging Eq.(2.58):

1 Ults + At) = U(y)

A= e T o — o

(2.60)

Substituting the matrix A into the general solution Eq.(2.58) generates the
frames of animation during tg <t < t;. Therefore, the time step At should
be less than ¢, — ts. Since the matrix A is a diagonal matrix, then Eq.(2.60)
is carried out at each corresponding pixel value of three frames of animation.
By means of Eq.(2.60), generating animation needs three frames in stead
of given state transition matrix. The matrix A, which corresponds to the
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46 2. Image Modeling by the Classical Field Theory

characteristic value matrix, can be determined from given data. Thereby, it
is called the method of equivalent characteristic value [34,35].

To demonstrate generating animation, two images shown in Fig.2.34 are
used as the initial and final frames of animation. A frame existing between
initial and final frames is approximately generated by averaged pixel values
of the initial and final frames, as shown in Fig.2.35. Fig.2.36 shows the equiv-
alent characteristic values determined by three images based on Eq.(2.60).
The position of the elements corresponds to that of the pixels. Because of
the logarithmic function in Eq.(2.60), the obtained equivalent characteristic
value become complex number. The equivalent characteristic values approx-
imate the state transition matrix e™**. In this case, the frame generated by

means of Eqs. (2.58) and (2.60) is constrained to be U(ts+At) at t = ts+At.

Fig. 2.35. Generated medium frame for ¢ = (ts + t1)/2 (240x240 pixels).

2.3.5 Generation of Animation

The method using Eqs. (2.58) and (2.60) generates the animation according
to the image Helmholtz equation. The exponential function in Eq.(2.58)
makes it possible to generate the frames continuously. In this demonstration,
the initial time ¢g and final time 7, are set to 0 and 3.0, respectively and the
medium frame shown in Fig.2.35 is the image at t = (ts 4+ t)/2 = 1.5.

Figure 2.37 summarizes transition of correlation coefficients among the
given and generated frames shown in Fig.2.38. It is obvious that Fig.2.38(f)
is equivalent to Fig.2.35 in terms of correlation coefficient. On the other
hand, Fig.2.38(i) which is generated at the final time ¢t = ¢, = 3.0 is different
from the final frame Fig.2.34(b). This is because Eq.(2.58) converges to the
final frame U(¢z) when time ¢ reaches infinity.
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2.3. Dynamic Image Equation 47

300

(a) Real part (b) Imaginary part

Fig. 2.36. Equivalent characteristic values by means of Eq.(2.60) (240 x 240
elements). Figs. 2.34(a), 2.34(b), and 2.35 are used.
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Fig. 2.37. Transition of correlation coefficients among the given and gener-
ated frames. Red, green, and blue indicate the correlation coefficients of the
initial, medium, and final frames, respectively.
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(c) t=0.75

t=1.5

t=2. t=2.5 t=3.

Fig. 2.38. Generated frames of animation by means of Eqs.(2.58) and (2.60)
(240 x 240 pixels).
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2.3. Dynamic Image Equation 49

Further verification having definite physical meaning is considered in the
imaged magnetic vector potential distribution obtained from the finite el-
ement solutions. A two-dimensional finite element analysis calculates the
magnetic field of a magnetic material. The magnetic vector potential on the
nodal points of finite elements is imaged as the contrast to make an ani-
mation. The calculated magnetic vector potential images are sampled with
a constant time interval, then the generated frames by means of the image
Helmholtz equation are compared with the finite element solutions.

The constitutive equation representing dynamic magnetic hysteresis is
given by,

w dH B 1dB
H+3dt B /,L—I_Sdlt7 (2:61)
where H, B, 1, ., and s are the magnetic field (A/m), magnetic flux den-
sity (T), permeability (H/m), reversible permeability (H/m), and hysteresis
parameter (2/m), respectively [36-39].

Let us consider a two-dimensional problem on the magnetic vector po-
tential distribution. The target to be analyzed is an infinitely long magnetic
material bar having a rectangular cross section as shown in Fig.2.39. Then
the current density is impressed as a step function to the direction perpen-
dicular to the paper space. The constitutive equation in Eq.(2.61) derives
the governing equation for the z-component of magnetic vector potential A,
(Wb/m) from the quasi-static condition of electromagnetic fields:

1 10 5 0 w0 B O
(/,L—I_Sat)VAZ_Kat (1+ Sat)AZ B _(1+ 58t)JZ7

(2.62)

where J,(A/m?) denotes the z-component of the impressed current density.
Employing the triangular finite elements with first order interpolating func-
tion subdivides the target region, and then the zero Dirichlet boundary con-
dition A, = 0 is set to the boundary of magnetic material. To solve this
second order partial differential equation, Laplace transform with state vari-
able equations is employed, calculating a transient magnetic vector potential
to generate its animation frames. Table 2.1 lists the parameters used in the
calculation.

The finite element solution from ¢ = 0 s to t = 25 s is sampled every 5s
to make an animation, then the image Helmholtz equation is applied. Three
frames of the animation derive the equivalent characteristic value matrix A
in Eq.(2.60). Define one of the periods with three sampled frames U(i —
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Fig. 2.39. Model for numerical simulation of magnetodynamics.

Table 2.1. Parameters used in the calculation.

Permeability | 500 po H/m
Reversible permeability tr | 90 o H/m
Hysteresis parameter s [1.0x107* Q/m

Conductivity £ | 1.0x10* S/m

Impressed current density J. | 1000 A/m?
Number of nodal points 441

Number of triangular elements 800
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At),U(1), and U(i + At), then the equivalent characteristic value matrix A;
in each of the periods is sequentially obtained by,

1 UG —UG+A1) ]

Ai=——1In|— , (i = 2A4,3AL. . (1 — DAL,
At UG- A) UG+ AN k (=1

(2.63)

where [ corresponds to the number of frames. The time step At is 5 s in this
case.

Figure 2.40 shows the equivalent characteristic value distributions in each
of the periods. Substituting the equivalent characteristic value matrix A; rep-
resented in Fig.2.40 into the general solution in Eq.(2.58) gives the magnetic
vector potential distributions as generated animation frames. Fig.2.41 shows
the generated magnetic vector potential distributions compared with the fi-
nite element solutions. The results shown in Fig.2.41 compare the solutions
between the sampled times. Fig.2.42 gives the correlation coefficients be-
tween the solutions of finite elements and image Helmholtz equations. It is
obvious that the method of image Helmholtz equation makes it possible to
estimate the frame at arbitrary time from sequentially given three frames.
Although the image Helmholtz equation here takes into account only first
order time derivative term, it is possible to estimate accurately the frames of
the partial differential equation having both the first and second order time
derivative terms.

