

APPLIED COMPUTER GRAPHICS
-Part-1 Field Theory of Computer Graphics-

First draft version September 21th 1999

For Mathematica Version 3.01

Yoshifuru SAITO

Department of Electronics and Electrical Engineering
College of Engineering

Hosei University

Kajio Koganei, Tokyo 184-8584, Japan
TEL/FAX:+81-42-387-6200

E-Mail: ysaitoh@ysaitoh.k.hosei.ac.jp

Current e-mail adress: ysaito@hosei.ac.jp

PREFACE

Here is another completely new research area I like to draw you attention to get your kind involvement to
promote and advance it: Field Theory of Computer Graphics. It was started by Professor Yoshifuru Saito with rich
application results; I am finding it remarkable.

The basic idea is as follows:

When we visualize objects, we cognized them through some incoming information media as changes of the field we
are observing. The reverse is true; when display, we represent the light change of the display field. In neither case,
we cannot directly handle objects unless we use mechanics to touch them or process them mechanically. That why
field theory is very important. The field theory has not been well developed in case of digital and finite fields. Mainly
analogue and infinite cases are well known in classical electromagnetism.

Professor Yoshifuru Saito. He is among the most novel and practical academics on this earth. He has been very little
outside of Japan, and I appreciate your kindness to grasp what he presents in contents, not through texts. He formulate
beautifully too, so your time will be rewarded.

Sincerely yours,

T. L. Kunii

August 18th 1999

Selected sentences from the e-mail of Professor Tosiyasu L. Kunii

2 Preface.nb

Contents

Chapter 1. Basic tools

1.1 Introduction 1

1.2 Preparation of Mathematica 1

1.3 Image data input 2

1.4 Monochrome image 4

1.5 Color image 6

1.6 Window operation 7

1.7 Summary 8

Chapter 2. Monochrome image processing

2.1 Introduction 10

2.2 Preparation of Mathematica 10

2.3 Sample image synthesis 12

2.4 Characteristic vector distribution 13

2.5 Sketch generation 16

2.6 Three-dimensional image generation 17

2.7 Monochrome static image governing equation 21

2.8 Image resolution 25

2.9 Illusive image generation 26

2.10 Summary 28

Preface.nb 3

Chapter 3. Color Image Processing

3.1 Introduction 29

3.2 Preparation of Mathematica 30

3.3 Sample color image 33

3.4 Color characteristic vectors 35

3.5 Sketch and painted image generation 38

3.6 High-resolution image generation 44

3.7 Three-dimensional color image generation 47

3.8 Illusive color imaging 49

3.9 Summary 52

Chapter 4. Wavelet Image Processing

4.1 Introduction 53

4.2 Preparation of Mathematica 54

4.3 Wavelet image compression and recovery 59

4.4 Dynamic image processing 71

4.5 Summary 77

Chapter 5. Eigen Pattern Image Processing

5.1 Introduction 78

5.2 Preparation of Mathematica 79

5.3 The nature of eigen patterns 82

5.4 Summary 94

Chapter 6. Image identifications

6.1 Introduction 95

6.2 Preparation of Mathematica 96

6.3 Graphics image system of equations 97

6.4 Modeling 101

6.5 Image identification in real domain 105

6.6 Image identification in Fourier spectrum domain 118

6.7 Image identification in wavelet spectrum domain 130

6.8 Image identification in eigen pattern domain 143

6.9 Summary 153

4 Preface.nb

&KDSWHU&KDSWHU&KDSWHU&KDSWHU#41#41#41#41#%DVLF#%DVLF#%DVLF#%DVLF#,PDJH#,PDJH#,PDJH#,PDJH#+DQGOLQJ#+DQGOLQJ#+DQGOLQJ#+DQGOLQJ#7RROV#7RROV#7RROV#7RROV

1.1 Introduction

This chapter introduces the basic image handling tools for image processing by Mathematica.

The programming language Mathematica is composed of the two major frame parts [1]. One is the front-end
processor, which is an interface between the computer and user. The front-end is not only used for the text and code
writing for the Mathematica notebook but also it displays the computed results. Enormous capability is included in the
functions of front-end. For further details, click the help menu of the Mathematica front-end. The other frame part is the
kernel, which carries out the practical computations including a large number of functions for simple computation as
well as plotting the figures. The kernel is a computational engine of the Mathematica when regarding the front-end as a
driving cockpit. Both of the front-end and kernel require a large memory to use the Mathematica with comfortable
environment.

1.2 Preparation of Mathematica

We never have the machine installed infinitely large number of memories, so that it is preferable and essential to
use the memory conserve command of Mathematica. This command works to conserve the memory by interchanging
the contents of variable when using the same name. Also, we install the warning messages suppressing command for the
similar variable name. Warning messages are sometimes very important and useful for debugging the codes, but in most
cases, that give a negative impression to user. Further, the default package of the Mathematica includes various func-
tions, but it is required to install the other standard packages for handling and processing the image data. Thereby, in
this chapter we install a “Linear algebra package”. These packages can be installed as follows. We write the package
input commands and click the right-hand cell by a mouse cursor. After that, we push the enter plus shift keys simulta-
neously.

Thus, we have installed the required Mathematica packages for starting a session of this chapter. It must be
noted here that never push the shift plus enter keys to the cell including the just installed packages. When the shift pus
enter operation to the installed packages is again carried out, you will get an enormous error messages punch from the
Mathematica.

<<Utilities`MemoryConserve`

$MemoryIncrement=100000;

Off[General::spell1,MemoryConserve::start,MemoryConserve::end];

<< LinearAlgebra`MatrixManipulation`;

1.3 Image data input

One of the major aims of this book is to describe a computer graphics methodology, so that we have to insert
the image data. Currently, we are available a large number of image data formats for the digital computers, one of the
most popular and primitive image data formats is a 24-bitmap form. The 24-bitmap image data consist of the red, green
and blue color components. Each of the color components has 8 bits dynamic range, and takes the numerical values
between 0 and 1 The 24-bitmap image data is read in the Mathematica notebook by means of “MathLink” utility, which
connects the Mathematica kernel to the external object package. In this book, we install a package called
“RGBsplit.exe” in order to input the 24-bitmap image data. This package was developed by one of my students. In
order to install the “RGBsplit.exe”, we have to check the existence of “RGBsplit.exe” in the current directly. Typing a
following command carries this out and hitting the shift plus enter keys simultaneously.

FileNames[];AF0380100.bmp, AF038 0128.bmp, AF038 0256.bmp,

AF038064.bmp, BF001.bmp, BF001M.bmp, Chapter 1 Basic Tools.nb,
Chapter 2 Monochrome Image Processing.nb,

Chapter 3 Color Image Processing.nb,

Chapter 4 Wavelet Image Processing.nb,
Chapter 5 Eigen Pattern Image Processing.nb,

Chapter 6 Image Identifications.nb, imageDB63.m, imageTST10.m,
Preface.nb, RGBsplit.exe, Sor04.exe, Wall 0A0128.bmp ?

As you can see, there is the “RGBsplit.exe”, so we install this object by a following command.

link=Install["RGBsplit.exe"]

LinkObject #.\RGBsplit.exe, 2, 2 '
 Using this “RGBsplit.exe”, we read in an image file “BF001.bmp” having 24-bitmap format and check up its
array size in the Mathematica notebook by “Dimensions” command.

sample=RGBsplit["BF001.bmp"];

Dimensions[sample];128, 128, 3 ?
The 24-bitmap-image file “BF001.bmp” has been read in the Mathematica notebook as a list named “sample”,

which is a three dimensional array of 128 by 128 by 3 elements. The output of the command “Dimensions” reveals that
the first, second and third figures in the wavy parentheses are the number of pixels used for the vertical, horizontal axes
and color components, respectively. The 1,2 and 3 of the color components correspond to the red, green and blue,
respectively.

Let us draw the red, green and blue components images, independently. The following steps carry this out. At
first, the numerical values representing the red, green and blue components are respectively substituted into indepen-
dent lists “red”, “green” and “blue”. After that, “ListDensityPlot” command is used for drawing the monochrome
images.

2 Chapter 1 Basic Tools.nb

red=Table[sample[[i,j,1]],{i,128},{j,128}];

green=Table[sample[[i,j,2]],{i,128},{j,128}];

blue=Table[sample[[i,j,3]],{i,128},{j,128}];

redG=ListDensityPlot[red,

Mesh->False,Frame->False,PlotLabel->"Red",

DisplayFunction->Identity];

greenG=ListDensityPlot[green,

Mesh->False,Frame->False,PlotLabel->"Green",

DisplayFunction->Identity];

blueG=ListDensityPlot[blue,

Mesh->False,Frame->False,PlotLabel->"blue",

DisplayFunction->Identity];

Show[GraphicsArray[{redG,greenG,blueG}],

PlotLabel->"Fig.1. Color components",

ImageSize->{450,150}];

Fig.1. Color components

Red Green blue

The meanings of the option commands such as “Mesh”, “Frame” and “DisplayFunction” can be obtained by the
command “Options[ListDensityPlot]” or clicking the help menu of the Mathematica front-end, e.g.

Options[ListDensityPlot];AspectRatio � 1, Axes � False, AxesLabel � None,

AxesOrigin � Automatic, AxesStyle � Automatic, Background � Automatic,

ColorFunction � Automatic, ColorOutput � Automatic,
DefaultColor � Automatic, Epilog � ;?, Frame � True, FrameLabel � None,

FrameStyle � Automatic, FrameTicks � Automatic, ImageSize � Automatic,

Mesh � True, MeshRange � Automatic, MeshStyle � Automatic,
PlotLabel � None, PlotRange � Automatic, PlotRegion � Automatic,

Prolog � ;?, RotateLabel � True, Ticks � Automatic,
DefaultFont � $DefaultFont, DisplayFunction � $DisplayFunction,

FormatType � $FormatType, TextStyle � $TextStyle ?
The readers are very surprised by so many options even though a relatively simple command “ListDensityPlot”,

but never mind such a too many options. The readers are essentially led to use a limited number of options and com-
mands in Mathematica depending on demands of their affectivities.

Thus, we have succeeded in reading the image file into the Mathematica notebook. To conserve the memory
used for the “RGBsplit.exe” object from an entire computer memory, we remove this object from the memory by
“Uninstall” command.

Uninstall[link];

Off[General::spell1];

Chapter 1 Basic Tools.nb 3

1.4 Monochrome image

Many of the digital cameras can take a color image, but still the monochrome images are used for the industrial
use for sake of its cost performance. Two types of monochrome images are considered in this book. One is the bitmap
image file having only the monochrome information. When we read such a monochrome image in the Mathematica
notebook by the “RGBsplit.exe” command,

link=Install["RGBsplit"];

monoSample=RGBsplit["BF001M.bmp"];

Uninstall[link];

Off[General::spell1];

then after substituting the numerical values included in the list “monoSample” into a list “monoData”, we check up the
numerical values included in the list “monoData” by a command “==“. The command “==“ gives the “True” if the
objects are the same else “False”.

dim=Dimensions[monoSample];

monoData=

Table[monoSample[[i,j,k]],

{k,dim[[3]]},{i,dim[[1]]},{j,dim[[2]]}];

The first, we compare the first and second components.

monoData[[1]]==monoData[[2]]

True

This result means that the first and second image components in the list “monoData” are the same numerical
values. Similarly, we check up equivalence between the first and third components in the list “monoData”.

monoData[[1]]==monoData[[3]]

True

Thereby, the monochrome image data in the list “monoData” by installing the command “RGBsplit.exe” have
the same color components, which represent a monochrome image as shown in Fig.2.

4 Chapter 1 Basic Tools.nb

ListDensityPlot[monoData[[1]],

Mesh->False,Frame->False,PlotLabel->"Fig.2. Monochrome"];

Fig.2. Monochrome

Thus, we can handle the monochrome image data by installing the command “RGBsplit.exe”. However, it must
be noted here that the monochrome image format will greatly depend on a processing tool. In this textbook, we worked
out a sample monochrome image “BF001M.bmp” form the color image data “BF001.bmp” by a popular
commercial/shareware base image drawing software “PaintShopPro” for the Widows 95, 98 and NT versions.

The other way to obtain a monochrome image is to compose the monochrome images from the red, green and
blue color components shown in Fig.1. We take up here the two types of monochrome images. One is the y component
intensity of the yjk style, and the other is the NTSC style used in the televisions. Figure 3 shows both of the synthesized
yjk and NTSC types monochrome images from the color components shown in Fig.1.

Chapter 1 Basic Tools.nb 5

yjk + .5 - red . .25 - green . .125 - blue /;

tvM +.3 - red . .59 - green . .11 - blue /;

yjkG ListDensityPlot #yjk, Mesh 0! False, Frame 0! False,

PlotLabel 0! "Intensity y of yjk style",

DisplayFunction 0! Identity ';

tvMG ListDensityPlot #tvM, Mesh 0! False, Frame 0! False,

PlotLabel 0! "NTSC style",

DisplayFunction 0! Identity ';

Show#GraphicsArray #;yjkG, tvMG ?',

PlotLabel 0! "Fig.3. Two types of monochrome images",

ImageSize 0! ;300, 150 ?';

Fig.3. Two types of monochrome images

Intensity y of yjk style NTSC style

1.5 Color image

In order to represent a color image in a list “sample”, we have to use the two Mathematica commands; one is
the “RGBColor” function, which converts the numerical data representing the red, green and blue components into
RGB color form. The other is the “RasterArray” function, which displays a color image from the RGB color data.

At first, we convert the numerical data in the list “red”, “green” and “blue” into a RGB color form by means of
the function “RGBColor”. Secondly, we draw a color graphics image by combining a set of display commands “Show”,
“Graphics”, and “RasterArray”.

6 Chapter 1 Basic Tools.nb

rgbSample=Table[RGBColor[red 3i,j 7,green 3i,j 7,blue 3i,j 7],

{i,128},{j,128}];

Show[Graphics[RasterArray[rgbSample],

AspectRatio->Automatic],PlotLabel->"Fig.4. Color graphics image"];

Fig.4. Color graphics image

1.6 Window operation

Sometimes, we are required to focus on a particular region on an image. In such case, it is convenient to use a
window operation extracting a region of interest [2]. Window operation is one of the convolution operations, and
performs the element-to-element multiplications between the two lists containing the window and image data. In this
textbook, we work out a simple round shape of window constructed by a following function.

window #xl_, yl_, radius_ ' :

Module #;i 0, j 0, k 0, p 0, q 0, win ;;0. ???,

win ZeroMatrix #yl, xl ';

p Round#0.5 yl '; q Round#0.5 xl ';

Do#j Round#Sqrt #radius^2 0 i ^2 '';

Do#win ##p . i, k '' 1., ;k, q 0 j, q . j ?',;i, 0radius, radius ?';

win ';

In the function “window”, the parameters “xl”, “yl” and “radius” are the number of pixels in the direction of x,
y axes and a radius of circular window, so that the a number of pixels for the parameter “radius” should be always

Chapter 1 Basic Tools.nb 7

smaller than those of the half of “xl” as well as “yl”. Using this function, we work out a 128 by 128 pixels list “win128”
having a window's radius 60.

win128=window[128,128,60];

By means of the window “win128”, we carry out the convolution operations to the monochrome as well as each
of the color components in Fig.1.

wMonoG=ListDensityPlot[win128*monoData[[1]],

Mesh->False,Frame->False,PlotLabel->"Monochrome",

DisplayFunction->Identity];

redW=win128*red;

greenW=win128*green;

blueW=win128*blue;

After converting the color image data into a RGB form, we draw the images having circular shape windows.
Figure 5 shows the circular window operated images.

rgbSampleW=

Table[RGBColor[redW 3i,j 7,greenW 3i,j 7,blueW 3i,j 7],

{i,128},{j,128}];

wColorG=Show[Graphics[RasterArray[rgbSampleW],

AspectRatio->1.0],PlotLabel->"Color",

DisplayFunction->Identity];

Show[GraphicsArray[{wMonoG,wColorG}],

PlotLabel->"Fig. 5. Examples of window operation",

ImageSize->{300,150}];

Fig. 5. Examples of window operation

Monochrome Color

1.7 Summary

This chapter has described about the most basic and fundamental part of this book. In spite of no knowledge
about the programming language “Mathematica”, every one may be understood how to input and draw the images in
the Mathematica notebook. Also, every one may be revealed that an image processing is not the simple try and error
processes using the image handling software, but are the Mathematical list and matrix operations. One of the best
merits using the Mathematica is that every one can use the codes described in this textbook only setting up their
original bitmap image data.