Furthermore, Fig.2.40 reveals some remarkable features. At first, the am-
plitude of magnetic vector potentals is inhomogeneous on the distribution.
However, the equivalent characteristic value becomes a constant since the
same parameters and governing equation are applied in each of the triangular
elements. Therefore, the equivalent characteristic value is independent of the
amplitude/value of pixels. Second, the equivalent characteristic values ob-
tained in this verification can be classified into two cases. One is larger value,
shown in Fig.2.40(a), the other is smaller value, shown in Figs. 2.40(b)-(e).
Because of the second order time derivative, two equivalent characteristic
values can be obtained. It can be considered that the characteristic value
corresponding to the dynamics is extracted by means of Eq.(2.63). More
precisely, since the larger characteristic value represents the dynamic of fast
responce, then the dynamics during 0 < ¢ < 5 s is represented by large in
equivalent characteristic value. Figs. 2.40(b)-(e) mean that the responce con-
verges upon a steady state after ¢ = 5 s. Finally, the equivalent characteristic
value keeps a constant independent of time on the steady state.

When the image Helmholtz equation having only first order time deriva-
tive is employed, the equivalent characteristic value represents the dominated
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52 2. Image Modeling by the Classical Field Theory

dynamics during the target period and the averaged characteristic value can
be obtained. As verified above, the equivalent characteristic value is capa-
ble of extracting the dynamics from the frame of animation, suggesting that
it makes it possible to clarify the dynamics of physical systems imaged by
visualizing devices.
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Fig. 2.40. Equivalent characteristic value distributions in each of the periods.
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Fig. 2.41. Comparison between the finite element solutions and frames gen-
erated by means of the image Helmholtz equations.

0.8
0.6
04

Correlation Coef.

0.2

0 5 10 15 20 25
Time t[s]

Fig. 2.42. Correlation coefficients between the solutions of finite elements
and image Helmholtz equations.
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2.4 Orthonormal Transformation

2.4.1 Modal-Wavelet Transform

The previous sections mainly describe the governing equations for static and
dynamic images. The numerical calculation, obtained images, and correla-
tion analysis verify successfully the nature of the image modeling based on
the classical field theory. Based on the calculus, the field formulated by dif-
ferential and integral equations can be divided into modes introducing spatial
frequencies like wave propagation in waveguides. In this section, one of the
orthonormal transformations, modal-wavelet transform (MWT), is derived
from the image governing equations, described in the previous sections.
Assume any numerical data set to be the potential or source fields. A
scalar field U caused by source density o could be obtained by solving the
differential equation in Eq.(2.26). The fundamental solution in Eq.(2.32) also
gives a scalar field U from source density o. Discretization of Eq.(2.26) and
Eq.(2.32) by numerical methods derives the following system of equations:

LU = F, (2.64)
and
GF = U, (2.65)

where F and U represent the source density o and the scalar field U in the
vector forms, respectively. Moreover, [, and (G denote the coefficient matrices
derived from the Laplacian operator in Eq.(2.26) and Green’s function in
Eq.(2.32), respectively. It is obvious that [ and G~! works the same function,
yielding the source density distribution when they are applied to data sets.
Solving Eq.(2.64) or Eq.(2.65) with the source density as vector F reproduces
the original data set. As shown in Section 2.2, the image Poisson equation
with relevant boundary conditions makes it possible to recover the original
image from its source density. Therefore, it is possible to apply also to any
kind of numerical data sets [19,40].

As is well known, the matrices L in Eq.(2.64) and G in Eq.(2.65) de-
rived by available discretizing methods, e.g., finite elements, etc., become
the symmetrical as well as positive definite matrices. In case when the vec-
tor U has ¢ elements, it is possible to obtain the characteristic values A;,

1 =1,2,- -+, q, of the matrices L and G and their respective characteristic
vectors v;, 2 = 1,2, -+, ¢q. The matrix composed of the characteristic vectors
v, 1 =1,2,---,¢q, as its columns is called the modal matrix:

M, = [vi,v2,...,v,]. (2.66)
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Because of the orthogonality, it holds following relationship:
MM =1, (2.67)

where the superscript 7' refers to a matrix transpose and I, is a ¢ by ¢ identity
matrix. The modal matrix derived from the coefficient matrix L. or GG has the
same nature as those of the conventional discrete wavelet transform (DWT)
matrices [41,42].

Figure 2.43 illustrates the potential distributions given by the character-
istic vectors constituting the matrix M, in case of a two-dimensional data set
model. Consider a two-dimensional rectangular region governed by Eq.(2.26),
then a coefficient matrix L in Eq.(2.64) is constructed by the finite element
schemes. The orthonormal matrix M, derives from the characteristic vectors
v; constructed from the coefficient matrix L. The characteristic vectors illus-
trated in Fig.2.43 are linear independent, representing the respective modes
in terms of the data set space [13]. A linear combination of the characteristic
vectors v; provides with the two-dimensional shapes as possible in a given
data set, just corresponding to the multi-resolution orthonormal decompo-
sition of conventional DWT. Hence, MWT proposed here is to employ the
modal matrix as wavelet-like transform matrices to carry out orthonormal
transformation.

2.4.2 Frequency Characteristics

The MWT matrices can be derived by various methods of discretizations.
The MWT matrices introduced here are classified into two types. One is dif-
ferential equation type assumed a subject data set to be a potential field. The
other is integral expression type assumed a subject data set to be the field
source distribution. At first, let us consider MWT derived from a differential
equation. The simplest system matrix L can be obtained by one-dimensional
Laplacian operation approximated by an equi-spaced three points finite dif-
ference. Namely, the matrix L in Eq.(2.64) is given by

0*U

Ox? =

ViU = oot —2U, +Uppy, z=1,2,---,q, (2.68)
where the distance of two adjacent data is assumed to be 1. Then, applying
the Jacobi method yields a modal matrix M, in Eq.(2.66) [43]. Therefore, the
dimension of matrix M, depends on the number of subdivision of Eq.(2.68).
This means that it is possible to generate an optimal basis having the same
data size as that of the subject. In the Laplace partial differential equation,
two types of boundary conditions should be considered, i.e., the Dirichlet-
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56 2. Image Modeling by the Classical Field Theory

() (k) (1)

Fig. 2.43. Images represented by characteristic vectors [30 x 30 pixels (¢ =
900)] . (a)-(f) vi-ve having the lower level of characteristic values. (g)-(1)
v,_5-V, having the higher level of characteristic values.
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2.4. Orthonormal Transformation 57

and Neumann- type boundary conditions. Figs.2.44(a) and 2.44(b) illustrate
typical MWT matrices based on one-dimensional differential equation with
the Dirichlet- or Neumann- type boundary condition. As shown in Figs. 2.45
and 2.46, the bases constrained by the Dirichlet- and Neumann- type bound-
ary conditions become odd- and even- functions, respectively. The bases of
MWT look like sinusoidal functions, however, the bases are not composed
of the single frequency component. Moreover, the elements constituting the
transform matrices never become the complex numbers like the Fourier trans-
form, suggesting that effective multi-resolution analysis can be carried out.