8 Chapter 1 Basic Tools.nb

Á 5555(((())))((((5555((((1111&&&&((((6666

>4@ #6WHSKHQ #:ROIUDP/ #7KH #0DWKHPDWLFD #%RRN/ #6UG #HG1 #+:ROIUDP #0HGLD2&DPEULGJH #8QLYHUVLW\ #3UHVV/
4<<9,1

>5@ #<RVKLIXUX#6DLWR/#,QWURGXFWLRQ#WR#LPDJH #SURFHVVLQJ#E\#0DWKHPDWLFD #LQ#-DSDQHVH#+$VDNXUD#3XEOLVK0
LQJ#&R1/7'1/#7RN\R#4<<;,1##

Chapter 1 Basic Tools.nb 9

ChapterChapterChapterChapter 2. 2. 2. 2. Monochrome Monochrome Monochrome Monochrome Image Image Image Image
PPPPrrrroooocccceeeessssssssiiiinnnngggg

2.1 Introduction

At the beginning of this chapter, we introduce a concept of the gradient and curl operations of the classical field
theory. Most of the conventional computer graphics, space derivatives are often carried out in order to extract the edges
of a target object in a screen. An introduction of the vector operations instead of simple spatial derivatives renders a
physical meaning to the operations. As an application of the gradient and curl operations, we draw the sketch images,
even though the sketch drawing is one of the art works based on the human emotion. Regarding the numerical values
representing a monochrome image as a scalar or one component of vector potentials, gradient operation to the scalar
potentials or curl operations to the vector potentials yields one of the vector fields. Depending on the magnitude of
potentials, a vector distribution takes different form. A vector magnitude distribution leads to a sketch image. Further,
inner product operation among the vectors yields the other type images.

Second stage of the field theory in this chapter is to apply the Laplacian operator to the image data when
regarding the numerical values representing an image as the scalar potentials. The Laplacian operation leads to a static
image governing equation. A Poisson type partial differential equation is the static image governing equation. It is
demonstrated that a size or resolution of an image can be changed freely.

The image data in computer graphics are essentially discretized quantities so that we have to carry out the vector
calculus in terms of the discrete Mathematical means. In this textbook, the gradient and curl operations are carried out by
the central finite differences, and the Laplacian operation is carried out by the 9 points finite difference formula.

2.2 Preparation of Mathematica

Before to move on the practical image processing, we have to install the memory conserve utilities and the
warning messages suppressing command for the similar variable name. In addition, the
“LinearAlgebra`MatrixManipulation” and “Graphic`'PlotField” packages have to be installed. The former is used for the
list and matrix operations, and the latter is used for plotting the vector fields [1].

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa packages packages packages packages

<<Utilities`MemoryConserve`
$MemoryIncrement=100000;
Off[General::spell1,MemoryConserve::start,MemoryConserve::end];
<< LinearAlgebra`MatrixManipulation ;̀
<<Graphics`PlotField`

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa function function function function rgbBMP rgbBMP rgbBMP rgbBMP

Further, we define several functions for image processing and data handling. The functions “rgbBMP”,
“convertRGB” and “monoNTSC” are defined as follows. The function “rgbBMP” works to read in the 24-bitmap color
image data. A parameter “colorFile” refers to a file name.

rgbBMP@colorFile_ D : =
Module @8i = 0, j = 0, k = 0, dim = 80<, input = 8880. <<<<,
link = Install @"RGBsplit.exe" D; Pause @0.01 D;
input = RGBsplit @colorFile D;
Uninstall @link D;
Off @General::spell1 D;
dim = Dimensions @input D;
Table @input @@i, j, k DD, 8k, 3 <,8i, dim @@1DD<, 8j, dim @@2DD<DD;

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa function function function function convertRGB convertRGB convertRGB convertRGB

The function “convertRGB” converts the numerical data representing a color image into a RGB form in order to
visualize the image on the Mathematica notebook. The parameter “colorData” refers to a list including the numerical
values.

convertRGB @colorData_ D : =
Module @8i = 0, j = 0, dim = 80<, out <,
dim = Dimensions @colorData D;
Graphics @

RasterArray @
Table @RGBColor @colorData @@1, i, j DD,

colorData @@2, i, j DD, colorData @@3, i, j DDD,8i, dim @@2DD<, 8j, dim @@3DD<DDDD;

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa function function function function monoNTSC monoNTSC monoNTSC monoNTSC

The function “monoNTSC” construct a NTSC style monochrome image data from the color image data. The
parameter “colorData” refers to a list including the numerical values.

monoNTSC@colorData_ D : =
Module @8i = 0, j = 0, dim = 80<<,
dim = Dimensions @colorData D;
Table @0.3 * colorData @@1, i, j DD + 0.59 * colorData @@2, i, j DD +

0.11 * colorData @@3, i, j DD,8i, dim @@2DD<, 8j, dim @@3DD<DD;

11 Chapter 2 Monochrome Image Processing.nb

2.3 Sample image synthesis

In this section, we construct a sample monochrome image from a color image. At first, we read in a color image
file “BF001.bmp” by means of the function “rgbBMP”.

colorSample=rgbBMP["BF001.bmp"];

Second, after converting the color image data “colorSample” into the RGB form by the function “convertRGB”,
the original color image data is composed.

colorSampleG=Show[convertRGB[colorSample],
PlotLabel->"Color image",AspectRatio->1,
DisplayFunction->Identity];

Third, after composing a monochrome image data “monoSample” by the function “monoNTSC”, we compute a
monochrome sample image.

monoSampleG=
ListDensityPlot[monoSample=monoNTSC[colorSample],

Mesh->False,Frame->False,PlotLabel->"Monochrome",
DisplayFunction->Identity];

Finally, we draw the original and monochrome sample images, which are shown in Fig.1. A reason why we use
the color image sample “BF001.bmp” not the monochrome image sample “BF001M.bmp” is to introduce the color
handling functions “rgbBMP” and “convertRGB” for the later chapters.

Show[GraphicsArray[{colorSampleG,monoSampleG}],
PlotLabel->"Fig.1. Sample images",ImageSize->{400,200}];

Fig.1. Sample images

Color image Monochrome

Chapter 2 Monochrome Image Processing.nb 12

2.4 Characteristic vector distribution

The list “monoSample” is a simple two-dimensional array that contains the numerical values representing the
NTSC style monochrome image. When we regard the numerical values in the list “monoSample” as one of the scalar
potentials, then it is possible to obtain a set of divergent fields by gradient operation. On the other side, when we regard
the numerical values in the list “monoSample” as one of the vector potential components, a set of rotational vector fields
can be computed by curl operation. In order to derive the divergent as well as rotational vector of the sample
monochrome image shown in Fig.1, we define the “grad2D” and “curl2D” functions. The former and latter functions
derive the divergent and rotational vectors, respectively. The “grad2D” function is defined by a following function,
where a parameter “darta2D” refers to a list containing two-dimensional scalar potentials.

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa function function function function grad2D grad2D grad2D grad2D
Gradient operation:

Vdiv = - ÑU = - ¶U�����������¶x i - ¶U�����������¶y j, (1)

Where Vdiv, U, i and j are the divergent vector to be evaluated, input scalar potential and unit

directional vectors in the direction of x- and y-axes, respectively.

grad2D=Compile[{{data2D,_Real,2}},
Module[{i=0,j=0,dim=Dimensions[data2D],

c1={Table[data2D[[1,j]],{j,dim[[2]]}]},
c2=Transpose[{Join[{data2D[[1,1]]},

Table[data2D[[i,1]],{i,dim[[1]]}]]}],
e2D=AppendRows[c2,AppendColumns[c1,data2D]]},

Table[{-0.5(e2D[[i,j]]+e2D[[i+1,j]])+
0.5(e2D[[i,j+1]]+e2D[[i+1,j+1]]),
-0.5(e2D[[i,j]]+e2D[[i,j+1]])+
0.5(e2D[[i+1,j]]+e2D[[i+1,j+1]])},
{i,dim[[1]],1,-1},{j,dim[[2]]}]]];

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa function function function function curl2D curl2D curl2D curl2D

 Similarly, the “curl2D” function is defined by a following way, where a parameter “darta2D” refers to a list
containing one of the vector potential components arraigned in a two-dimensional form. Both of the gradient and curl
operations have been carried out by the central finite differences.

Curl operation :

Vrot = - Ñ ´Uz = ¶Uz�������������¶y i - ¶Uz�������������¶x j, (2)

13 Chapter 2 Monochrome Image Processing.nb

Where Vrot, Uz, i and j are the rotational vector to be evaluated, input z-component of vector

potential and unit directional vectors in the direction of x- and y-axes, respectively.

curl2D=Compile[{{data2D,_Real,2}},
Module[{i=0,j=0,dim=Dimensions[data2D],

c1={Table[data2D[[1,j]],{j,dim[[2]]}]},
c2=Transpose[{Join[{data2D[[1,1]]},

Table[data2D[[i,1]],{i,dim[[1]]}]]}],
e2D=AppendRows[c2,AppendColumns[c1,data2D]]},

Table[{-0.5(e2D[[i,j]]+e2D[[i,j+1]])+
0.5(e2D[[i+1,j]]+e2D[[i+1,j+1]]),
0.5(e2D[[i,j]]+e2D[[i+1,j]])-
0.5(e2D[[i,j+1]]+e2D[[i+1,j+1]])},

{i,dim[[1]],1,-1},{j,dim[[2]]}]]];

Let us compute the divergent as well as rotational vectors from the sample monochrome image. We apply the
functions “grad2D” and “ curl2D” to the list “monoSample”. After computing the divergent and rotational vectors, we
plot the vector distributions. Figure 2 shows both of the divergent and rotational vector distributions, where the vectors
are periodically sampled with 4 pixels.

divV=-grad2D[monoSample];
rotV=curl2D[monoSample];
dim=Dimensions[divV];
divVG=ListPlotVectorField[

Table[divV[[i,j,k]],{i,1,dim[[1]],4},
{j,1,dim[[1]],4},{k,dim[[3]]}],
Frame->False,PlotLabel->"Div. vectors",
DisplayFunction->Identity];

rotVG=ListPlotVectorField[
Table[rotV[[i,j,k]],{i,1,dim[[1]],4},

{j,1,dim[[1]],4},{k,dim[[3]]}],
Frame->False,PlotLabel->"Rot. vectors",
DisplayFunction->Identity];

Show[GraphicsArray[{divVG,rotVG}],ImageSize->{400,200},
PlotLabel->"Fig.2. Vector distributions"];

Fig.2. Vector distributions

Div. vectors Rot. vectors

Chapter 2 Monochrome Image Processing.nb 14

The divergent and rotational vectors are the orthogonal each other. To check up this, we compute the inner
products between them located at the same position, and then we print out the maximum as well as minimum values of
the inner products.

innerPro=Table[divV[[i,j]].rotV[[i,j]],
{i,dim[[1]]},{j,dim[[2]]}];

Print["Max=",Max[innerPro]," Min=",Min[innerPro]];

Max=0. Min =0.

Thus, we have confirmed that the divergent and rotational vectors are orthogonal. This means that both of the
divergent and rotational vectors of a monochrome image independently exist each other. In the other words, according to
the Helmholtz's theorem, taking a sum of the divergence and rotational field vectors can represent any vector fields, so
that taking a sum of the divergent and rotational vectors represents the characteristic vector distribution of a monochrome
image [2]. Figure 3 shows a characteristic vector distribution of the monochrome image in Fig.1, where the vectors are
periodically sampled with 2 pixels.

Helmholtz's theorem:

V = Vrot+ Vdiv , (3)

Where V, Vdiv and Vrot are the arbitrary, divergent and rotational vectors, respectively.

chractV=divV+rotV;
ListPlotVectorField[

Table[chractV[[i,j,k]],{i,1,dim[[1]],2},
{j,1,dim[[1]],2},{k,dim[[3]]}],

Frame->False,
PlotLabel->"Fig.3.Characteristic vector distribution"];

Fig.3.Characteristic vector distribution

15 Chapter 2 Monochrome Image Processing.nb

2.5 Sketch generation

Sketch is one of the art works extracting the characteristics of a target object and then depicting by a set of
monochrome lines. From such a viewpoint, it is difficult to work out a sketch art by means of computers. However, we
have succeeded in extracting the characteristic vector distribution of the monochrome image. If this characteristic vector
distribution exactly representing the distinct characteristics of the image, then it is possible to sketch the image. One of
the simplest ways for sketching the monochrome image is to plot the magnitudes of the characteristic vectors
distribution. In order to do this, we define a function “vectMag2D”, which compute the vector magnitudes distribution at
each position. A parameter “vector2D” is a three-dimensional array containing the two-dimensional vector components.

MathematicaMathematicaMathematicaMathematica function function function function vectorMag2D vectorMag2D vectorMag2D vectorMag2D

vectorMag2D=Compile[{{vector2D,_Real,3}},
Module[{i=0,j=0,dim=Dimensions[vector2D]},

Sqrt[Table[vector2D[[i,j,1]]̂ 2+vector2D[[i,j,2]]̂ 2,
{i,dim[[1]],1,-1},{j,dim[[2]]}]]]];

After computing the vector magnitude distribution of Fig. 3, we plot this in reversing the black and white mode.
Thus, an obtained sketch is shown in Fig. 4. Obviously, this figure extracts the characteristics of the monochrome image
in Fig. 1, and also represents them by a set of monochrome lines.

Chapter 2 Monochrome Image Processing.nb 16

sketch=vectorMag2D[chractV];
ListDensityPlot[Max[sketch]-sketch,

PlotRange->All,Mesh->False,Frame->False,
PlotLabel->"Fig.4. Sketch"];

Fig.4. Sketch

2.6 Three-dimensional image generation

As shown in Fig.4, the sketch captures the characteristics of the sample monochrome image. Thereby, it may be
possible to work out the filters extracting the various characters from the vectors distribution in Fig.3.

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa function function function function imageNormalize imageNormalize imageNormalize imageNormalize

Before to continue the discussions, we define a Mathematica function “imageNormalize”, which converts the
2-dimensional image data between the values 0 and 1.

imageNormalize = Compile @88data2D, _Real, 2 <<,
Module @8minimum = Min@data2D D<,Hdata2D - minimumL� Max@data2D - minimumDDD;

In this textbook, we work out the different angled lighting images based on the nature of vector fields. Let us
consider the six different directed unit vectors “viewV” given by

17 Chapter 2 Monochrome Image Processing.nb

rotation=6;
viewV=Table[{Cos[2.Pi i/rotation],Sin[2.Pi i/rotation]},

{i,0,rotation-1}];

then after computing the inner product “angle” between the vectors in Fig.3 and in the list “viewV”, we normalize the
inner products to the values between 0 and 1 by the function “imageNormalize”.

angle=Table[chractV[[i,j]].viewV[[k]],
{k,rotation},{i,dim[[1]],1,-1},{j,dim[[2]]}];

Consequently obtained results are shown in Fig. 5, where the first image is represented in terms of the red, green
and blue colors which are corresponding to the lighting angles 0, 120 and 240 degrees, respectively. The remaining
images in Fig.5 are the shadowed three-dimensional relief images at each of the lighting angles.

angleN=Table[imageNormalize[angle[[i]]],{i,rotation}];
angleNG=Table[Table[ListDensityPlot[angleN[[i]],

PlotRange->All,Mesh->False,Frame->False,
PlotLabel->StringForm["`1`deg.",(i-1)360/rotation],
DisplayFunction->Identity]],
{i,rotation}];

Show[convertRGB[Table[angleN[[i]],{i,1,rotation,rotation/3}]],
AspectRatio->1,PlotLabel->"Fig.5.Lighting effect"];

Show[GraphicsArray[
Table[Table[angleNG[[i+j]],{j,0,2}],{i,1,rotation,3}]],
ImageSize->{450,300},PlotLabel->"Angle"];

Fig.5.Lighting effect

Chapter 2 Monochrome Image Processing.nb 18

Angle

180deg. 240deg. 300deg.

0deg. 60deg. 120deg.

Further, we compute the more realistic three-dimensional image by convoluting the relief images in Fig.5 with
the original monochrome image in Fig.1. The obtained images are shown in Fig.6.

cAngle=Table[monoSample*(1-imageNormalize[angle[[i]]]),{i,rotation}];

cAngleG=Table[Table[ListDensityPlot[cAngle[[i]],
PlotRange->All,Mesh->False,Frame->False,
PlotLabel->StringForm["`1`deg.",(i-1)360/rotation],
DisplayFunction->Identity]],
{i,rotation}];

Show[convertRGB[Table[cAngle[[i]],{i,1,rotation,rotation/3}]],
AspectRatio->1,PlotLabel->"Fig.6.Convoluted images"];

Show[GraphicsArray[
Table[Table[cAngleG[[i+j]],{j,0,2}],{i,1,rotation,3}]],
ImageSize->{450,300},PlotLabel->"Angle"];

19 Chapter 2 Monochrome Image Processing.nb

Fig.6.Convoluted images

Angle

180deg. 240deg. 300deg.

0deg. 60deg. 120deg.

After setting a mouse cursor on a following image, twice clicking the left side button of mouse animates the facial
changes depending on the lighting angles. This is only effective on the Mathematica notebook.

Do[Show[GraphicsArray[{cAngleG[[i]]}]],{i,rotation}];

Chapter 2 Monochrome Image Processing.nb 20

0deg.

2.7 Monochrome static image governing equation

As shown above, the vectored imaging makes it possible to process the image in various ways. In this section, we
establish a monochrome image governing equation.

Regarding the numerical values representing a monochrome image as one of he scalar potentials derives this equation. As
is well known in the classical field theory, application of the second order partial derivatives to a scalar potential yields a
field source density. Namely, when we apply the Laplacian operator to the monochrome image data shown in Fig. 1, then
it is possible to obtain a source density distribution of the image. A function “laplace2D” is given by a following
Mathematica code. This function is based on a 9 points finite difference formula, where the potentials along the edges of
a target area are assumed to zero. Also, a parameter “data2D” refers to a two-dimensional array including a monochrome
image data.

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa function function function function llllaaaappppllllaaaacccceeee2222DDDD

Laplacian operation:

s = Ñ2U = ¶2U��������������¶x2 + ¶2U��������������¶y2 , (4)

where σ and U are the field source density to be evaluated and input scalar potential, respectively.

21 Chapter 2 Monochrome Image Processing.nb

laplace2D=Compile[{{data2D,_Real,2}},
Module[{e2D={{0.}},out={{0.}},dim={0},

max=0.,i=0,j=0,nx=0,ny=0},
dim=Dimensions[data2D];
ny=dim[[1]]+1;nx=dim[[2]]+1;
e2D=Table[0.,{ny+1},{nx+1}];
Do[e2D[[i,j]]=data2D[[i-1,j-1]],

{i,2,ny},{j,2,nx}];
Table[e2D[[i+1,j-1]]+4.*e2D[[i+1,j]]+

e2D[[i+1,j+1]]+4.*e2D[[i,j-1]]-
20.*e2D[[i,j]]+4.*e2D[[i,j+1]]+
e2D[[i-1,j-1]]+4.*e2D[[i-1,j]]+
e2D[[i-1,j+1]],

{i,2,ny},{j,2,nx}]/6.]];

Using this function, we compute the source density of the monochrome image in Fig. 1. Figure 7 shows the
source density distribution.

source=laplace2D[monoSample];
ListDensityPlot[source,PlotRange->All,

Mesh->False,Frame->False,
PlotLabel->"Fig.7. Source density"];

Fig.7. Source density

According to the classical field theory, when we are given a source density distribution, then it is possible to
establish a field governing equation. A field governing equation having time independent source density is one of the
Poisson type equations. Obviously, our given image source density distribution in Fig. 7 is independent to the time, so
that the static monochrome image governing equation becomes a Poisson type partial differential equation. Further, a
solution of this governing equation should recover the original monochrome image.

In order to solve the image governing equation, we employ a 9 points finite difference formula assuming the zero

Chapter 2 Monochrome Image Processing.nb 22

Dirichlet boundary condition at the image edges. A function “poissonSOR” gives an iterative solution by a simple
successive over relaxation method. A parameter “source” of this function refers to the image source density.

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa function function function function poissonSOR poissonSOR poissonSOR poissonSOR
Poisson's equation:

 Ñ2U = s, (5)

where σ and U are the input field source density and scalar potential to be evaluated, respectively.

poissonSOR=Compile[{{source,_Real,2}},
Module[{i=0,j=0,omg=1.8,error=1.,solutionI=0.,diff=0.,

max=1.*10^-5,dim={0},solution={{0.}},dummy={{0.}}},
dim=Dimensions[source];
solution=Table[0.,{dim[[1]]+2},{dim[[2]]+2}];
dummy=solution;
Do[dummy[[i+1,j+1]]=source[[i,j]],

{i,dim[[1]]},{j,dim[[2]]}];
While[error>max,

error=0.;
Do[solutionI=0.05*

(solution[[i+1,j+1]]+4.*solution[[i+1,j]]+
solution[[i+1,j-1]]+4.*solution[[i,j+1]]+
4.*solution[[i,j-1]]+solution[[i-1,j+1]]+
4.*solution[[i-1,j]]+solution[[i-1,j-1]]+
6.*dummy[[i,j]]);
diff=solutionI-solution[[i,j]];
solution[[i,j]]=solution[[i,j]]+omg*diff;
error=error+Abs[diff],

{i,2,dim[[1]]+1},{j,2,dim[[2]]+1}]];
Table[solution[[i+1,j+1]],

{i,dim[[1]]},{j,dim[[2]]}]]];

By means of this solution routine, we can solve an image governing equation whose source density has been
obtained by the Laplacian operation to the monochrome image dada “monoSample”. This function is useful code to show
a practical over-relaxation technique using 9 points finite differences, but requires an extremely long CPU time. To
overcome this difficulty, we employ the MathLink utility connecting an externally exploited object file to the
Mathematica kernel.

MathematicaMathematicaMathematicaMathematica functionfunctionfunctionfunction poissonSOR2D poissonSOR2D poissonSOR2D poissonSOR2D

A function “poissonSOR2D” is the faster solving routine utilizing the MathLink utility of Mathematica. The
function “poissonSOR2D has two parameters. One is the source density. Also, the other is a one-dimensional list
including the desired number of pixels; the first and second integers of this list refer to the number of pixels in the
directions of x- and y-axes, respectively.

23 Chapter 2 Monochrome Image Processing.nb

poissonSOR2D[source2D_,size_]:=
Module[{i,j,relax = 1.8,link,in,out,dim,

dx,dy,interP},
 dim= Dimensions[source2D];
 dx=(1.*(dim[[2]]-1))/(size[[2]]-1);
 dy=(1.*(dim[[1]]-1))/(size[[1]]-1);
 interP=ListInterpolation[source2D];
 in=Table[interP[i,j],
 {i,1,dim[[1]],dy},{j,1,dim[[2]],dx}];
 link = Install["Sor04.exe"];Pause[0.01];
 out=Sor[in,relax];
 Uninstall[link];
 out];

Figure 8 shows a recovered monochrome image whose numerical values are contained in a list “recoverMono”.
A “Timing” command of Mathematica gives a CPU time used in the computations.

recoverMono=
poissonSOR2D[-source,Dimensions[source]];//Timing827.94 Second, Null <

ListDensityPlot[recoverMono,PlotRange->All,Mesh->False,
Frame->False,PlotLabel->"Fig.8. Recovered image"];

Fig.8. Recovered image

To check up the validity of solution, we print out the maximum difference between the original and recovered
image data. Consequently, it is revealed that our solution has a good accuracy.

Max[Abs[monoSample-recoverMono]]

4.10691 ´ 10-7

Chapter 2 Monochrome Image Processing.nb 24

2.8 Image resolution

The image governing equation has been successfully solved with good accuracy. This mean when we change a
number of pixels representing a recovered image then it is possible to change a resolution of the image.

Using this function “poissonSOR2D”, we produce the two images whose resolutions are lower (100 by 100) and
higher (150 by 150) than those of the original 128 by 128 image.

low=poissonSOR2D[-source,{100,100}];//Timing810.75 Second, Null <
high=poissonSOR2D[-source,{150,150}];//Timing845.29 Second, Null <

The left and right in Fig. 9 show the images having 100 by 100 and 150 by 150 resolutions, respectively.

lowG=ListDensityPlot[low,PlotRange->All,Mesh->False,
Frame->False,PlotLabel->"100 by 100 image",
DisplayFunction->Identity];

highG=ListDensityPlot[high,PlotRange->All,Mesh->False,
Frame->False,PlotLabel->"150 by 150 image",
DisplayFunction->Identity];

Show[GraphicsArray[{lowG,highG}],ImageSize->{400,200},
PlotLabel->"Fig.9. Low and high resolution images"];

Fig.9. Low and high resolution images

100 by 100 image 150 by 150 image

Because of the discretization error, the low-resolution image on the left in Fig. 8 includes a little bits of noise.
However, observation of the images in Fig.8 suggests that the image governing equation makes it possible to reproduce
the images having any resolutions.

25 Chapter 2 Monochrome Image Processing.nb

2.9 Illusive image generation

Comparison the source density image in Fig.7 with the shadowed relief images in Fig.5 reveals that the angled
lighting images are very similar to those of source density. This is because an inner product operation between the
vectors changes the vectors into the scalar quantities.

Let us try to solve a Poisson's equation for the inner product images in Fig.5 as the source densities, and then we
draw the images from the obtained solutions.

illusion=Table[poissonSOR2D[-angle[[i]],{128,128}],
{i,rotation}];

Figure 10 shows the images derived from the inner product image data “angle”. Thus, when we regard the inner
product image data as the source density, then the solutions of the Poisson's equation for these input source densities
produce the illusive images emphasizing the lighting effects. Further, the illusive images in Fig. 9 are smooth and
beautiful ones compared with these in Fig. 5. Solving the Poisson's equation is one of the surface integrations so that
small noisy components are smoothed.

illusionG=Table[ListDensityPlot[illusion[[i]],
PlotRange->All,Mesh->False,Frame->False,
PlotLabel->StringForm["`1`deg.",(i-1)360/rotation],
DisplayFunction->Identity],
{i,rotation}];

Chapter 2 Monochrome Image Processing.nb 26

Show[GraphicsArray[
Table[Table[illusionG[[i+j]],{j,0,2}],{i,1,rotation,3}]],
ImageSize->{450,300},PlotLabel->"Fig.10. Illusive images"];

Fig.10. Illusive images

180deg. 240deg. 300deg.

0deg. 60deg. 120deg.

After setting a mouse cursor on a following image, twice clicking the left side button of mouse animates the facial
changes depending on the lighting angles. This is only effective on the Mathematica notebook.

Do[Show[GraphicsArray[{illusionG[[i]]}]],{i,rotation}];

27 Chapter 2 Monochrome Image Processing.nb

0deg.

2.10 Summary

This chapter has described about the image processing techniques based on the classical field theory. As a result,
it has been shown that the vectored approach not the simple spatial derivatives leads to the fruitful results. For example,
the characteristic vector distribution has been derived by means of the Helmholtz's theorem. Simple magnitude
computation of the characteristic vectors has yielded the sketch image. Further, an application of vector field nature to
the characteristic vectors of an image has worked out one of the angled lighting images. Namely, we have worked out the
unit directional vectors, and then a set of inner products between the characteristic and unit vectors has yielded the
images as if lighted up from the different directions.

The other important result of this chapter is that we have derived the static monochrome image governing
equation. This governing equation is one of the Poisson's equations, which is able to produce the different resolution
images, freely.

à RRRREEEEFFFFEEEERRRREEEENNNNCCCCEEEESSSS

[1] Stephen Wolfram, The Mathematica Book, 3rd ed. (Wolfram Media/Cambridge University Press,
1996).

[2] J.D.Jackson, "Classical Electrodynamics 3rd Edition," John Wiley & Sons, New York (1998).

Chapter 2 Monochrome Image Processing.nb 28

ChapterChapterChapterChapter 3. 3. 3. 3. Color Color Color Color Image Image Image Image Processing Processing Processing Processing

3.1 Introduction

In chapter 2, we have described the basic principle and practical examples of the field theory of computer
graphics. This chapter extends the basic principles of the field theory to the color graphics images. In the monochrome
images, we have only a set of numerical values representing an monochrome image. Thereby, in order to derive the
image vectors, it is essential to use the partial derivative operators, such as gradient and curl. However, in the color
graphics image, we have three independent components, i.e., red, green and blue color components. Thereby, it is
possible to derive the image vectors without any spatial derivations. The first part of this chapter devotes to describe the
nature and applications of these color image vectors.

In the second part, we describe the image processing techniques to generate the sketch and painted images. Two
methodologies are considered for a monochrome image generation. One is to utilize a magnitude distribution of the color
image vectors and the other is based on a distribution of the inner products between the unit directional and color image
vectors. Combining the sketches of red, green and blue components generates a sketch image drawn by the color pencils.
Each of the sketch components is generated by means of the characteristic vectors described in chapter 2. Combination of
the painted red, green and blue component also generates a painted color image.

In third part, the high-resolution color images are generated from a low-resolution color image. The image
governing equations of the red, green and blue components in a color graphic image are independently solved with higher
resolution. Consequently, a composition of the solutions leads to the high-resolution color images. A correlation analysis
between the generated and exact image data reveals that good high-resolution image can be generated by means of the
differential equations.

Finally, similar to that of monochrome image, we generate the two-types of three-dimensional images. One is a
shadowed lighting color image, and the other is an illusive image. Both images are based on the two-dimensional red,
green and blue color characteristic vectors. The inner products between the unit directional and the color component
characteristic vectors generate the shadowed lighting images of the red, green and blue color components. The
convolutions between the shadowed and original color component images generate the shadowed lighting color images.
The solutions of image governing equation regarding each of the shadowed lighting color component images as the
source densities generate the illusive images. Because of the color effects, the impressive three-dimensional images can
be obtained.