Second, let us consider MW'T derived from integral expression. A three-
dimensional Green’s function g(r) in Eq.(2.32) is considered. However, the
three-dimensional Green’s function takes infinity when ¢(0) due to integral
kernel. In order to remove this difficulty the matrix G in Eq.(2.65) is given
by assuming the minimum distance r;; = 1, thus,

.
g(r) ~ {1 PFI =12 j=1,2 0, (2.69)
=
where the subscripts ¢ and j refer the source and reference points, respec-
tively. Thereby, r; ; represents the distance between them. Since the system
matrix derived from Eq.(2.69) becomes symmetrical, then the Jacobi method
can be applied to obtain its modal matrix in much the same way as the MWT
matrix based on differential equation. Figs. 2.44(c) and 2.47 show the MW'T
matrix and its bases. They have the similar patterns to that of the MWT
matrix derived by imposing the Dirichlet boundary condition. Fig.2.48 shows
a comparison between the MWT and Daubechies 2nd order wavelets along
with the spectrum of Fig.2.12(b). In Fig.2.48, the left-bottom and right-top
corners in each image correspond to the fundamental and the highest har-
monics components, respectively. The transform matrix is non-orthogonal
to the subject data set, then the major spectrum concentrates around the
mother wavelets that are the spectra concentrated around the left-bottom
corner of images in Fig.2.48. It is also the same nature as the cases when the

higher order DW'T are applied.

2.4.3 Image Compression

To compare with the conventional DWT, image compression is carried out.
At first, apply MWT or DWT to Fig.2.12(b), then the spectrum are obtained.
Second, neglecting higher level of obtained spectrum compresses the original
data quantity. Finally, image recovery is performed by inverse MWT or
DWT. To apply various compression ratios reveals the image recoverability

of MWT or DWT.
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T~

60

60

Fig. 2.44. Modal-wavelet transform matrices (64 x 64 elements). (a)
Dirichlet-type boundary condition. (b) Neumann-type boundary condition.
(c¢) Green’s function-type. (d) Daubechies 2nd order.
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Fig. 2.45. Elements of the row vectors in the matrix shown in Fig.2.44(a)
and their Fourier amplitude spectra. (a)-(d) The first-forth row vectors.
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Fig. 2.46. Elements of the row vectors in the matrix shown in Fig.2.44(b)
and their Fourier amplitude spectra. (a)-(d) The first-forth row vectors.
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Fig. 2.47. Elements of the row vectors in the matrix shown in Fig.2.44(c)
and their Fourier amplitude spectra. (a)-(d) The first-forth row vectors.

Figure 2.49 shows the comparison of image recovery from 25 % com-
pressed image of Fig.2.12(b). MW'T of Dirichlet-, Neumann- and Green’s
function- types compares with Daubechies 2nd order. Correlation coefhi-
cients of Figs. 2.49(a)-(d) are 0.889, 0.935, 0.930, and 0.887, respectively.
The recovered image of the Daubechies 2nd order DW'T looks like when the
pixels are resampled, whereas the other results show smooth images accord-
ing to the frequency characteristics of bases. However, the image recovered
by the Dirichlet-type MWT, as shown in Fig.2.49(a), has stripe-like patterns
along with the frame/edge of image and gives a relatively low correlation co-
efficient with the original image. The transform matrix of the Dirichlet-type
MWT illustrated in Fig.2.44(a) has no constant term which gives an aver-
aged image. This means that the spectrum must cover wide frequency ranges
to represent the avaraged image. It is confirmed that the spectrum shown
in Fig.2.48(a) spreads over higer frequency levels. Therefore, the Dirichlet-
type MW efficiently divides the subject data set without constant term
into the orthogonal data sets. MWT of the Neumann- and Green’s function-
types has the functions covering constant terms as the first level of bases as
shown in Figs. 2.46(a) and 2.47(a), meaning that the avaraged images can
be accurately represented by several spectra. Therefore, Figs. 2.48(b) and
2.48(c¢) have higher density of the spectra around the lower frequency range,
resulting in the high correlation coefficients of the recovered images.
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2.4. Orthonormal Transformation 61

Fig. 2.48. Wavelet spectra of Fig.2.12(b) (128 x 128 pixels). (a) MWT with
Dirichlet boundary condition. (b) MW'T with Neumann boundary condition.
(¢) MWT with Green’s function. (d) Daubechies 2nd order.
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62 2. Image Modeling by the Classical Field Theory

On the other hand, the recovered images of MW'T are smooth like when
applying a higher order of DWT matrix. The correlation coefficients versus
compressed ratios of the MWT and DWT in Fig.2.50 suggest a fairly good
recoverability of MWT. Although higher order DWT is applied, for example,
Coifman’s 30th order yields the low accuracy of recoverbility in less than the
compression ratio of 5 %. This is because DW'T strictly classifies orthogonal
data sets as wavelet levels. It should be noted that MW is capable of higher
recoverability when having poor data quantity since the transform matrix of
MWT only depends on the subject data length. Thus, efficient data com-
pression can be performed by MWT. Moreover, MWT has infinite number
of combinations to derive the transform matrices and bases. Therefore, it is
possible for users to derive optimal bases and realize bases having arbitrary
characteristics based on the idea of the classical field theory.

2.5 Summary

This chapter has described the theoretical background of the image modeling
based on the classical field theory. Assume a pixel representing digital images
to be a kind of field potentials, then the image handling methodologies and
its mathematical formulation can be achieved.

At first, scalar and vector potentials represent monochrome and color
pixels, respectively. Introducing Coulomb gauge to color images reduces into
considering three independent monochrome images.

Second, the image vector operations, i.e., the gradient, divergence, and
rotation, are introduced by the finite difference approximation, leading to
the image governing equations and the solution strategies for them. Poisson
and Helmholtz types of partial differential equations are considered as the
image governing equations of static and dynamic images, respectively.

Third, the image govering equations and their solution are described. The
image Poisson equation, which is the governing equation for static image,
is demonstrated by finite differences, finite elements, and Green’s function
schemes. It shows that the static images can be generated by the solution
of the image Poisson equation with image source densities. How to set the
boundary condition is of importance to recover images correctly. Rearranging
image source density derived from the Laplacian of target image has versatile
capability to process the image. On the other hand, the image Helmholtz
equation, which is the governing equation for dynamic image, generates the
animation frame at arbitrary time. Modal analysis of the image Helmholtz
equation derives a general solution. It reveals that two frames of animation
and a state transition matrix are essentially required to generate animations.
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(c) (d)

Fig. 2.49. Comparison of image recovery from the 25 % compressed image
of Fig.2.12(b) (128 x 128 elements). (a) Dirichlet-type boundary condi-
tion. (b) Neumann-type boundary condition. (c) Green’s function-type. (d)
Daubechies 2nd order.
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Fig. 2.50. Correlation coefficients vs. compressed ratios of the image data
Fig.2.12(b). Neumann-, Dirichlet-, and Green’s function- types of MWT
and Daubechies 2nd, Daubechies 16th, and Coifman 30th order DW'T are

evaluated.

In order to overcome this difficulty, the method of equivalent characteristic
value is proposed to determine the state transition matrix from the given
three frames of animation. The time-discretized frames of animation can be
converted to continuous functions by means of the equivalent characteristic
values.

Finally, modal-wavelet transform is proposed as a novel orthonormal
transformation for image data representation. Modal analysis of the dis-
cretized image governing equations leads to orthonormal basis functions hav-
ing the nature of both wavelet and Fourier transforms. Image data compres-
sion performs fairly high efficiency comparing with those of the conventional
discrete wavelets.