3.2 Preparation of Mathematica

à 3.2.1 Mathematica utilities and packages

Before to move on the practical image processing, we have to install the memory conserve utilities and the
warning message suppress command. In addition, the “LinearAlgebra`MatrixManipulation”, “Graphics`PlotField” and
“Graphics`PlotField3D” packages have to be installed. The last one is added in this chapter in order to plot the
three-dimensional vectors [1].

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa utilities utilities utilities utilities and and and and add-on add-on add-on add-on packages packages packages packages

<<Utilities`MemoryConserve`
$MemoryIncrement=100000;
Off[General::spell1,MemoryConserve::start,MemoryConserve::end];
<< LinearAlgebra`MatrixManipulation ;̀
<<Graphics`PlotField3D ;̀

à 3.2.2 Mathematica functions

Here, we define several functions that have been described and used in the previous chapters.

FunctionFunctionFunctionFunction rgbBMP rgbBMP rgbBMP rgbBMP

The function “convertRGB” converts the numerical data representing color image into a RGB form. This makes it
possible to visualize the color images on the Mathematica notebook. The parameter “colorData” refers to a list including
the numerical values.

rgbBMP@colorFile_ D : =
Module @8i = 0, j = 0, k = 0, dim = 80<, input = 8880. <<<<,
link = Install @"RGBsplit.exe" D; Pause @0.01 D;
input = RGBsplit @colorFile D;
Uninstall @link D;
Off @General::spell1 D;
dim = Dimensions @input D;
Table @input @@i, j, k DD, 8k, 3 <,8i, dim @@1DD<, 8j, dim @@2DD<DD;

FunctionFunctionFunctionFunction convertRGB convertRGB convertRGB convertRGB

The function “convertRGB” converts the numerical data representing color image into a RGB form. This is used
to visualize the image on the Mathematica notebook. The parameter “colorData” refers to a list including the numerical
values.

30 Chapter 3 Color Image Processing.nb

convertRGB @colorData_ D : =
Module @8i = 0, j = 0, dim = 80<, out <,
dim = Dimensions @colorData D;
Graphics @

RasterArray @
Table @RGBColor @colorData @@1, i, j DD,

colorData @@2, i, j DD, colorData @@3, i, j DDD,8i, dim @@2DD<, 8j, dim @@3DD<DDDD;

FunctionFunctionFunctionFunction grad2D grad2D grad2D grad2D

The function “grad2D” computes the divergent vectors of a monochrome image. The parameter “data2D” refers
to a two-dimensional list including the numerical values regarded as the scalar potentials.

grad2D=Compile[{{data2D,_Real,2}},
Module[{i=0,j=0,dim=Dimensions[data2D],

c1={Table[data2D[[1,j]],{j,dim[[2]]}]},
c2=Transpose[{Join[{data2D[[1,1]]},

Table[data2D[[i,1]],{i,dim[[1]]}]]}],
e2D=AppendRows[c2,AppendColumns[c1,data2D]]},

Table[{-0.5(e2D[[i,j]]+e2D[[i+1,j]])+
0.5(e2D[[i,j+1]]+e2D[[i+1,j+1]]),
-0.5(e2D[[i,j]]+e2D[[i,j+1]])+
0.5(e2D[[i+1,j]]+e2D[[i+1,j+1]])},
{i,dim[[1]],1,-1},{j,dim[[2]]}]]];

FunctionFunctionFunctionFunction curl2D curl2D curl2D curl2D

The “curl2D” function generates the rotational vectors. A parameter “darta2D” refers to a two-dimensional list
containing one of the vector potential components Both of the functions “grad2D” and “curl2D” are based on the central
finite differences.

curl2D=Compile[{{data2D,_Real,2}},
Module[{i=0,j=0,dim=Dimensions[data2D],

c1={Table[data2D[[1,j]],{j,dim[[2]]}]},
c2=Transpose[{Join[{data2D[[1,1]]},

Table[data2D[[i,1]],{i,dim[[1]]}]]}],
e2D=AppendRows[c2,AppendColumns[c1,data2D]]},

Table[{-0.5(e2D[[i,j]]+e2D[[i,j+1]])+
0.5(e2D[[i+1,j]]+e2D[[i+1,j+1]]),
0.5(e2D[[i,j]]+e2D[[i+1,j]])-
0.5(e2D[[i,j+1]]+e2D[[i+1,j+1]])},

{i,dim[[1]],1,-1},{j,dim[[2]]}]]];

FunctionFunctionFunctionFunction eigen2DVect eigen2DVect eigen2DVect eigen2DVect

The “eigen2DVect” function is given by a summation of divergent and rotational vectors. The parameter
“monoSample” is a two-dimensional list regarded as either scalar or one component of vector potentials.

eigen2DVect[monoSample_]:=Module[{out},
out=-grad2D[monoSample]+curl2D[monoSample];out]

Chapter 3 Color Image Processing.nb 31

FunctionFunctionFunctionFunction vectorMag2D vectorMag2D vectorMag2D vectorMag2D

The “vectorMag2D” function computes the magnitudes of the two-dimensional vectors including a list “vector2D”
.

vectorMag2D=Compile[{{vector2D,_Real,3}},
Module[{i=0,j=0,dim=Dimensions[vector2D]},

Sqrt[Table[vector2D[[i,j,1]]̂ 2+vector2D[[i,j,2]]̂ 2,
{i,dim[[1]],1,-1},{j,dim[[2]]}]]]];

FunctionFunctionFunctionFunction laplace2D laplace2D laplace2D laplace2D

The “laplace2D” function carries out the Laplacian operation to the input data listed in “data2D”. This operation
is based on the 9 points finite difference formula assuming the zero Dirichlet boundary condition along with an image
enclosing line.

laplace2D=Compile[{{data2D,_Real,2}},
Module[{e2D={{0.}},out={{0.}},dim={0},

max=0.,i=0,j=0,nx=0,ny=0},
dim=Dimensions[data2D];
ny=dim[[1]]+1;nx=dim[[2]]+1;
e2D=Table[0.,{ny+1},{nx+1}];
Do[e2D[[i,j]]=data2D[[i-1,j-1]],

{i,2,ny},{j,2,nx}];
Table[e2D[[i+1,j-1]]+4.*e2D[[i+1,j]]+

e2D[[i+1,j+1]]+4.*e2D[[i,j-1]]-
20.*e2D[[i,j]]+4.*e2D[[i,j+1]]+
e2D[[i-1,j-1]]+4.*e2D[[i-1,j]]+
e2D[[i-1,j+1]],

{i,2,ny},{j,2,nx}]/6.]];

FunctionFunctionFunctionFunction poissonSOR2D poissonSOR2D poissonSOR2D poissonSOR2D

The “poissonSOR2D” function gives an iterative solution of the Poisson's equation. A discretizing strategy used
in this code is a 9 point finite difference formula, and an over relaxation method solves a system of linear equations. In
order to get a solution as soon as possible, a MathLink utility is employed. A command “Pause” is essential for
establishing a reliable linkage between the Mathematica kernel and external object.

The function “poissonSOR2D has two parameters. One is the source density. Also, the other is a one-dimensional
list including the desired number of pixels; the first and second integers of this list refer to the number of pixels in the
directions of x- and y-axes, respectively.

32 Chapter 3 Color Image Processing.nb

poissonSOR2D[source2D_,size_]:=
Module[{i,j,relax = 1.8,link,in,out,dim,

dx,dy,interP},
 dim= Dimensions[source2D];
 dx=(1.*(dim[[2]]-1))/(size[[2]]-1);
 dy=(1.*(dim[[1]]-1))/(size[[1]]-1);
 interP=ListInterpolation[source2D];
 in=Table[interP[i,j],
 {i,1,dim[[1]],dy},{j,1,dim[[2]],dx}];
 link = Install["Sor04.exe"];Pause[0.01];
 out=Sor[in,relax];
 Uninstall[link];
 out];

FunctionFunctionFunctionFunction imageNormalize imageNormalize imageNormalize imageNormalize

This function “imageNormalize” converts the two-dimensional image data between the values 0 and 1.

imageNormalize = Compile @88data2D, _Real, 2 <<,
Module @8minimum = Min@data2D D<,Hdata2D - minimumL� Max@data2D - minimumDDD;

FunctionFunctionFunctionFunction hueColor hueColor hueColor hueColor

The “hueColor” function provides a customized hue color function. This function gives a color pattern only
depending on an absolute value of “z”. The graphics objects “colorBar10” and “colorBar5” are the color tables.

hueColor[z_]:=Hue[Abs[z],Abs[z],1];
colorBar10=ListDensityPlot[Table[i,{2},{i,0.,1,0.1}],

Frame->False,Mesh->False,AspectRatio->0.1,
ColorFunction->hueColor,DisplayFunction->Identity];

colorBar5=ListDensityPlot[Table[i,{2},{i,0.,1,0.2}],
Frame->False,Mesh->False,AspectRatio->0.1,
ColorFunction->hueColor,DisplayFunction->Identity];

3.3 Sample color image

In this section, we have to input a sample color image. To demonstrate a distribution of color characteristic
vectors and its applicability to a nondestructive testing of the concrete cracks, we read a color image file
“Wall-A-128.bmp” by the function rgbBMP.

sample=rgbBMP["Wall-A-128.bmp"];

After computing a resolution of the input image, we construct its color image.

Chapter 3 Color Image Processing.nb 33

dim=Dimensions[sample];
sampleG=Show[convertRGB[sample],

PlotLabel->"Sample color image",
AspectRatio->dim[[2]]/dim[[3]],
DisplayFunction->Identity];

Further we construct the monochrome images of red, green and blue components. Figure 1 shows the input color
image and its components.

color={"Red","Green","Blue"};
colorCompG=Table[ListDensityPlot[sample[[i]],

PlotRange->All,Mesh->False,Frame->False,
PlotLabel->StringForm["`1`",color[[i]]],
AspectRatio->dim[[2]]/dim[[3]],
DisplayFunction->Identity],{i,3}];

Show[
GraphicsArray[

{{sampleG,colorCompG[[1]]},
{colorCompG[[2]],colorCompG[[3]]}}],

PlotLabel->"Fig.1. Sample and its color components"];

Fig.1. Sample and its color components

Green Blue

Sample color image Red

34 Chapter 3 Color Image Processing.nb

3.4 Color characteristic vectors

Color image is always composed of the three-color components depending on a wavelength of light [2]. The
longest, middle and shortest wavelengths are corresponding to the red, green and blue color components, respectively.
Since a classification of the color components is based on this fact, then project the red, green and blue respectively to
the x-, y- and z-axes components of a Cartesian coordinate system yields a set of three-dimensional vectors. This defines
the three-dimensional color image characteristic vectors. Figure 2 shows the color characteristic vectors of the sample
image in Fig. 1.

vectored3D=Flatten[Table[{{j,i,k},(0.1/Sqrt[3.])*
{sample[[1,i,j]],sample[[2,i,j]],sample[[3,i,j]]}},
{i,1,dim[[2]],2},{j,1,dim[[3]],2},{k,1}],2];

ListPlotVectorField3D[vectored3D,
VectorHeads -> True,ColorFunction->hueColor,
PlotLabel->"Fig.2. Color vectors",
BoxRatios -> {1, 1, 0.1},Boxed->False];

Show[GraphicsArray[{colorBar10}],ImageSize->{200,20}];

Fig.2. Color vectors

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa function function function function VectorMag3D VectorMag3D VectorMag3D VectorMag3D

Since each of the vector lengths corresponds to light reflection strength, a comparison between the vector
distribution and color bar reveals that a light reflection strength of the wall is not uniform but somewhat random nature.
Reader may suppose that this sample concrete wall has several cracks. In order to confirm this, we compute a distribution
of vector magnitudes in Fig. 2 by a following Mathematica function “vectorMag3D”. A parameter “vectorData3D” refers
to the three-dimensional vector data.

Chapter 3 Color Image Processing.nb 35

vectorMag3D=Compile[{{vectorData3D,_Real,3}},
Module[{mag={{0.}},max=0.,min=0.,i=0,j=0,dim={0}},

dim=Dimensions[vectorData3D];
mag=Sqrt[Table[vectorData3D[[1,i,j]]̂ 2+

vectorData3D[[2,i,j]]̂ 2+
vectorData3D[[3,i,j]]̂ 2,
{i,dim[[2]]},{j,dim[[3]]}]];

min=Min[mag];max=Max[mag-min];
If[max=!=0.,Return[(mag-min)/max],

Print["Zero vectors !"];
Return[mag]]]];

Using this function, we compute the magnitude of the characteristic vectors in Fig. 1.

vectMag=vectorMag3D[sample];

After that, we construct an image data of the vector magnitude distribution.

vectMagG=ListDensityPlot[vectMag,
PlotRange->All,Mesh->False,Frame->False,
PlotLabel->"Vector magnitude",
DisplayFunction->Identity];

Before simply plotting the vector magnitude image, we classify the vector magnitude distribution into 5 levels by
their magnitude, and then we construct the classified image data. Figure 3 shows the classified vector magnitude
distributions.

nx=5;
vectMagCG=ListDensityPlot[1. Round[nx vectMag]/nx,

PlotRange->All,Mesh->False,Frame->False,
PlotLabel->StringForm["Classified`̀ ",nx],
ColorFunction->hueColor,DisplayFunction->Identity];

Show[GraphicsArray[{vectMagG,vectMagCG}],
PlotLabel->"Fig.3. Vector magnitude distribution",
ImageSize->{400,200}];

Show[GraphicsArray[{colorBar5}],ImageSize->{400,20}];

Fig.3. Vector magnitude distribution

Vector magnitude Classified5

36 Chapter 3 Color Image Processing.nb

A simple vector magnitude image on the left in Fig. 3 does not extract the cracks clearly, but the blue lines shows
the cracks in the classified image on the right. To extract the cracks more clearly, we use the other vector property “inner
product” between the unit directional and characteristic vectors. Defining a following Mathematica function
“innerPro3D” carries out a three-dimensional inner product computation.

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa function function function function innerPro3D innerPro3D innerPro3D innerPro3D

innerPro3D=Compile[{{vector3D,_Real,3}},
Module[{ref={0.},vec={0.},dim={0},i=0,j=0},

ref={1.,1.,1.}/Sqrt[3.];
dim=Dimensions[vector3D];
Table[

vec={vector3D[[1,i,j]],vector3D[[2,i,j]],
vector3D[[3,i,j]]};ref.vec,

{i,dim[[2]]},{j,dim[[3]]}]
]];

We compute an inner product distribution between the unit directional and characteristic vectors in Fig. 2 by
means of this function.

innerPro=innerPro3D[sample];

We construct an image data of the inner products, and then we classify the inner products into 5 levels by the
magnitude.

innerProG=ListDensityPlot[innerPro,
PlotRange->All,Mesh->False,Frame->False,
PlotLabel->"Inner products",DisplayFunction->Identity];

Figure 4 shows the inner product distributions. A simple inner product distribution on the left in Fig.4 does not
extract the cracks but the classified distribution on the right clearly extracts the cracks as the light blue dotted lines.

innerProCG=ListDensityPlot[1. Round[nx innerPro]/nx,
PlotRange->All,Mesh->False,Frame->False,
PlotLabel->StringForm["Classified`̀ ",nx],
ColorFunction->hueColor,DisplayFunction->Identity];

Show[GraphicsArray[{innerProG,innerProCG}],
PlotLabel->"Fig.4. Inner product distribution",
ImageSize->{400,200}];

Show[GraphicsArray[{colorBar5}],ImageSize->{400,20}];

Chapter 3 Color Image Processing.nb 37

Fig.4. Inner product distribution

Inner products Classified5

Thus, it is obvious that the vectored representation of color image is useful methodology for the nondestructive
inspections.