This image modeling is just corresponding to modeling in physical fields.
Thus, the image analysis based on this image modeling can be carried in a
quite efficient manner when applying to the physical systems.
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CHAPTER 3

Applications in Visualized Fields

3.1 Vector Analysis in Static Images

3.1.1 Sketch-like Image Generation

One of the applications using the image vector operations is to draw sketch-
like images by computers. The image vector operations in Section 2.1 are
capable of generating the sketch-like images by calculating vector magnitude
at each position [18,24]. When a monochrome image is regarded as a scalar
field U, then the image gradient operation gives vector field. On the other
hand, the image rotation operation can be applied when a monochrome image
is assumed to be one component of vector potential field.

Figure 3.1 illustrates the gradient and the rotation of the monochrome
image shown in Fig.2.12(b). The arrows in Fig.3.1(a) point to the point
across the contours supposed on the image. In case of Fig.3.1(b), the arrows
tend to trace along with the contour lines. The vector magnitudes of the
obtained vectorized fields derive the sketch-like images.

Figure 3.2 shows the results of sketch generation. After taking the square
roots of the image vectors, the contrast of image is reversed. Since the diver-
gent and rotational fields are orthogonal each other, then the similar sketch-
like images can be generated. It reveals that the image vector operations
accomplish automatic sketch generation by using computers.

When this methodology is applied to a color image, it is possible to gen-
erate the colored sketch-like image. Fig.3.3 shows the result of sketch genera-
tion in case of a color image. According to the image modeling of this study, a
color image are reduced into three independent monochrome images. Sketch-
ing for Fig.3.3 is carried out in each of RGB components independently, after
that they are synthesized to display.
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a) Color 1mage b) Color sketch-like image
(a) g g

Fig. 3.3. Colored sketch-like images (128 x 128 pixels).

3.1.2 Flaw Shape Classification

The image vector operations provide an effective methodology in flaw inspec-
tion. In the large-scale metal structures, especially in case of nuclear power
stations, non-destructive inspection is of paramount importance. The major
way to carry out is visual testing (VT) which is just to be seen by human
eyes. Due to the radio-activated area, industrial robots carrying CCD cam-
eras play role in helping prompt inspections. Therefore, VT needs effective
systems in order to classify the conditions on target surfaces.

An example of the flaw classification on weld parts is demonstrated here.
There are two typical flaws to be classified [23]. One is circular type de-
fects originated from the quality of welding. The other is line type defects
concerning with cracks after assembling. Figs. 3.4 and 3.5 show the CCD
images of the circular and line type defects, respectively. The right columns
of these figures illustrate the rotational vector operation of the CCD images.
The image vectors emphasize the contour lines concerning with the major
defects.

To classify the type of flaws, the angles of image vectors are investigated
by weighted histogram. Calculating both angles and magnitudes of the im-
age vectors gives the weighted histograms shown in Figs. 3.6 and 3.7. In
these histograms, the horizontal- and vertical- axes correspond to the vector
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angles and total of vector magnitudes, respectively. The weighted histogram
emphasizes the angle of vectors having high intensity in magnitude. The
line type defects are characterized by peak distributions around 90 degrees
indicating vertical direction. On the other hand, the distribution of circular
type defects covers wider range than that of the line type defects. It reveals
that the shape of flaws can be classified by the distribution of vector direc-
tions. It should be noted that the peaks observed at +£45 and +135 degrees
in any type of defects. This is because the nature of centeral finite difference
method in Eq.(2.15) to generate the image vectors.

3.1.3 Summary

This section has demonstrated a couple of applications employing the image
vector operations.

One is to generate sketch-like images. Applying the image vector op-
erations to the images derives a kind of contour lines from differentiation.
Magnitudes, as well as directions of the image vectors make it possible to
generate the sketch-like images. Moreover, the colored sketch image can be
generated from independently evaluated sketches in each of RGB compo-
nents. The results of sketch image generation suggest that the image vector
operations may work out some of the human-oriented tasks.

Another application is concerned with non-destructive testing. Applying
the image vector operations to the images given by VT makes it possible
to classify the shapes of surface flaws on the welded parts of structures.
Orientations, as well as magnitudes of the image vectors classifies tested
images into the line and circle types of flaws.

The image vector operations of visualized fields have a variety of appli-
cations to solve the problems associated with characteristic of spatial distri-
bution.
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Fig. 3.4. Circular type defects on weld parts and rotational image vectors
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(c) No.3

Fig. 3.5. Line type defects on weld parts and rotational image vectors (480
x 512 pixels).
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3.2 Magnetic Field Imaging

3.2.1 Field Visualization by Color Image

This section proposes a novel methodology to visualize the electromagnetic
vector fields by means of the image Poisson equations.

The electromagnetic field data visualizing precise distribution essentially
requires enormous data quantity, because the electromagnetic field spreads
into the space around electronic devices with infinitely high-resolution. In
order to handle such electromagnetic field data efficiently, two approaches
may be considered. One is an inverse solution approach, which recovers elec-
tromagnetic field distribution from its electromagnetic field source evaluated
as a solution of inverse problem. The other one is to employ a digital image
handling technique. As described in Section 2.2, the image Poisson equation
is possible to generate the high-resolution image from the image of low res-
olution source density, Thereby, the spatial resolution of the measured data
can be improved by solving for the image Poisson equation.

In order to apply this methodology, a three-dimensional vector field on
a plane like in Fig.3.8(a) is represented by a color image as demonstrated
in Fig.3.8. Namely, the z-, y-, and z- components of vector fields in Carte-
sian coordinate system are projected onto the red, green, and blue (RGB)
components of the color image, respectively. For example, the projection of
the vector components shown in Fig.3.8(b) to the RGB components of color
image visualizes the vector distribution by the color image. Conversely, the
color image in Fig.3.8(c) is represented by the vector distribution. The mea-
sured magnetic field always shows poor resolution like in Fig.3.8(c), however,
applying the image Poisson equation improves the resolution of image from
source density approach.

Figure 3.9 shows the practically measured magnetic field on a DC/DC
converter utilizing a film type transformer [44-46]. Magnetic vector field is
measured on the transformer by solenoid coil in each of directional compo-
nents. The number of measured points is 32 by 32 in z- and y- directions
with measuring interval of 5 mm. The measured field is imaged in much the
same way as that in Fig.3.8.

3.2.2 Spatial Resolution Refinement

To refine the measured data, the image resolution enrichment of the image
Poisson equation is applied to the colored image in Fig.3.8.

At first, the Laplacian described in Section 2.1 is applied to each of the
RGB components of color images in order to obtain the image source densi-
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(b) #,y,andz components of the vector field

1 5 10 15

(c) Imaged by color image (16 x 16 pixels)

Fig. 3.8. Vector field imaging by color image.
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(a) DC/DC converter utilizing a film type transformer
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(b) z, y, and z components of the measured magnetic field

(c) Measured magnetic field and imaged by color image (32 x 32 pixels)

Fig. 3.9. Magnetic field distribution on a DC/DC converter.
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ties. Second, solving for three image Poisson equations, i.e., in each of the
RGB components, recovers the RGB components of the color image. Finally,
synthesizing the RGB components gives the recovered color image to display.
When the same number of nodal points as that in the Laplacian operation
is used to solve the image Poisson equations, the original color image can
be obtained with quite high accuracy. When the number of nodal points is
changed to solve the image Poisson equations, it is possible to change the
resolution of the image.