3.5 Sketch and painted image generation

As described in chapter 2, the sketch is one of the human art works. However, we have succeeded in work out a
plausible monochrome sketch by computer graphics with the aid of field theory.

In this section, we propose the two methodologies to work out the sketch from a color graphics image. Both
methods are based on the nature of color characteristic vectors. The distributions of the vector magnitude and of the inner
products gives the monochrome images. Observing the left side images in Figs 3 and 4 easily recognizes this. Applying
the method developed to a monochrome image in chapter 2 to these images generates the sketch images.

Before to move on the next computations, we remove the needless memories from the Mathematica front end
processor and check up the used memories.

Remove["sampleG","colorCompG","vectored3D","vectMag",
"vectMagG","nx","sample","dim"];

Unprotect[In,Out];Clear[In,Out];Protect[In,Out];
Print["Memory: ",Round[N[MemoryInUse[]/1000]],"K Bytes used"];

Memory: 2158K Bytes used

We read in the image file “AF038-256.bmp” by means of the function rgbBMP, and compute the size of a list
“sample”.

sample=rgbBMP["AF038-256.bmp"];
dim=Dimensions[sample];

Figure 5 shows a sample image.

38 Chapter 3 Color Image Processing.nb

Show[convertRGB[sample],PlotLabel->"Fig.5. Color image",
AspectRatio->dim[[2]]/dim[[3]]];

Fig.5. Color image

à 3.5.1 Monochrome sketch

We compute a magnitude distribution of the color characteristic vectors as well as an inner product distribution
between the unit directional and characteristic vectors of Fig. 5. Further we compute both of the image data.

vectMagG=ListDensityPlot[vectMag=vectorMag3D[sample],
PlotRange->All,Mesh->False,Frame->False,
PlotLabel->"By vector magnitude",
DisplayFunction->Identity];

innerProG=ListDensityPlot[innerPro=innerPro3D[sample],
PlotRange->All,Mesh->False,Frame->False,
PlotLabel->"By inner product",DisplayFunction->Identity];

Figure 6 shows the monochrome images.

Chapter 3 Color Image Processing.nb 39

Show[GraphicsArray[{vectMagG,innerProG}],
ImageSize->{400,200},
PlotLabel->"Fig.6. Monochrome images"];

Fig.6. Monochrome images

By vector magnitude By inner product

At first, we compute the monochrome characteristic vectors to the both images in Fig.6 by the function
“eigen2Dvect”. Second, we compute the magnitude distributions of the monochrome characteristic vectors by the
function “vectorMag2D”. Consequently, we compute the image data reversing the black and white mode.

monoMG=ListDensityPlot[1-vectorMag2D[eigen2DVect[vectMag]],
Mesh->False,Frame->False,PlotRange->All,
PlotLabel->"By vector magnitude",
DisplayFunction->Identity];

monoIG=ListDensityPlot[1-vectorMag2D[eigen2DVect[innerPro]],
Mesh->False,Frame->False,PlotRange->All,
PlotLabel->"By inner product",
DisplayFunction->Identity];

Figure 7 shows the monochrome images.

Show[GraphicsArray[{monoMG,monoIG}],ImageSize->{400,200},
PlotLabel->"Fig.7. Monochrome sketches"];

Fig.7. Monochrome sketches

By vector magnitude By inner product

40 Chapter 3 Color Image Processing.nb

Thus, we have succeeded in drawing the monochrome sketch images. Both images on the right and left in Fig.7
are based on the three-dimensional color as well as two-dimensional monochrome characteristic vector natures.

à 3.5.2 Color sketch

In order to draw a sketch by color pencils, it is essential to use the red, green and blue color components of the
image shown in Fig. 5. In addition, the monochrome sketches to the red, green and green color components are required.
These processes are carried out by a following computation.

colorSketchData=
Table[1-vectorMag2D[eigen2DVect[sample[[i]]]],{i,dim[[1]]}];

Figure 8 shows the sketches of the red, green and blue components in Fig. 5.

Show[GraphicsArray[
Table[ListDensityPlot[colorSketchData[[i]],

PlotRange->All,Mesh->False,Frame->False,
PlotLabel->StringForm["`̀ ",color[[i]]],
DisplayFunction->Identity],{i,dim[[1]]}]],

PlotLabel->"Fig.8. Components of color sketch",
ImageSize->{450,150}];

Fig.8. Components of color sketch

Red Green Blue

After normalizing the image data in Fig. 8 between the values of 0 and 1, we convert the red, green and blue
color sketch data into a color image data by means of the function “convertRGB”. Consequently, we can obtain a color
sketch as shown in Fig. 9.

Chapter 3 Color Image Processing.nb 41

normalizedCSD=Table[
imageNormalize[colorSketchData[[i]]],{i,dim[[1]]}];

Show[convertRGB[normalizedCSD],
PlotLabel->"Fig.9. Color sketch",
AspectRatio->dim[[2]]/dim[[3]]];

Fig.9. Color sketch

Thus, it is obvious that the field theory makes it possible to draw the monochrome as well as color sketch images.

à 3.5.3 Painted image generation

Sometimes, it is required a painted image as if painted by artist. In order to generate such an image, this section
describes a simple methodology. A key idea is to emulate a paint touch imaging by classifying the numerical data into a
limited number of gropes depending on their magnitudes. Computer graphics is able to draw any high-resolution images,
but the painted image by artist is essentially composed of a limited number of color components. Thereby, classification
of the numerical data into a limited number of gropes depending on their magnitudes makes it possible to emulate a paint
touch.

At first, we classify the numerical data into 5 gropes depending on their magnitudes.

level=5.;
pSample=Table[Round[level*sample[[i]]]/level,{i,dim[[1]]}];

Figure 10 shows the monochrome images classified into 5 groups.

42 Chapter 3 Color Image Processing.nb

Show[GraphicsArray[
Table[ListDensityPlot[pSample[[i]],

PlotRange->All,Mesh->False,Frame->False,
PlotLabel->StringForm["`̀ ",color[[i]]],
DisplayFunction->Identity],{i,dim[[1]]}]],

PlotLabel->"Fig.10. Components of color painted image",
ImageSize->{450,150}];

Fig.10. Components of color painted image

Red Green Blue

Combination of the red, green and blue components in Fig. 10 yields a painted image as shown in Fig. 11.

Show[convertRGB[pSample],
PlotLabel->"Fig.11. Painted color image",
AspectRatio->dim[[2]]/dim[[3]]];

Fig.11. Painted color image

Chapter 3 Color Image Processing.nb 43

3.6 High-resolution image generation

In this section, we generate the high-resolution color images by means of the image governing equation, i.e. a
Poisson type partial differential equation.

At first, we read in a low-resolution color image. Second, we derive the source densities of the red, green and blue
components composing the low-resolution color image. Third, we solve each of the partial differential equations having
the red, green and blue component source density inputs, independently. Setting the high-resolution conditions generates
the high-resolution red, green and blue component images. Finally, composition of the generated high-resolution color
components gives a high-resolution color image. We generate two high-resolution images from the one low-resolution
image. Recoverability is checked up by the correlation coefficients between the generated and original color image data.

 Before to continue the computation, we remove the needless memories by a following command and check up the
used memories.

Remove["vectMagG","innerProG","monoMG","monoIG","colorSketchData",
"normalizedCSD","level","pSample"];

Unprotect[In,Out];Clear[In,Out];Protect[In,Out];
Print["Memory: ",Round[N[MemoryInUse[]/1000]],"K Bytes used"];

Memory: 4578K Bytes used

More memories than the previous session were used. This means that the response speed of Mathematica
front-end processor becomes slow.

In order to obtain the low-resolution source densities, we have to read in a low-resolution color image data
“AF038-64.bmp” whose image is shown in Fig. 12.

44 Chapter 3 Color Image Processing.nb

sampleL=rgbBMP["AF038-64.bmp"];
dim=Dimensions[sampleL];
Show[convertRGB[sampleL],PlotLabel->StringForm[

"Fig.12.Original̀ 1 ̀by ̀ 2`pixles image",dim[[2]],dim[[3]]],
AspectRatio->dim[[2]]/dim[[3]]];

Fig.12.Original64 by 64pixles image

We compute the source densities regarding the red, green and blue components as the scalar potentials. This is
carried out by means of the function “laplace2D”.

source=-Table[laplace2D[sampleL[[i]]],{i,dim[[1]]}];

We solve the Poison's type partial differential equations to generate the 128 by 128 and 256 by 256 resolution
images. It must be noted that a large CPU time is required for generating a higher-resolution image. Further, because of
the numerical errors, the solutions are essentially containing a little bit of errors. Normalize the solutions reduces the
effects of numerical errors.

The first 128 by 128 resolution image data are computed by a following simple command.

sampleH1=Table[imageNormalize[poissonSOR2D[source[[i]],
{128,128}]],{i,dim[[1]]}];

Higher-resolution image generation requires longer CPU time, because higher resolution image generation is
reduced into solving a larger linear system of equations. must be noted that a high-resolution color image generation by
differential equations essentially requires a relatively large CPU time. A Mathematica command “Timing” used bellow
gives a required CPU time in second.

sampleH2=Table[imageNormalize[poissonSOR2D[source[[i]],
{256,256}]],{i,dim[[1]]}];//Timing81072.03 Second, Null <

The normalized solutions are converted into the RGB color image data, and an original 128 by 128 resolution
image data “AF-038-128.bmp” is read in a list “sampleH1C”.

Chapter 3 Color Image Processing.nb 45

sample1G=Show[convertRGB[sampleH1],PlotLabel->"Generated 128×128",
AspectRatio->dim[[2]]/dim[[3]],DisplayFunction->Identity];

sample1CG=Show[convertRGB[sampleH1C=rgbBMP["AF038-128.bmp"]],
PlotLabel->"Original",AspectRatio->dim[[2]]/dim[[3]],
DisplayFunction->Identity];

sample2G=Show[convertRGB[sampleH2],PlotLabel->"Generated 256×256",
AspectRatio->dim[[2]]/dim[[3]],DisplayFunction->Identity];

sample2CG=Show[convertRGB[sample],PlotLabel->"Original",
AspectRatio->dim[[2]]/dim[[3]],DisplayFunction->Identity];

Figure 13 shows the obtained high-resolution images arranging with their original ones.

Show[GraphicsArray[{{sample1G,sample1CG},{sample2G,sample2CG}}],
PlotLabel->"Fig.13. Original and generated images",
ImageSize->{450,450}];

Fig.13. Original and generated images

Generated 256×256 Original

Generated 128×128 Original

Obviously, the generated high-resolution images are not so clear than these of original ones. However, their
correlation coefficients between the generated and original image data are very good values.

46 Chapter 3 Color Image Processing.nb

Mathematica function corRelation

A Mathematica function “corRelation” for computing a correlation coefficient is given as follows. The lists “a”
and “b” have to contain the real numerical values and be the same order one-dimensional array.

corRelation=Compile[{{a,_Real,1},{b,_Real,1}},
Module[{aa={0.},bb={0.},av=0.,bv=0.},
av=Apply[Plus,a]/Length[a]; bv=Apply[Plus,b]/Length[b];
aa=a-av; bb=b-bv; aa.bb/(Sqrt[aa.aa]*Sqrt[bb.bb])]];

A correlation coefficient between the generated and original 128 by 128 images is given by

corRelation[Flatten[sampleH1C],Flatten[sampleH1]]

0.968677

Similarly, a correlation coefficient between the generated and original 256 by 256 images is given by

corRelation[Flatten[sample],Flatten[sampleH2]]

0.955257

Only the 6.25 percent data quantity has yielded over 95 percent recoverability. Thus, the differential equation
method is a quite effective tool for generating the high-resolution images.

3.7 Three-dimensional color image generation

In this section, we generate two types of three-dimensional color images. One is the shadowed lighting
three-dimensional image, and the other is the color illusive image. The principle is similar to that of monochrome ones in
chapter 2. One difference between the monochrome and color images is that a monochrome three-dimensional image
generation process should be repetitively applied to all of the color components red, green and blue.

Before to continue the computations, we remove the needless memories and check up them.

Remove["source","sampleH1","sampleH2","sample1G",
"sampleH1C","sample2G","sample2CG"];

Unprotect[In,Out];Clear[In,Out];Protect[In,Out];
Print["Memory: ",Round[N[MemoryInUse[]/1000]],"K Bytes used"];

Memory: 5096K Bytes used

We define a Mathematica function “colorImage3D”. This function requires the function "eigen"2Dvect" and
"imageNormalize". The former generates the two-dimensional characteristic vectors in each of the color components, and
the latter converts the two-dimensional image data into the values between 0 and 1. The parameters "color" and
"rotation" are the color image data and the number of lighting angles, respectively. An output of this function is a
four-dimensional array. The first, second, third and fourth indices in this output array refer to the number of lighting
angles, color components, y-axis pixels and x-axis pixels, respectively.

Chapter 3 Color Image Processing.nb 47

Mathematica function colorImage3D

The parameter “color” and “rotation” of “colorImage3D” are the list containing color image data and a integer
giving a number of lighting angle subdivisions.

colorImage3D[color_,rotation_]:=
Module[{view,dim,vector,dummy,sol,i,j,k,p},

view=Table[{Cos[2.Pi i/rotation],Sin[2.Pi i/rotation]},
{i,0,rotation-1}];

dim=Dimensions[color];
vector=Table[eigen2DVect[color[[i]]],{i,dim[[1]]}];
dummy=Table[vector[[p,i,j]].view[[k]],

{k,rotation},{p,dim[[1]]},
{i,dim[[2]],1,-1},{j,dim[[3]]}];

Table[(1-imageNormalize[dummy[[i,j]]])*color[[j]],
{i,rotation},{j,dim[[1]]}]];

Using this function, we compute the shadowed lighting color image data.

rotation=8;
color3D=colorImage3D[sampleL,rotation];//Timing85.93 Second, Null <

Figure 14 show a set of the shadowed lighting images. From the left to right images on the upper in Fig. 14 are
corresponding to the 0, 45, 90 and 135-degree lighting angles, respectively. Similarly, from the left to right images on the
lower are corresponding to the 180, 225, 270 and 315-degree lighting angles.

color3DG=Table[Show[convertRGB[color3D[[i]]],
PlotLabel->StringForm["`1 ̀deg.",
(i-1) (360/rotation)],AspectRatio->dim[[2]]/dim[[3]],
DisplayFunction->Identity],{i,rotation}];

Show[GraphicsArray[
Table[Table[color3DG[[i+j]],{j,0,3}],{i,1,rotation,4}]],
ImageSize->{400,200},PlotLabel->"Fig.14. 3D color images"];

Fig.14. 3D color images

180 deg. 225 deg. 270 deg. 315 deg.

0 deg. 45 deg. 90 deg. 135 deg.

48 Chapter 3 Color Image Processing.nb

After setting a mouse cursor on a following image, twice clicking the left side button of mouse animates the facial
changes depending on the lighting angles. This is only effective on the Mathematica notebook.

Do[Show[GraphicsArray[{color3DG[[i]]}]],{i,rotation}];

0 deg.

3.8 Illusive color imaging

In this section, we carry out a color illusive imaging. The principle of the method is similar to those of
monochrome illusive imaging in chapter 2. One difference between the monochrome and color images is that a
monochrome illusive image generation process should be repetitively applied to all of the color components red, green
and blue.

To improve a Mathematica front-end response speed, we remove the needless memories and check up them.

Remove["color3D","color3DG"];
Unprotect[In,Out];Clear[In,Out];Protect[In,Out];
Print["Memory: ",Round[N[MemoryInUse[]/1000]],"K Bytes used"];

Memory: 5138K Bytes used

We define a Mathematica function “illusion3D”. This function is based on a knowledge obtained in the
monochrome illusive image generation processes, and requires using the functions “eigen2Dvect” and “poissonSOR2D”.

Mathematica function illusion3D

The parameter “color” and “rotation” of “illusive3D” are the list containing color image data and a integer giving
a number of lighting angle subdivisions.

Chapter 3 Color Image Processing.nb 49

illusion3D[color_,rotation_]:=
Module[{view,dim,vector,dummy,sol,i,j,k,p},

view=Table[{Cos[2.Pi i/rotation],Sin[2.Pi i/rotation]},
{i,0,rotation-1}];

dim=Dimensions[color];
vector=Table[eigen2DVect[color[[i]]],{i,dim[[1]]}];
dummy=Table[vector[[p,i,j]].view[[k]],

{k,rotation},{p,dim[[1]]},
{i,dim[[2]],1,-1},{j,dim[[3]]}];

sol=Table[poissonSOR2D[-dummy[[i,j]],
{dim[[2]],dim[[3]]}],{i,rotation},{j,dim[[1]]}];

Table[imageNormalize[sol[[i,j]]],{i,rotation},{j,dim[[1]]}]];

Using this function, we compute the illusive image data.

illusive=illusion3D[sampleL,rotation];//Timing847.65 Second, Null <
Figure 15 show a set of illusive images. From the left to right images on the upper in Fig. 15 are corresponding to

the 0, 45, 90 and 135-degree lighting angles, respectively. Similarly, from the left to right images on the lower are
corresponding to the 180, 225, 270 and 315-degree lighting angles.

illusiveG=Table[Show[convertRGB[illusive[[i]]],
PlotLabel->StringForm["`1 ̀deg.",(i-1) (360/rotation)],
AspectRatio->dim[[2]]/dim[[3]],DisplayFunction->Identity],
{i,rotation}];

Show[GraphicsArray[
Table[Table[illusiveG[[i+j]],{j,0,3}],{i,1,rotation,4}]],
ImageSize->{400,200},PlotLabel->"Fig.15. Illusive color images"];

Fig.15. Illusive color images

180 deg. 225 deg. 270 deg. 315 deg.

0 deg. 45 deg. 90 deg. 135 deg.

After setting a mouse cursor on a following image, twice clicking the left side button of mouse animates the facial
changes depending on the lighting angles. This is only effective on the Mathematica notebook.

Do[Show[GraphicsArray[{illusiveG[[i]]}]],{i,rotation}];

50 Chapter 3 Color Image Processing.nb

0 deg.

Chapter 3 Color Image Processing.nb 51

3.9 Summary

This chapter has described about the color image processing techniques based on the linear vector space as well
as classical field theory.

Color image data are always composed of the three independent color components, i.e. red, green and blue. This
is a clear distinction to the monochrome image data. The color image characteristic vectors have been obtained by
combining the color image components without any spatial derivatives. Even though an original image could be exactly
recovered from its second spatial derivatives, i.e. source density, the characteristic vectors of monochrome image
essentially had to be deduced by means of the spatial derivatives. A deduction of the characteristic vectors without any
vector operations is an extremely significant. The color image characteristic vectors are corresponding to the reflected
light intensity vectors. This means that the characteristic vectors of color image have a firm physical background, so that
it may become a useful tool for inspection, identification and cognition. In this chapter, we have demonstrated as a tool
of nondestructive testing.

In chapter 2, we described the basic principle and practical examples of the field theory of computer graphics.
This chapter has extended the basic principles of the field theory to the color graphics images.

The first part has devoted to describe about the nature and application of this color image vector field.

In the second part, we have described the image processing techniques to generate the sketch and painted images.
Two methodologies have been taken into account for the monochrome image generation. One has utilized a magnitude
distribution of the color characteristic image vectors, and the other has been based on a distribution of the inner products
between the unit directional and color image vectors. Combination of the sketch data of red, green and blue components
has generated a colored sketch image. Each of the sketch components has been generated by means of the
two-dimensional monochrome image characteristic vectors described in chapter 2. The color painted image has been
obtained by combining the painted image data of the red, green and blue components.

In the third part, the high-resolution color images have been generated from a low-resolution color image. Each
of the governing equations concerning with the red, green and blue components has been independently solved with
higher resolution, and then a combination of their solutions has led to the high-resolution color images. A correlation
analysis between the generated and exact image data has suggested that good high-resolution color images can be
generated by the method of differential equations.

Finally, we have generated the two types of three-dimensional color images. One is the shadowed lighting color
image, and the other is the illusive color image. Because of color, both three-dimensional color images have been more
impressive to that of three-dimensional monochrome images.

à RRRREEEEFFFFEEEERRRREEEENNNNCCCCEEEESSSS

[1] Stephen Wolfram, The Mathematica Book, 3rd ed. (Wolfram Media/Cambridge University Press,
1996).

[2] J.D.Jackson, "Classical Electrodynamics 3rd Edition," John Wiley & Sons, New York (1998).

52 Chapter 3 Color Image Processing.nb

Chapter 4. Wavelet Image Processing

4.1 Introduction

This chapter introduces the applications of the wavelet transform to the image data. As described in the previous
chapters, we have three types of image data. The first represents the static monochrome image, the second represents the
color image and the third is the three-dimensional shadowed lighting image. The monochrome image data are housed in
the two-dimensional arrays. Also, the monochrome three-dimensional shadowed lighting image data are housed in the
two-dimensional arrays. The color image data are housed in the three two-dimensional arrays, which house the red, green
and blue color components. Similarly, the color three-dimensional shadowed lighting image data are housed in the three
two-dimensional arrays. Thus, it looks like to use the two-dimensional wavelet transform for the image data processing.
However, consideration of the time depended images, i.e. animation image data, leads to use the three-dimensional
wavelet transform. The monochrome animation image data are essentially housed in the three-dimensional arrays.
Further, the color animation image data have to be housed by the three three-dimensional arrays.

The first section of this chapter describes about the discrete orthogonal wavelet transform, which employ the
Daubechies, Coifman and Baylkin's base functions. Details of the discrete orthogonal wavelet are not described but the

nth dimensional wavelet transform Mathematica code is described.

The second section describes the monochrome image data compression and expansion by the wavelet transform.
This section is an introduction of the wavelet image processing. Also, this section demonstrates that Mathematically
remarkable image compression rate is possible by the wavelet transform.

The third section concerns with the color image compression and recovery. It is revealed that the compression
rate and recoverability depend on the order of base function.

The fourth section proposes one of the orthogonal color image decomposition. In chapter 3, we have projected
the color image components red, green and blue, to the x-, y-, and z-axes in the Cartesian coordinate, respectively. In this
section, the color image data are represented in the spherical coordinate. The magnitude of color image characteristic
vector corresponds to a radius. The attitude and longitude are represented in terms of their directional co-sinusoidal
components. In continuation to this section, the fifth section describes about the wavelet compression and recovery to the
color image data represented in terms of the spherical coordinate quantities. The sixth section reveals that the color image
data compression rate by the wavelet transform depends on the way of image data representations. Namely, higher
recoverability can be achieved by the spherical coordinate representation.

The seventh and final sections are concerning with the expansion of a small number of color animation data to a
large number of ones by the wavelet transform. This demonstrates that a three-dimensional wavelet transform makes it
possible to increase the number of animation data.

4.2 Preparation of Mathematica

à 4.2.1 Mathematica utilities and packages

Before to move on the practical image processing, we have to install the memory conserve utilities and the
warning messages suppressing command for the similar variable name. In addition, the
“LinearAlgebra`MatrixManipulation” and “Graphics`ContourPlot3D” packages have to be installed.

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa utilities utilities utilities utilities and and and and add-on add-on add-on add-on packages packages packages packages

<<Utilities`MemoryConserve`
$MemoryIncrement=100000;
Off[General::spell1,MemoryConserve::start,MemoryConserve::end];
<< LinearAlgebra`MatrixManipulation ;̀
<<Graphics`ContourPlot3D ;̀

à 4.2.2 Mathematica functions

Here, we define several functions that have been described and used in the previous chapters. The functions
“rgbBMP”, “convertRGB”, “grad2D”, “curl2D”, “eigen2DVect”, “vectorMag2D”, “laplace2D”, “poissonSOR2D”,
“imageNormalize” and “hueColor” have been defined in the previous chapters, so that the comments of such functions
are not described.

However, the functions “vectorMag3D”, “corRelation”, "colorImage3D" “illusion3D” and “momoryUsed” are
newly defined in this chapter, so that their comments will be described.

Function rgbBMP

Function convertRGB

Function grad2D

Function curl2D

Function eigen2DVect

Function vectorMag2D

Function laplace2D

Function poissonSOR2D

FunctionFunctionFunctionFunction imageNormalize imageNormalize imageNormalize imageNormalize

54 Chapter 4 Wavelet Image Processing.nb

Function hueColor

Function VectorMag3D

Function corRelation

Function colorImage3D

Function illusion3D

Function memoryUsed

à 4.2.3 Mathematica functions for the discrete wavelet transform

In this Mathematica notebook includes the discrete orthogonal base function of “Daubechies 2-20th”, “Coifman

6-30th” and “Baylkin 6th-18th”. All of the coefficients are included in the Mathematica notebook, but are not explicitly

described in the text. If you desire to see such coefficients, open the Mathematica notebook.

Wavelets base functions

Wavelets transform matrix

This function gives a wavelet transform matrix with order “n” by “n” using a base function “baseType”. The
parameter “n” must be the integer and the power of 2. For example, a 4 by 4 wavelet transform matrix using the

Daubechies 2nd order base function is obtained by “waveletMatrix[4,daub4]”.

waveletMatrix[n_,baseType_]:=
Apply[Dot,Flatten[Table[{pPrime[j,n,baseType],

cPrime[j,n,baseType]},{j,Log[2,n]-
Ceiling[Log[2.,Length[baseType[[2]]]]],1,-1}],
1]].p[n].c[n,baseType];

Chapter 4 Wavelet Image Processing.nb 55

Wavelets transform function

This function carries out the wavelet and inverse wavelet transforms to a “n”-th dimensional “data” using a
transform matrix “wMat”. For example, if we wish to carry out a wavelet transform to a three-dimensional 32 by 32 by
32 array “data” using the base functions “daub2”, “daub4” and “daub8”, then a waveletpectrum “wSpect” is obtained by
the following steps.

1) Create the transform matrices by

wMat={waveletMatrix[32,daub2],waveletMatrix[32,daub4],waveletMatrix[32,daub8]};

2) Carry out a wavelet transform by

wSpect=waveletND[data,wMat,3];

If we wish to carry out an inverse wavelet transform to the waveletpectrum “wSpect”, then it is carried out by the
following steps.

1) Transpose the transform matrices by

wMatTrans={Transpose[waveletMatrix[32,daub2]],

Transpose[waveletMatrix[32,daub4]],Transpose[waveletMatrix[32,daub8]]};

2) Carry out an inverse transform by

recover=waveletND[data,wMatTrans,3];

waveletND @data_, wMat_, n_ D : =
Block @8s, ww<, s = Join @8n<, Table @i, 8i, n - 1<DD;

ww= Transpose @wMat@@1DD .data, s D ;
Do@ww= Transpose @wMat@@i DD .ww, s D, 8i, 2, n <D ; ww D;

A practical example of the wavelet transform is given bellow. Figure 1 shows an example three-dimensional data
"data3D".

data3D = Table[x^2+2*y^2+3*z^2,{z,-.875,.875,.25},
{y,-.875,.875,.25},{x,-.875,.875,.25}];

56 Chapter 4 Wavelet Image Processing.nb

ListContourPlot3D[data3D,PlotLabel->"Fig.1. Example of 3D data",
 MeshRange -> {{-.875,.875}, {-.875,.875}, {-.875,.875}},
 Contours -> {1.5, 3.},Lighting -> False, Axes -> True,
 ContourStyle -> {{RGBColor[0,1,0]},{RGBColor[1,0,0]}},
 ImageSize->{200,200}];

Fig.1. Example of 3D data

-0.5
0

0.5

-0.5

0
0.5

-0.5

0

0.5

-0.5
0

0.5

-0.5

0
0.5

Using the Daubechies 2nd, 4th and 6th order base functions, we construct the wavelet transform matrix "wMat",

and then we compute a wavelet spectrum "wSpect". Figure 2 shows the wavelet spectrum.

base={daub2,daub4,daub6};
wMat=Table[waveletMatrix[8,base[[i]]],{i,3}];
wSpect=waveletND[data3D,wMat,3];
ListContourPlot3D[wSpect,PlotLabel->"Fig.2.3D wavelet spectrum",
 MeshRange -> {{-1,1}, {-1,1}, {-1,1}},

MeshRange -> {{-1,1}, {-1,1}, {-1,1}},
Contours -> {1.5, 3.},Lighting -> False, Axes -> True,

 ContourStyle -> {{RGBColor[0,1,0]},{RGBColor[1,0,0]}},
 ImageSize->{200,200}];

Fig.2.3D wavelet spectrum

-1
-0.75

-0.5
-0.25

0

-1

-0.5

0

-1

-0.5

0

-1
-0.75

-0.5
-0.25

0

1

-0.5

0

To recover the original data, we transpose the wavelet transform matrices, and then carry out an inverse wavelet
transform. In addition, we compute the maximum absolute error between the original "data3D" and recovered

Chapter 4 Wavelet Image Processing.nb 57

"recover3D" data. Because of the numerical errors, the recovered data "recover3D" are not exactly equivalent to the
original ones, but the errors are negligible small values.

Final commands remove the needless memories and check the used memories. Thereby, it is possible to know that
the Mathematica front-end uses about 1.7-mega bytes memories

wMatTrans=Table[Transpose[wMat[[i]]],{i,3}];
recover3D=waveletND[wSpect,wMatTrans,3];
Max[Abs[data3D-recover3D]]

2.64464 ´ 10-11

Remove["data3D","base","wMat","wSpect",
"wMatTrans","recover3D"];memoryUsed

1735K Bytes used

4.3 Wavelet image compression and recovery

à 4.3.1 Sample images

In this section, we have to input a sample color image. The 24-bitmap image data file "AF038-128.bmp" is read
in a list "sample by the function "rgbBMP". After that we construct its monochrome image data by computing a
magnitude distribution of the color image characteristic vectors.

sample=rgbBMP["AF038-128.bmp"];
monoSample=vectorMag3D[sample];

After computing a resolution of the input image by the Mathematica command "Dimensions", we construct its
color and monochrome image data. Figure 3 shows the 128 by 128 resolution color and monochrome images.