In order to check up validity of this methodology, accuracy of refinement
is evaluated with discarded color images of the measured magnetic field. In
other word, the pixels in Fig.3.9(c) are simply resampled to make low res-
olution images. Fig.3.10 shows the low resolution color images generated
from Fig.3.9(c). Carry out the Laplacian of each image in Fig.3.10, then the
low resolution image source densities are obtained. Employing the fine mesh
system corresponding to 32 x 32 pixels yields the recovered images with 32
x 32 pixels. Fig.3.11 shows the results of image enriched resolution for the
measured magnetic field. Moreover, the recovered vector fields corresponding
to Fig.3.11 are illustrated in Fig.3.12. The nine-point finite difference for-
mula of the Laplacian is employed here. The correlation coefficients between
Fig.3.9(c) and Figs. 3.11(a)-(d) are 0.930, 0.901, 0.822, and 0.503, respec-
tively. Fig.3.13 summarizes the correlation coefficients versus the number of
pixels. Although 25 % of the original number of pixels, image recovery with
the image Poisson equation achieves over 0.9 of correlation coefficient. It is
remarkable that the correlation coefficient over 0.5 can be obtained from only
1.56 % of the original number of pixels. This is because the image modeling
by the classical field theory just corresponds to the same mathematical back-
ground as electromagnetic field. An optimal interpolation can be realized by
solving for the image Poisson equation.

3.2.3 Summary

This section demonstrates a methodology of measured data improvement by
means of the image Poisson equation.

The source representation for the imaged magnetic field is capable of
improving the resolution of the original field. Setting the required nodal
points to the source density enables to change the resolution of image freely.

The methodology is verified by comparing with the practically measured
field. As a result, 25 % of the original number of pixels is possible to recover
the original resolution of field having 0.9 in correlation coefficient. It is
shown that the image modeling by the classical field theory is one of the
quite efficient image handling approaches in this kind of visualized physics.
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(a) 16x16 (b) 11x11
(c) 8x8 (d) 4x4

Fig. 3.10. Imaged magnetic fields with low resolutions.

77



78 3. Applications in Visualized Fields

—

(a) From 16x16 to 32x32 (b) From 11x11 to 32x32

(c) From 8x8 to 32x32 (d) From 4x4 to 32x32

Fig. 3.11. Magnetic fields enriched resolution from the imaged magnetic fields
with low resolutions in Fig.3.10.
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(c) From 8x8 to 32x32 (d) From 4x4 to 32x32

Fig. 3.12. Recovered magnetic vector fields.
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Fig. 3.13. Correlation coefficients between the imaged original field in

Fig.3.9(c) and recovered fields.
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(a) From 32x32 to 64x64 (b) From 32x32 to 128x128

(c) From 32x32 to 192x192 (d) From 32x32 to 256256

Fig. 3.14. High resolution magnetic field generation from the measured mag-

netic field shown in Fig.3.9(c).
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3.3 Magnetic Domain Dynamics

3.3.1 SEM Images of GO Steel Sheet

As an application of the image Helmholtz equation, this section deals with
magnetic domain images (Fig.3.15) obtained by a scanning electron micro-
scope (SEM) to analyze magnetic domain dynamics and visualize iron loss.
The understanding of magnetic domain behaviors such as domain structure
and boundary displacement leads to the quality evaluation of magnetic ma-
terials [47]. Since the domain observation visualizes magnetized states as
the contrast of images, then investigation on microscopy-based measurement
such as Kerr effect has been spurred [48,49]. Heretofore, experts could only
accomplish iron loss evaluation from the domain observation based on elabo-
rate analyses. This background stimulates the image Helmholtz equation to
provide an effective means to visualize and to quantify the local iron loss as
well as the domain motion dynamics [50-53].

Apply the image Helmholtz equation to the observed domain images,
then iron loss distribution is visualized from a series of distinct magnetized
domain images. The state transition matrix by means of equivalent charac-
teristic values represents the characteristic values of physical dynamic system
visualized by finite number of images as an animation. In this magnetic do-
main image analysis, assuming the averaged contrast of domain image as an
entire flux density leads that the characteristics of domain motion deduces
from the state transition matrix.

Fig.3.15 shows the SEM magnetic domain images of a grain-oriented elec-
trical steel under the distinct magnetized states [54]. The specimen is the
ORIENTCORE HI-B (Nippon Steel Corporation product) without surface
coating and its thickness is 0.23 mm. Fig.3.16 shows the SEM device used
to the magnetic domain observation. It employs the backscattered electron
(Type-11) to image the patterns of magnetization [47]. The observation is
carried out at 160-kV acceleration voltage. At this condition, the domain
patterns about 10 gm depth from the surface of specimen could be visual-
ized as shown in Fig.3.15 [55]. The external field is applied to the rolling
direction with sloping excitation. Fig.3.16(b) shows the sample holder in the
SEM device. To produce the external field, the sample holder has a magnetic
yoke with the exciting coils under the specimen as illustrated in Fig.3.16(c).
The conditions of domain image measurement used here are listed in Table

3.1.
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(e) 30.23A/m, 1.78T (f) 54.59A /m, 1.84T

(h) 115.4A/m, 1.88T (i) 160.69A /m, 1.9T

() 236.32A/m, 1.92T (k) 324.31A/m, 1.95T (1) 269.64A /m, 1.95T

Fig. 3.15. Magnetic domain images of a grain-oriented electrical steel ob-
served by high-voltage SEM (100 x100 pixels, 0.1 mm/pixel). The vertical
direction is the rolling direction and applied external field axis.
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Electron beam

(a) Exterior of SEM device

Specimen

Yoke for excitatio;!.’_ : @ e

(b) Sample holder

Electron beam
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\
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<—» :Axis of easy magnetization

Yoke

(c) Magnetic circuit

Fig. 3.16. SEM device for magnetic domain observation.
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Table 3.1. Condition of observed SEM domain images. (H:Applied magnetic
field intensity, B:Flux density)
| No. | # [A/m] | B[T] | No. | H[A/m] | B[T] | No. | H [A/m] | B [T] |

1 0.00 | 0.00] 9 160.69 | 1.90 || 17 28.53 | 1.83
2 285 0.10 | 10 236.32 | 192 18 3.73 | 1.77
3 9.26 | 1.63 | 11 324.31 1.95 || 19 0.00 | 1.73
4 24.16 | 1.73 ] 12 269.64 | 1.95 | 20 -4.60 | 1.73
5 30.23 | 1.78 | 13 214.13 | 193] 21 -5.95 | -0.06
6 54.59 | 1.84 || 14 160.37 | 1.92 || 22 -7.45 | -1.43
7 84.92 | 1.86 || 15 98.68 | 1.91 || 23 -9.07 | -1.56
8 115.39 | 1.88 || 16 54.66 | 1.84 || 24 -11.50 | -1.62

3.3.2 Visualization of Magnetic Domain Dynamics

Suppose that a domain image as Fig.3.15 consists of a two-dimensional scalar
field U, and then the dynamics of domains can be represented by the image
Helmholtz equation. In magnetized state, since the domain motion is caused
by applied external field H, then the image Helmholtz equation takes into
account the first derivative term of the applied external field H:

oU
2 _— = —
Vv U—I—oza o (3.1)

where o and o denote a domain motion parameter and an image source
density given by the Laplacian of the final domain image, respectively. In
Eq.(3.1), the parameter « is unknown. Calculation of the parameter « is the
key to visualize the characteristic of domain motion dynamics as well as iron
loss generating parts.