58 Chapter 4 Wavelet Image Processing.nb

dim=Dimensions[sample];
sampleG=Show[convertRGB[sample],PlotLabel->"Color image",

AspectRatio->dim[[2]]/dim[[3]],DisplayFunction->Identity];
monoSampleG=ListDensityPlot[monoSample,PlotRange->All,

Mesh->False,Frame->False,PlotLabel->"Monochrome image",
AspectRatio->dim[[2]]/dim[[3]],DisplayFunction->Identity];

Show[GraphicsArray[{sampleG,monoSampleG}],
PlotLabel->"Fig.3. Sample images",ImageSize->{300,150}];

Fig.3. Sample images

Color image Monochrome image

à 4.3.2 Principle of wavelet image compression and recovery

In order to show the wavelet image compression and recovery, we apply a two-dimensional wavelet transform to
the monochrome image shown on the right in Fig. 3.

At first, we construct the wavelet transform matrices employing the Daubechies 2nd and 4th order base functions.

Second, we carry out a wavelet transform. Figure 4 shows the obtained wavelet spectrum. Surprisingly, major parts of
this wavelet spectrum are zero, where the zero value is painted in black. Only a small number of elements at the bottom
on the left side take the non-zero values. This means that the small number of non-zero values in Fig. 4 could represent
the major monochrome image data in a wavelet spectrum domain.

base={daub2,daub4};
wMat=Table[waveletMatrix[dim[[2]],base[[i]]],{i,2}];
spect=waveletND[monoSample,wMat,2];

Chapter 4 Wavelet Image Processing.nb 59

ListDensityPlot[spect,PlotRange->All,
Mesh->False,Frame->False,AspectRatio->dim[[2]]/dim[[3]],
PlotLabel->"Fig.4. Wavelet spectram"];

Fig.4. Wavelet spectram

According to the result shown in Fig. 4, we take only 25 percent wavelet spectrum into account. Namely, the
monochrome image data is compressed into the 25 percent data. Apply an inverse wavelet transform to this 25 percent
spectrum recovers the monochrome image approximately. Figure 5 shows a recovered image. It is revealed that the
approximately recovered image in Fig. 5 is a poor image. This is because the original 128 by 128 resolution image has
been reduced into a 32 by 32 resolution image.

To evaluate a correlation coefficient between the original and recovered image data, we construct an approximate
128 by 128 resolution wavelet spectrum. The following steps carry this out.

partSpect=TakeMatrix[spect,{1,1},{dim[[2]]/4,dim[[3]]/4}];
wMatPrimeTrans=Table[Transpose[waveletMatrix[dim[[2]]/4,

base[[i]]]],{i,2}];
recoverPrime=waveletND[partSpect,wMatPrimeTrans,2];

60 Chapter 4 Wavelet Image Processing.nb

ListDensityPlot[recoverPrime,PlotRange->All,
Mesh->False,Frame->False,AspectRatio->dim[[2]]/dim[[3]],
PlotLabel->"Fig.5.Compressed image",ImageSize->{200,200}];

Fig.5.Compressed image

At first, we construct a 128 by 128 zero-matrix. Second, the 25 percent wavelet spectrum is embedded into this
zero-matrix. Thus, we have the approximate 128 by 128 wavelet spectrum. Apply an inverse wavelet transform recovers
a 128 by 128 resolution image data. Figure 6 shows an approximately recovered 128 by 128 resolution image.

spectComp=ZeroMatrix[dim[[2]]];
Do[spectComp[[i,j]]=partSpect[[i,j]],{i,dim[[2]]/4},{j,dim[[3]]/4}];
wMatTrans=Table[Transpose[wMat[[i]]],{i,2}];
recover=waveletND[spectComp,wMatTrans,2];

ListDensityPlot[recover,PlotRange->All,
Mesh->False,Frame->False,AspectRatio->dim[[2]]/dim[[3]],
PlotLabel->"Fig.6. Recovered image",ImageSize->{200,200}];

Fig.6. Recovered image

We compute a correlation coefficient between the image data in Fig. 6 and on the right in Fig. 3. Surprisingly, the
correlation coefficient is about 0.97.

Thus, from a Mathematical viewpoint, the wavelet transform is capable of compressing the image data.

Chapter 4 Wavelet Image Processing.nb 61

corRelation[Flatten[recover],Flatten[monoSample]]

0.968937

At the finishing of this section, we remove the used variables and check the used memories.

Remove["base","wMat","spect","partSpect","wMatPrimeTrans",
"recover"];memoryUsed

2574K Bytes used

à 4.3.3 RGB color image compression and recoverability

The purpose of this section is to examine a nature of wavelet image compression as well as recoverability. The
nature of wavelet transform may be classified into two major categories. One is depended on a selection of the base

functions, and the other is the order of the selected base function. In this section, we employ the Coifman's 6th, 12th,

18th, 24th and 30th order base functions. A target image to be compressed is the color sample shown on the left in Fig. 3.

In order to extract the 25 percent major wavelet spectrum, we construct a filter matrix by the following codes.

filter=ZeroMatrix[dim[[2]]];
Do[filter[[i,j]]=1.,{i,dim[[2]]/4},{j,dim[[3]]}];

The color image data are rearranged to a one-dimensional form for a convenience of a correlation coefficient
computation. After selecting the base functions, we compute the correlation coefficients and approximately recovered
color image data by the following Mathematica codes.

sampleFl=Flatten[sample];
base={coif6,coif12,coif18,coif24,coif30};

rgbR=Table[ZeroMatrix[dim[[2]],dim[[3]]],{Length[base]},
{dim[[1]]}];

corC=Table[
wMat=waveletMatrix[dim[[2]],base[[i]]];
wMatTrans=Transpose[wMat];
pSpect=Table[filter*waveletND[sample[[j]],{wMat,wMat},2],

{j,dim[[1]]}];
rgbR[[i]]=Table[waveletND[pSpect[[j]],{wMatTrans,wMatTrans},2],

{j,dim[[1]]}];
corRelation[Flatten[rgbR[[i]]],sampleFl],
{i,Length[base]}];

The approximately recovered color image data are normalized to the values between 0 and 1, because the wavelet
compressed color image data do not always take the values between the 0 and 1.

dummy=rgbR;
rgbR=Table[imageNormalize[dummy[[i,j]]],{i,Length[base]},{j,dim[[1]]}];

Figure 7 shows a relationship between the correlation coefficients and the order of base function. Obviously,
employment of the higher order base functions yields the higher correlation coefficients.

Before to finishing this section, we remove the needless variables and check the used memories. As a result, it is
found that a relatively large amount of memories are required to keep the approximately recovered color images.

62 Chapter 4 Wavelet Image Processing.nb

rgbG=ListPlot[corC,PlotStyle->RGBColor[1,0,0],PlotRange->All,
PlotJoined->True,PlotLabel->"Fig.7.Recoverbility of Coifman",
AxesLabel->{"×6 order","Cor.Coe."},ImageSize->{450,300}];

Remove["corC","wMat","wMatTrans","pSpect","dummy"];
memoryUsed

2 3 4 5
×6 order

0.98575

0.98625

0.9865

0.98675

0.987

0.98725

Cor.Coe. Fig.7.Recoverbility of Coifman

7589K Bytes used

à 4.3.4 Orthogonal image data decomposing and composing

This section proposes a methodology, which converts a color image data into the spherical coordinate components.

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa function function function function colorDecode colorDecode colorDecode colorDecode

The magnitude of color image characteristic vector corresponds to a radius. The attitude and longitude are
represented in terms of their directional co-sinusoidal components. A following function "colorDecomp" decomposes a
color image data "vector3D" into the spherical coordinate components.

Chapter 4 Wavelet Image Processing.nb 63

colorDecomp=Compile[{{vector3D,_Real,3}},
Module[{vec={0.},out={{{0.}}},dim={0},

vn=0.,i=0,j=0,k=0},
dim=Dimensions[vector3D];
out=Table[

vec=Table[vector3D[[k,i,j]],{k,dim[[1]]}];
vn=Sqrt[vec.vec];
If[vn=!=0.,vec={vn,vec[[1]]/vn,vec[[2]]/vn},

vec={0.,0.,0.}];vec,
{i,dim[[2]]},{j,dim[[3]]}];
Table[out[[i,j,k]],{k,dim[[1]]},{i,dim[[2]]},{j,dim[[3]]}]

]];

Apply this function to the sample color image data yields a set of decomposed results as shown in Fig. 8. It is
revealed that the color sample image data can be decomposed into a set of quite different quantities instead of the red,
green and blue components. One of the merits of this spherical coordinate representation is that the radius component is
corresponding to the magnitude distribution of color image characteristic vectors, and is a monochrome image.

colorD=colorDecomp[sample];

label={"Mag.","Cos(x)","Cos(y)"};
colorDG=Table[ListDensityPlot[colorD[[i]],

PlotRange->All,Mesh->False,Frame->False,
PlotLabel->StringForm["``",label[[i]]],
DisplayFunction->Identity],{i,3}];

Show[GraphicsArray[colorDG],ImageSize->{450,150},
PlotLabel->"Fig.8.Decomposed images"];

Fig.8.Decomposed images

Mag. CosHxL CosHyL

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa function function function function colorDecode colorDecode colorDecode colorDecode

To draw a color image, we have to convert the decomposed components in Fig. 8 into the original RGB
components. This is carried out by a following Mathematica function "colorComp". A parameter "colorD" of this
function are a three dimensional array housing the color image components in term of the spherical coordinate system.

64 Chapter 4 Wavelet Image Processing.nb

colorComp=Compile[{{colorD,_Real,3}},
Module[{r={{0.}},g={{0.}},p={{0.}},out={{{0.}}},

i=0,min=0.,max=0.},
r=colorD[[1]] colorD[[2]];
g=colorD[[1]] colorD[[3]];
p=r^2+g^2;
out={r,g,Sqrt[Abs[colorD[[1]]̂ 2-p]]};
Table[min=Min[out[[i]]];

(out[[i]]-min)/Max[out[[i]]-min],{i,3}]
]];

Using this function, we compose the color image red, green and blue components. Figure 9 shows the recovered
color, red, green and blue components images. Because of the orthogonal decomposition and composition, the original
color image as well as its components is exactly recovered in Fig. 9.

colorC=colorComp[colorD];

label={"Red","Green","Blue"};
colorCG=Table[ListDensityPlot[colorC[[i]],

PlotRange->All,Mesh->False,Frame->False,
PlotLabel->StringForm["``",label[[i]]],
DisplayFunction->Identity],{i,3}];

composedG=Show[convertRGB[colorC],PlotLabel->"Encoded",
AspectRatio->dim[[2]]/dim[[3]],DisplayFunction->Identity];

Show[GraphicsArray[{{composedG,colorCG[[1]]},
{colorCG[[2]],colorCG[[3]]}}],ImageSize->{300,300},
PlotLabel->"Fig.9. Composed and componets images"];

Fig.9. Composed and componets images

Green Blue

Encoded Red

Chapter 4 Wavelet Image Processing.nb 65

Before to move on a next section, we remove the needless variables, and check the used memories. In addition to
the memories required to store the approximately recovered color image data, the decomposed color components in the
spherical coordinate require about 1.1 mega bytes memories.

Remove["colorDG","colorC","label","colorCG","composedG"];
memoryUsed

8617K Bytes used

à 4.3.5 Decomposed Image compression

This section examines a nature of wavelet image compression as well as recoverability to the decomposed color
image components in the spherical coordinate. Similar to that of the red, green and blue components image data

compression, we employ the Coifman's 6th, 12th, 18th, 24th and 30th order base functions for the wavelet transform. A

target image to be compressed is the image data shown in Fig. 8.

The decomposed color image data are rearranged to a one-dimensional form for a convenience of a correlation
coefficient computation. After that, we compute the correlation coefficients and approximately recovered color image
data by the following Mathematica codes.

dSampleFl=Flatten[colorD];
deCompR=Table[ZeroMatrix[dim[[2]],dim[[3]]],

{Length[base]},{dim[[1]]}];
corC=Table[

wMat=waveletMatrix[dim[[2]],base[[i]]];
wMatTrans=Transpose[wMat];
pSpect=Table[filter*waveletND[colorD[[j]],{wMat,wMat},2],

{j,dim[[1]]}];
deCompR[[i]]=Table[waveletND[pSpect[[j]],

{wMatTrans,wMatTrans},2],{j,dim[[1]]}];
corRelation[Flatten[deCompR[[i]]],dSampleFl],
{i,Length[base]}];

Figure 10 shows a relationship between the correlation coefficients and the order of base function. Similar to those
of the red, green and blue components image data compression, employment of the higher order base functions yields the
higher correlation coefficients.

Finally, we remove the needless variables and check the used memories.

66 Chapter 4 Wavelet Image Processing.nb

deCompG=ListPlot[corC,PlotStyle->RGBColor[0,1,0],
PlotRange->All,PlotJoined->True,ImageSize->{450,300},
PlotLabel->"Fig.10.Decomposed recoverbility of Coifman",
AxesLabel->{"×6 order","Cor.Coe."}];

Remove["corC","wMat","wMatTrans","pSpect"];memoryUsed

2 3 4 5
×6 order

0.9943

0.9944

0.9945

0.9946

0.9947

0.9948

0.9949

Cor.Coe. Fig.10.Decomposed recoverbility of Coifman

12981K Bytes used

Figure 11 shows a comparison between the RGB image and the decomposed image data. The red and green lines
are corresponding to the RGB and decomposed image data, respectively. From a result shown in Fig. 11, it is clarified
that the color image data compression by the wavelet transform greatly depends on the data arrangement.

Thus, it is preferable to use the decomposed image data in the spherical coordinate in order to attain a high
compression rate by the discrete orthogonal wavelet transform.

Before to move on the next section, we remove the variables used for the correlation coefficients, and check the
used memories.

Chapter 4 Wavelet Image Processing.nb 67

Show[rgbG,deCompG,
PlotLabel->"Fig.11.Comparison RGB(red) and decoded(green)",
AxesLabel->{"×6 order","Cor.Coe."},ImageSize->{450,300}];
Remove["rgbG","deCompG"];memoryUsed

2 3 4 5
×6 order

0.986

0.988

0.992

0.994

Cor.Coe. Fig.11.Comparison RGBHredL and decodedHgreenL

12982K Bytes used

à 4.3.6 Recovered image comparison

This section shows the approximately recovered color images. We have two types of the recovered images. One is
recovered from the conventional red, green and blue compressed components. The other is recovered from the
compressed radius, attitude and longitude components.

Figure 12 shows the recovered color images from the 25 percent compressed image data. Mathematically, the right
side images have higher recoverability than those of right side ones, but our human eyes could not find out a big
difference between them. Hence, a small different recoverability between them is no meaning to us, but sometimes, it
becomes a significant difference for the image identification and visualizations.

Because of a great memory requirement of a next section, we remove the used variables and check up the used
memories.

compR=Table[colorComp[deCompR[[i]]],{i,Length[base]}];

68 Chapter 4 Wavelet Image Processing.nb

compeG=Table[{
Show[convertRGB[rgbR[[i]]],

PlotLabel->StringForm["RGB ̀ `order",6*i],
AspectRatio->dim[[2]]/dim[[3]],DisplayFunction->Identity],

Show[convertRGB[compR[[i]]],
PlotLabel->StringForm["Decomposed ̀ `oder",6*i],
AspectRatio->dim[[2]]/dim[[3]],DisplayFunction->Identity]},

{i,1,Length[base],2}];

Show[GraphicsArray[compeG],ImageSize->{300,400},
PlotLabel->"Fig.12. Compressed image by Coifman"];

Remove["compR","deCompR","compeG","rgbR","base"];
memoryUsed

Fig.12. Compressed image by Coifman

RGB 30order Decomposed 30oder

RGB 18order Decomposed 18oder

RGB 6order Decomposed 6oder

3097K Bytes used

Chapter 4 Wavelet Image Processing.nb 69

4.4 Dynamic image processing

à 4.4.1 Three-dimensional image sample

Previous sections have carried out the two-dimensional wavelet image compressions. In this section, we carry out
the three-dimensional wavelet image expansions.