According to Section 2.3, a general solution of Eq.(3.1) is reduced into:

U(H) = e [U(Hs)— U(Hyp)] + U(Hp), (3.2)

where U(Hs) and U(Hy) denote the initial and the final domain images,
respectively. Because of the parameter a in Eq.(3.1), the state transition
matrix e™*# in Eq.(3.2) is unknown as well. It is essentially required to
determine the elements of the state transition matrix from the given domain
images.

If the solution U(H) in Eq.(3.2) is given as one of the domain images,
then, it is possible to determine the elements of matrix A, the equivalent
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characteristic values, as the same manner as Eq.(2.60), i.e.,

1
A=— ln[

(3.3)

U(H) - U(Hr) ]
AH '

U(Hs) — U(Hy)

Since the matrix A is a diagonal matrix as described in Section 2.3.3, then
Eq.(3.3) is carried out at each corresponding pixel value of three distinct
domain images. Thereby, the elements in the -th matrix A;, are determined
from a series of three distinct domain images:

1 " [U(i +1)-U( +2)]
Hiyy — H, UG)—-UG+2) |’

Ai=— (3.4)

where U(2) refers to the i-th SEM domain images listed in Table 3.1. Finally,
substituting Eq.(3.4) into Eq.(3.2) gives the solution with piecewise linear
approximation.

3.3.3 Visualization of Iron Losses

As is well known, the state transition matrix of state variable equations rep-
resents the physical parameters and/or constants of the dynamic systems.
Similarly, the state transition matrices A; derived from a series of domain
images by means of Eq.(3.4) is possible to extract the parameters represent-
ing domain dynamics of magnetization region from H; to H;1;. Due to a
logarithmic function in Eq.(3.4), various cases of the element in the matrices
A; should be discussed. Let us consider an pixel U(z) in the i-th frame of SEM
domain animation with Eq.(3.5), which is the value under the logarithmic
function in Eq.(3.4):

Ui+1)=U(i +2)
U(i)—U(i +2)

fi (3.5)

Case 1: f; > 1 The logarithmic function takes a positive real number or
zero. Such an element in the matrices A just represents attenuation or
no change term even though Eq.(3.1) is held.

Case 2: 0 < f; <1 The logarithmic function takes a negative real number.
Such an element in the matrices A represents divergence term.

Case 3: f; =0 Thelogarithmic function becomes indeterminate. This means
that the pixel values U(: 4+ 1) and U(i 4 2) are identical not holding
Eq.(3.1), i.e., the pixel value takes a constant during the state transi-
tion.
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Case 4: 0 > f; > —1 Thelogarithmic function takes a complex number com-
posing of the negative real and positive imaginary parts. This imagi-
nary part means the phase lag to the variable H. Thus, iron loss can
be visualized as in this case.

Case 5: f; <1 The logarithmic function takes a complex number compos-
ing of the positive real and imaginary parts. This complex number
means the phase lag to the variable H. Thereby, iron loss can be visu-
alized as the same as Case 4.

Fig.3.17 shows the elements in the matrices A;. The arrangement of the
elements is the same as the domain pattern in Fig.3.15. The elements become
complex numbers due to the logarithmic function in Eq.(3.4). The real and
imaginary parts represent in-phase and 90 difference phase components to
the applied field, respectively. Namely, visualization of iron loss generating
parts can be accomplished by the imaginary part of the matrices A;.

At first, let us consider the real parts of the matrices in Fig.3.17. In the
weak field, the moving parts of the negatively magnetized parts (black parts
in Fig.3.15) relatively take larger in value. This magnetization process is
mainly carried out by the magnetic boundary displacements [left hand side
(LHS) of Fig.3.17(a)] and magnetic domain movements [LHS of Figs. 3.17(b)
and (c)]. Increasing the field, the magnetization process by domain move-
ment is finished. The elements in the matrices correspond to the rotation
of magnetization [LHS of Figs. 3.17(d)-(g)]. In highly magnetized state, the
elements shown in the LHS of Fig.3.17(h) takes relatively small in value due
to saturation.

Second, consider the imaginary parts of the matrices in Fig.3.17. In the
weak field, the real part of this region corresponds to the magnetic boundary
displacement. However, in case of imaginary part, the elements in the right
hand side (RHS) of Fig.3.17(a) are close to zero. This means that the mag-
netic boundaries move without delay components. In RHS of Fig.3.17(b)-(d),
the values represent at the grain boundary. This is considered to be the fric-
tion among the grain boundaries. Increasing the field results in the closure
domains. In this region, these elements are then related to iron loss [RHS of
Fig.3.17(d) and (e)]. Moreover, in highly magnetized state as in Fig.3.17(h),
magnetization proceeds at the closure domains although the saturation. The
iron loss in this region can be visualized at these kinds of domain parts.

3.3.4 Comparison with Magnetization Models

In the references [37] and [56], relationship between the flux density B and
field H has been clarified by a constitutive equation containing Preisach
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(€) 30.23 < H < 54.59 A/m (f) 54.59 < H < 84.92 A/m

(g) 84.92 < H < 115.39 A/m (h) 115.39 < H < 160.69 A/m

Fig. 3.17. Visualization of iron loss by means of the equivalent characteris-
tic values determined from three distinct SEM domain images (100 x 100
elements).
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function W:

1 1dB

H+H. = —B+ ———, 3.6
+ 1 +\I/dH (3.6)

where H, and H. are applied and coercive fields, respectively; p is perme-
ability. In addition, their intensive numerical and experimental works have
verified the validity of Eq.(3.6). According to the reference [56], an analytical
solution of Eq.(3.6) assuming the constant g and ¥ gives,

U
B = pH+ [Bo — pti] exp(—ﬁﬂ),
= By +[Bo— Bylexp(=AH), (3.7)

where By and By are the final and initial flux densities, respectively; and
A is characteristic value. When the three magnetic flux densities B;, B;y1,
and B;is as the domain images during the field change AH;, Eq.(3.7) can be
rewritten by,

Bi-l—l = BH_Q + [BZ — BH_Q] exp(—)\AHi). (38)
Hence, modifying Eq.(3.8) gives Preisach function:

_ o4 In Bi—l—l_Bi—I—Z
AH; Bi— Biya |’

U= pd= (3.9)

Eq.(3.9) is just the same expression as equivalent characteristic values. The
matrix A corresponds to ¥/u. Assuming constant g and W during H; <
H < Hi1, A; obtained by means of Eq.(3.4) makes it possible to repre-
sent Preisach function of its magnetization region with piecewise linear ap-
proximation. Moreover, the relation between Preisach function ¥ and the
hysteresis paramater s shown in Eq.(2.61) is given by,

OH

s = V¥ T (3.10)
Therefore, the dynamics of magnetization can be evaluated by means of the
equivalent characteristic values when the applied field distribution is given.
Because Preisach function W is the rate of change of permeability to the
applied field [57, 58], taking a large value in the real and imaginary parts of
matrix A means that the rate of change of permeability to the applied field H
is large, thereby, such a process is non-linear in the applied field. Conversely,
a small value of A means that the rate of change of permeability to the

applied field becomes small and results in linear magnetization processes.
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3.3.5 Dynamic Domain Image Generation and Global
Magnetization Curve

Substituting the matrices A of Eq.(3.4) into Eq.(3.1) yields domain images
as the solution U(H ), namely,

1 ln[U(ifl)—U(i+2) ]H

U(H) = e "oi-ome W ue) - Ui +2)) + Ui +2)

H,<H<H;4

(3.11)

Computing the averaged contrast of an entire domain image gives a flux
density. Fig.3.18 shows the computed magnetization curve. Even though the
domain images represent a limited area of the specimen, the experimental
magnetization curve shown in Fig.3.19 supports the computed result.

3.3.6 Local Magnetization Curves

Focusing on the particular points on the domain images like in Fig.3.20, it is
possible to generate the local magnetization curves as shown in Fig.3.21.

Fig.3.20 shows the selected parts for drawing local magnetization curves.
The properties of selected parts are listed as follows:

1. Position Nos.1 and 2 : At the 180° domains
2. Position Nos.3 and 4 : At the lancet domains

3. Position Nos.5 and 6 : At the strained parts.

Fig.3.21 shows the magnetization curves computed from each of the pixel
values. The local magnetization curves shown here are based on that of entire
specimen in Fig.3.19. This methodology makes it possible to estimate the
magnetization processes reflecting on the physical condition of the specimen.
At first, in the magnetization curves at the 180° basic domains [Fig.3.21(a)],
the residual inductions are higher than those at the lancets [Fig.3.21(b)], and
the strained parts [Fig.3.21(c)]. This means that the lancet and strained parts
are hard to be magnetized. Inversely, the 180° basic domains are hard to move
due to keeping minimum static magnetic energy. Second, in Fig.3.21(b), the
discontinuous curves are obtained at the beginning of rotating magnetization
region due to the lancet domain generations. This results in the theoretical
conclusion in [59]. Finally, in Fig.3.21(¢), a discontinuous curve is obtained
at the position 5 due to the physical stress to the specimen. However, the
curve at the position 6 is reconstructed smoothly. This is considered to cause
by stretching strain.
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Fig. 3.18. Generated SEM domain images and global magnetization curves
calculated from averaged contrasts of the generated images (100 x 100 pix-

els).
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1 ——————— Experiment
_________ Computation

0 50 100 150 200 250 300
H(A/m)

Fig. 3.19. Global magnetization curve obtained by averaged contrast of the
generated domain images.

Fig. 3.20. Selected pixel positions for drawing the local magnetization curves.
The background domain image is the same one as Fig.3.15(a). The positions
1 and 2 are at the 180° domains. The positions 3 and 4 are at the lancet
domains. The positions 5 and 6 are at the strained parts.
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Fig. 3.21. Local magnetization curves at various physical conditions. The
curves are calculated from the pixel values of the generated SEM domain
images. The drawn parts are shown in Fig.3.20.

92



3.3. Magnetic Domain Dynamics 93

3.3.7 Summary

This section proposes a method of iron loss visualization by means of the
image Helmholtz equations. A series of distinct SEM domain images of a
grain-oriented electrical steel is studied to clarify the domain dynamics and
iron loss distribution.

At first, the image Helmholtz equation is applied to the SEM domain
images and then the equivalent characteristic value derives the equivalent
characteristic values, which corresponds to the state transition matrix, from
the domain images. The evaluated state transition matrices enable to visual-
ize any magnetization processes on the domain images. Since, the imaginary
part of the state transition matrix corresponds the 90-degree phase different
components to the applied field, and then iron loss generating parts have
been visualized in particular. The elements in the state transition matrices
show the domain dynamics such as boundary displacements, lancet domain
generation and so on.

Second, the relation between the equivalent characteristic values and
Preisach model is investigated. Composite model of Preisach and Chua
models leads to the relation between the equivalent characteristic values and
Preisach model from analytical solutions. Since Preisach function is a rate of
change of permeability with respect to the applied field, then it is possible to
evaluate nonlinearity of the local magnetization processes. Third, the mag-
netic domain images are generated as the solution of the image Helmholtz
equations. Calculating averaged pixel values of generated domain images
makes it possible to reproduce magnetization curve with high accuracy. Al-
though the given SEM domain images show a small limited area, the mea-
sured magnetization curve well corresponds to the computed one.

Finally, the local magnetization curves can be obtained when the specific
pixel values focused on, and they reflect on the domain physical situations.
Good crystalized and physically strained parts are clearly classified by the
generated local magnetization curves. The local magnetization curves show
that the lancets give hysteresis loss in highly magnetization region.

Because the image Helmholtz equations is one of the systematic method-
ology to analyze visualized dynamics, the accuracy and limitation depend on
only visualizing devices.
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3.4 Fluid Dynamics

3.4.1 Visualized Animations in Fluid Dynamics

This section gives an application of the modal-wavelet transform (MWT).
Three-dimensional multi-resolution analysis separates an infrared flow ani-
mation into the static and dynamic terms of animations.

Figure 3.22 shows some frames of an infrared animation observed by the
weather satellite Himawari, showing the generation process of typhoon No.
9 in 2000 [60]. Applying MWT to this animation, separation of static and
dynamic images is demonstrated. The animation used in this example is
composed of 22 frames captured from 18:00 Aug. 10th to 15:00 Aug. 11th
in 2000. Separation of the static and dynamic terms of animations is carried
out by a multi-resolution analysis of MWT.

3.4.2 3D MWT and Multiresolution Analysis

In order to carry out MWT to the animation in Fig.3.22, the three-dimensional
MWT is applied to red, green, and blue color components independently.
Namely, applying MWT to horizontal-, vertical-, and frame- axes of each
color compononent carries out an animation analysis. Let us consider one
color component of the animation S, having m x n pixels and [ frames.
Then, its transpose rules are defined by

[Slmn]T = Smn17 (312)
[Smnl]T - Snlm7 (313)
[Sﬂlm]T = Slmn- (314)

The three-dimensional MW'T gives the modal-wavelet spectrum 57,

T

St = [M M S]] (3.15)

where M;, M,, and M, are the [ by [-, m by m- and n by n- MWT matrices,
respectively [61]. And then, inverse MWT recovers the original animation

Slmn:

T
Slmn — MIT MmT [MNT [Sl/mn]T}T (316)

Since a linear combination of weighted spectrum represents the original an-
imation Sy, therefore, animation of each wavelet level can be obtained by

means of Eq.(3.16).
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Fig. 3.22. Frames of infrared animation by weather satellite Himawari
(256 %193 pixels). (a) At 18:00, Aug. 10, 2000. (b) At 22:00, Aug. 10,
2000. (c) At 2:00, Aug. 11, 2000. (d) At 6:00, Aug. 11, 2000. (e) At 10:00,
Aug. 11, 2000. (f) At 14:00, Aug. 11, 2000.
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In this demonstration, Eq.(3.15) and Eq.(3.16) are independently carried
out to each color component. Then, the result of the modal, as well as
conventional wavelet analysis can be obtained by synthesizing to be the color
images.

3.4.3 Separation of Static and Dynamic Images

As described in Section 2.4 the MWT matrix derived from Neumann type
boundary condition has a constant term. Utilizing the term makes it possible
to extract the static terms of animation by means of multi-resolution analysis.
In other words, the multi-resolution analysis to the frame axis is capable of
extracting a common static image through entire frames of animation when
employing the Neumann type MWT matrix. In much the same way, the
dynamic frame images of animation can be extracted.

Figures 3.23 and 3.24 show the results of the multi-resolution analysis
to the frame axis. Taking the lowest level of MW into account the multi-
resolution analysis of Eq.(3.16) yields the image in Fig.3.23. In this case, the
generated result has some frames, but all of frames are identical to Fig.3.23.
Thus, Fig.3.23 is the extracted background image suggesting static air pres-
sure distribution. On the other hand, Fig.3.24 shows dynamic frame images
of animation obtained by means of Eq.(3.16) without the lowest level of spec-
trum. The animation of which pixels vary can be obtained, showing that the
cloud is moving.

Fig. 3.23. Extracted static image (256 x 193 pixels).
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Fig. 3.24. Frames of extracted dynamic image (256 x 193 pixels). (a) At
18:00, Aug. 10, 2000. (b) At 22:00, Aug. 10, 2000. (c) At 2:00, Aug. 11,
2000. (d) At 6:00, Aug. 11, 2000. (e) At 10:00, Aug. 11, 2000. (f) At 14:00,
Aug. 11, 2000,
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3.4.4 Comparison with Conventional Wavelets

In the conventional discrete wavelets (DW'T), the data sizes [, m, and n
must be a power of 2. In this animation analysis, the animation shown in
Fig.3.22 has 256 x 193 pixels and 22 frames. If the same analysis with
conventional DWT is carried out, then [, m, and n described in Section 3.4.2
become 32, 256 and 256, respectively. In this case, zero-value elements must
be added to the original data so that it satisfies with these [, m, and n .
On the other hand, [, m, and n in MWT are 22, 256 and 193, respectively.
MWT dispenses with arrangement of the original data because the dimension
of transform matrix is free from the “power of 27 problem. It is obvious
that MW'T accomplishes an efficient analysis from the viewpoint of memory
consumption.

3.4.5 Summary

This section gives an application of the MWT. This linear transformtion
derived from the image governing equations makes it possible to carry out
efficient multi-resolution analysis.

Three-dimensional multi-resolution analysis using MWT devides the vi-
sualized fluid animation observed by weather satellite into the static and
dynamic terms of animation. One of the bases in MWT matrix derived from
differential equation with Neumann boundary condition is constant term so
that static term of animation can be extracted systematically. Inversely, ex-
traction of dynamic terms of animation is also performed by removing the
static term.

The same analysis by Daubechies 2nd order, which has also a basis of con-
stant itself, yields the comparable results with those of MWT. The animation
analysis based on the three-dimensional multi-resolution analysis shows high
efficiency in terms of memory consumption compared with those of the con-
ventional DWT. This is because the dimension of MWT matrix is free from
the problem on subject data length, while length of taget data for DW'T
should be power of 2.

The image modeling based on the classical field theory is capable of de-
riving various kinds of orthonormal bases from the governing differential- as
well as integral- expressions. Thus, MWT approach has versatile capability
not only to information resource handling but also smart computing.

98



99

CHAPTER 4

Conclusions

This thesis has proposed an image modeling based on the classical field theory
in order to realize systematic image handling methodologies for visualized
images. It has been described by a couple of principal chapters. The contents
and results are summarized as follows:

Chapter 2 has described the theoretical background to propose an image
modeling for the visualized images. Assume pixel representing digital images
to be a kind of field potentials, then the image handling methodologies and
its mathematical formulation can be systemized. At first, monochrome and
color images have been fomulated by scalar and vector potentials, respec-
tively. Coulomb gauge has been assumed to derive independence of the RGB
components each other. Second, the image vector operations have been in-
troduced to derive the image governing equations and the solution strategies
for them. Third, the image Poisson equation has been implemented by the
finite differences, finite elements, and Green’s function schemes. The demon-
stration has shown that the boundary condition plays important role in re-
covering images exactly. Morever, the image source density derived from the
Laplacian has given one of the systematic representation for image processing
methodologies. The image Helmholtz equation has represented animations.
Modal analysis of the image Helmholtz equation has derived a general so-
lution, showing that two frame of animation and a state transition matrix
are essentially required to generate animations. The equivalent characteristic
value has been proposed to determine the state transition matrix from the
given three frames of animation in stead of the known state transition ma-
trix. The frames of animation have been successfully generated continuously
as the solution of the image Helmholtz equation. Finally, MWT has been
derived from modal analysis of the image equations, performing orthonormal
base functions having the nature of both wavelet and Fourier transforms.
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100 4. Conclusions

Chapter 3 has demonstrated some applications in visualized images. At
first, the image vector operations have been applied to the sketch-like image
generation and flaw classification problems. Magnitudes, as well as direc-
tions of the image vectors have generated the monochrome as well as color
sketch-like images, suggesting that one of the human-oriented tasks is worked
out. Orientations, as well as magnitudes of the image vectors have also clas-
sified VT images into the line and circle types of flaws in a most efficient
manner. Second, the image Poisson equation has improved the resolution of
a measured magnetic vector field. Refining the imaged magnetic field has
been carried out by the image Poisson equation with fine subdivision. Third,
magnetic domain dynamics have been analyzed by the image Helmholtz equa-
tion. The iron loss visualization along with Preisach magnetization model
has been obtained. Global and local magnetization curves have been gen-
erated from the solutions of image Helmholtz equation. Finally, MWT has
been demonstrated in three-dimensional multi-resolution analysis of an in-
frared flow animation. The static and dynamic terms of animations have
been successfully decomposed. MW'T has made it possible to carry out the
orthonormal transform in a quite efficient manner.

An unified approach from the partial differential equations and integral
equations to the orthonormal transformation has been successfully worked
out. The image modeling studied here is just corresponding to mathematical
models in physical fields like electromagnetism. It is obvious that any image
analysis based on this image modeling could be carried in a quite efficient
manner when applying to the visualized physical systems. Whenever the
GUl-based computers and visualizing devices are available, the systematic
approaches to represent image data accomplish various sort of problems on
visualization.
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