At the beginning, we have to set up the sample images. A 64 by 64 resolution color image is employed as a sample
image. This sample image data is read in the Mathematica front-end by a following code. After reading in the sample
image data, we compute its resolution.

sample=rgbBMP["AF038-64.bmp"];
dim=Dimensions[sample];

By means of the inner product in vector fields, we wok out the 8 shadowed lighting images. Figure 13 shows the
shadowed lighting images. After removing the graphics image data, it is revealed that about 3.4 mega bytes are required
to store the 8 shadowed lighting images.

rotation=8;
color3D=colorImage3D[sample,rotation];

color3DG=Table[Show[convertRGB[color3D[[i]]],
PlotLabel->StringForm["``deg.",360*(i-1)/rotation],
AspectRatio->dim[[2]]/dim[[3]],DisplayFunction->Identity],
{i,rotation}];

Show[GraphicsArray[
Table[Table[color3DG[[i+j]],{j,0,3}],{i,1,rotation,4}]],
ImageSize->{400,200},PlotLabel->"Fig.13. 3D color images"];

Remove["color3DG"];memoryUsed

Fig.13. 3D color images

180deg. 225deg. 270deg. 315deg.

0deg. 45deg. 90deg. 135deg.

6432K Bytes used

70 Chapter 4 Wavelet Image Processing.nb

à 4.4.2 Three-dimensional wavelet transform

The sample image shown in Fig. 13 consists of the shadowed images having 8 different lighting directions. Each of
the samples can be represented by the three two-dimensional image data, so that each of the red, green and blue color
component data is represented in a three-dimensional image data. Thereby, we apply a three-dimensional wavelet

transform to each of the color component data. The Daubechies 4th, 16th order base functions are employed.

zcolor3D=Table[color3D[[j,i,k,l]],
{i,dim[[1]]},{j,rotation},{k,dim[[2]]},{l,dim[[3]]}];

dimZ=Dimensions[zcolor3D];
base={daub4,daub16,daub16};
wMat=Table[waveletMatrix[dimZ[[i+1]],base[[i]]],{i,Length[base]}];
zSpect=Table[waveletND[zcolor3D[[i]],wMat,3],{i,dim[[1]]}];

After computing the three-dimensional wavelet spectrum, we work out an approximate wavelet spectrum of the 16
shadowed lighting image data. An inverse wavelet transform generates the expanded 16 shadowed lighting image data
from the 8 ones. These processes are applied to each of the red, green and blue components.

angle=16;
aSpect=Table[0.,{dim[[1]]},{angle},{dim[[2]]},{dim[[3]]}];
Do[aSpect[[i,j]]=zSpect[[i,j]],{i,dim[[1]]},{j,rotation}];
wMat[[1]]=waveletMatrix[angle,base[[1]]];
wMatTrans=Table[Transpose[wMat[[i]]],{i,Length[base]}];
angleInc=Table[waveletND[aSpect[[i]],wMatTrans,3],{i,dim[[1]]}];
incColor3D=Table[imageNormalize[angleInc[[i,j]]],

{j,angle},{i,dim[[1]]}];

The expanded color image data are converted into the color graphics image ones. Figure 14 shows the expanded
images. Depending on the lighting angles, the 8 shadowed lighting color images in Fig. 13 are successfully expanded to
the 16 ones by the three-dimensional wavelet transform.

incColor3DG=Table[Show[convertRGB[incColor3D[[i]]],
PlotLabel->StringForm["``deg.",Round[360*(i-1.)/angle]],
AspectRatio->dim[[2]]/dim[[3]],
DisplayFunction->Identity],{i,angle}];

Chapter 4 Wavelet Image Processing.nb 71

Show[GraphicsArray[
Table[Table[incColor3DG[[i+j]],{j,0,3}],{i,1,angle,4}]],
ImageSize->{400,400},PlotLabel->"Fig.14. Increased 3D color images"];

Fig.14. Increased 3D color images

270deg. 292deg. 315deg. 338deg.

180deg. 202deg. 225deg. 248deg.

90deg. 112deg. 135deg. 158deg.

0deg. 22deg. 45deg. 68deg.

After setting a mouse cursor on a following image, twice clicking the left side button of mouse animates the facial
changes depending on the lighting angles. This is only effective on the Mathematica notebook.

Do[Show[GraphicsArray[{incColor3DG[[i]]}]],{i,angle}];

72 Chapter 4 Wavelet Image Processing.nb

0deg.

After removing the needless variables, checking the used memories reveals that a relatively large amount of
memories are used.

Remove["color3D","zcolor3D","zSpect","incColor3D","incColor3DG"];
memoryUsed

9975K Bytes used

à 4.4.3 Illusive image

Similar to those of the previous section, we work out the 8 illusive color images by means of the function
"illusion3D". Figure 15 shows the 8 illusive color images.

illusion=illusion3D[sample,rotation];

Chapter 4 Wavelet Image Processing.nb 73

illusionG=Table[Show[convertRGB[illusion[[i]]],
PlotLabel->StringForm["``deg.",360*(i-1)/rotation],
AspectRatio->dim[[2]]/dim[[3]],DisplayFunction->Identity],
{i,rotation}];

Show[GraphicsArray[
Table[Table[illusionG[[i+j]],{j,0,3}],{i,1,rotation,4}]],
ImageSize->{400,200},PlotLabel->"Fig.15. Original illusive images"];

Fig.15. Original illusive images

180deg. 225deg. 270deg. 315deg.

0deg. 45deg. 90deg. 135deg.

Similar to that of the shadowed color images, we generate the 16 illusive color image data by the three-dimensional
wavelet transform.

zillusion=Table[illusion[[j,i,k,l]],
{i,dim[[1]]},{j,rotation},{k,dim[[2]]},{l,dim[[3]]}];

wMat[[1]]=waveletMatrix[rotation,base[[1]]];
zSpect=Table[waveletND[zillusion[[i]],wMat,3],{i,dim[[1]]}];
aSpect=Table[0.,{dim[[1]]},{angle},{dim[[2]]},{dim[[3]]}];
Do[aSpect[[i,j]]=zSpect[[i,j]],{i,dim[[1]]},{j,rotation}];
wMat[[1]]=waveletMatrix[angle,base[[1]]];
wMatTrans=Table[Transpose[wMat[[i]]],{i,Length[base]}];
angleInc=Table[waveletND[aSpect[[i]],wMatTrans,3],{i,dim[[1]]}];
incIllusion=Table[imageNormalize[angleInc[[i,j]]],

{j,angle},{i,dim[[1]]}];

After converting the image data into color graphics one, we can get the 16 illusive color images as shown in Fig. 16.

incIllusionG=Table[Show[convertRGB[incIllusion[[i]]],
PlotLabel->StringForm["``deg.",Round[360*(i-1.)/angle]],
AspectRatio->dim[[2]]/dim[[3]],
DisplayFunction->Identity],{i,angle}];

74 Chapter 4 Wavelet Image Processing.nb

Show[GraphicsArray[
Table[Table[incIllusionG[[i+j]],{j,0,3}],{i,1,angle,4}]],
ImageSize->{400,400},PlotLabel->"Fig.16. Increased illusive images"];

Fig.16. Increased illusive images

270deg. 292deg. 315deg. 338deg.

180deg. 202deg. 225deg. 248deg.

90deg. 112deg. 135deg. 158deg.

0deg. 22deg. 45deg. 68deg.

Thus, we have succeeded in expanding the three-dimensional color image by means of the wavelet transform.

After setting a mouse cursor on a following image, twice clicking the left side button of mouse animates the facial
changes depending on the lighting angles. This is only effective on the Mathematica notebook.

Do[Show[GraphicsArray[{incIllusionG[[i]]}]],{i,angle}];

Chapter 4 Wavelet Image Processing.nb 75

0deg.

4.5 Summary

As shown above, this chapter have clarified that the discrete orthogonal wavelet transform is a quite useful tool
for image data compression as well as expansion.

This chapter has introduced the applications of the wavelet transform to the image data. The first section of this
chapter has described about the discrete orthogonal wavelet transform, which employ the Daubechies, Coifman and
Baylkin's base functions. The second section has described the monochrome image data compression and expansion by
the wavelet transform. This section has been an introduction of the wavelet image processing. Also, this section has
demonstrated that Mathematically remarkable image compression rate is possible by the wavelet transform. The third
section has concerned with the color image compression and recovery. It has been revealed that the compression rate and
recoverability depend on the order of base function. The fourth section has proposed one of the orthogonal color image
decomposition. In this section, the color image data have been represented in terms of the spherical coordinate quantities.
The magnitude of color image characteristic vector has corresponded to a radius. The attitude and longitude have been
represented in terms of their directional co-sinusoidal components. In continuation to this section, the fifth section has
described about the wavelet compression and recovery to the color image data represented in terms of the spherical
coordinate quantities. The sixth section has revealed that the color image data compression rate by the wavelet transform
depends on the way of image data representations. Namely, higher recoverability could be achieved by the spherical
coordinate representation. The seventh and final sections have concerned with the expansion of a small number of color
animation data to a large number of ones by the wavelet transform. This has demonstrated that the three-dimensional
wavelet transform makes it possible to increase the number of animation data.

Thus, we have confirmed that the wavelet transform along with the vector fields provides not only the simple
image data compression and expansion tool, but also suggests a higher compression rate possibility, i.e., the image data
represented in terms of the spherical coordinate components could be compressed with higher recoverability by the
wavelet transform.

76 Chapter 4 Wavelet Image Processing.nb

à RRRREEEEFFFFEEEERRRREEEENNNNCCCCEEEESSSS

[1] Stephen Wolfram, The Mathematica Book, 3rd ed. (Wolfram Media/Cambridge University Press,
1996).

[2] J.D.Jackson, "Classical Electrodynamics 3rd Edition," John Wiley & Sons, New York (1998).

Chapter 4 Wavelet Image Processing.nb 77

Chapter 5. Eigen Pattern Image Processing

5.1 Introduction

In any physical vector fields, we can find the eigen value and vectors. The eigen value represents the distinct
physical system parameter. For example, the time constants of the electrical resistance, inductance and capacitance
circuits are the inverse of eigen value. In the mechanical mass and spring systems, we have the eigen value, which
corresponds to a natural resonant frequency of the system.

The target of this chapter is to find the parameter representing the distinct image. Since we have regarded the
image data as the scalar or one component of the vector potentials, then we have found and established the new
methodologies for the image processing. In physical system, we have found the eigen value and vectors representing the
intrinsic characteristics of the system. This means that the eigen value or vectors should be found in the computer
graphics.

In classical vector fields, the eigen value or its equivalent has been deduced as a result of the continuous field
governing equations. Fundamental difference between the classical field theory and computer graphics is that the
physical field theory has been established in a continuous space but the computer graphics can be established only in a
discretized space. In the other words, the computer graphics has been established in an artificial space. Thereby, it is
difficult to find and define the eigen value of a digital image, exactly. Modern discrete mathematics has revealed that the
approximate eigen values could be computed from the discretized system of equations. In such meaning, it is possible to
find the image eigen values from an image governing system of equations. Discretization of the Poisson type partial
differential equations can derive the image governing system of equations. When we evaluate the eigen values from such
an image governing system of equations, the smaller and larger eigen values may provide the eigen vectors representing
the smoother and spikier lines as well as surfaces, respectively. The investigations about this are significant, but we do
not discuss about these eigen values.

Principal purpose of this chapter is to derive an eigen pattern not the eigen value. In chapter 4, we have derived
one of the eigen patterns by the discrete orthogonal wavelet transform. A wavelet spectrum is one of the eigen patterns
derived by a simple linear transform using a square wavelet transform matrix. In the present chapter, we generalize this
linear transform to a nonlinear transform using a rectangular transform matrix. A meaning of the term “nonlinear” is that
an inverse transform using the rectangular transform matrix never recover an exact original data but gives the best
approximate data.

In the first section of this chapter, we describe a key idea deriving an eigen pattern. In the second section, we
describe to the practical Mathematica codes deriving the eigen pattern. Also, we examine the nature of eigen pattern
employing several one-dimensional image examples, which are the time domain sinusoidal waves. The third section
derives an eigen pattern of the monochrome images, where we are demonstrated the angle and resolution independencies
of the image eigen pattern. In addition to this section, the fourth section derives the eigen pattern of color image.

As a result, it is revealed that the image eigen pattern makes it possible to generate any angled and resolution
images.

5.2 Preparation of Mathematica

à 5.2.1 Mathematica utilities and packages

Before to move on the practical image processing, we have to install the memory conserve utilities and the
warning messages suppressing. In addition Mathematica utilities， the “ LinearAlgebra‘MatrixManipulation” package
has to be installed..

<<Utilities`MemoryConserve`
$MemoryIncrement=100000;
Off[General::spell1,MemoryConserve::start,MemoryConserve::end];
<< LinearAlgebra`MatrixManipulation ;̀

à 5.2.2 Mathematica functions

Here, we define several functions that are described and used in the previous chapters. The functions “rgbBMP”,
“convertRGB”, “vectorMag3D”, “corRelation” and “memoryUsed“ have been defined in the previous chapters, so that
the comments of such functions are not described.

Function rgbBMP

Function convertRGB

Function vectorMag3D

Function corRelation

Function memoryUsed

Function window

Function convert2D

à 5.2.3 Mathematica functions for eigen pattern generation

Principle

Let us consider a vector given by

x={0,1,2,3,3,3,2,1,0};

This vector “x” is composed of the two 0, two 1, two 2 and three 3 elements. Our purpose is to extract the
number of the elements taking the same absolute value not taking into account the zero elements. In order to achieve this,
we set a resolution to m=3 because we have to count the three kinds of numerical values. After that, we normalize the
vector “x” by

79 Chapter 5 Eigen Pattern Image Processing.nb

m= 3;
xn = m* x � Max@Abs@xDD;

In order to extract the three kinds of numerical values from the vector 9th order vector “x”, we construct a 3 by 9

rectangular transform matrix “c” by

n=9;
c=Table[

If[Sign[xn[[j]]] xn[[j]]==i,p=1./x[[j]],p=0];p,
{i,m},{j,n}];

This matrix “c” can be rewritten in matrix form by

c//MatrixFormikjjjjjj 0 1. 0 0 0 0 0 1. 0
0 0 0.5 0 0 0 0.5 0 0

0 0 0 0.333333 0.333333 0.333333 0 0 0

y{zzzzzz
Using this matrix transform “c”, we can extract the number of non-zero elements from the vector “x” by

b=c.x82., 2., 3. <
The first, second and third elements in a vector “b” are corresponding to the number of the elements taking the

numeric values 1, 2 and 3, respectively.

Thus, we have succeeded in extracting the number of non-zero elements from the vector “x”. Here, we define the
vector “b” as an eigen pattern vector. In order to recover the original vector “x” from the eigen pattern vector “b”, we
construct an inverse matrix by means of a least norm solution sense for an ill posed linear system.

c.Transpose[c]//MatrixFormikjjjjjj 2. 0. 0.

0. 0.5 0.
0. 0. 0.333333

y{zzzzzz
Since all of the elements excepting the diagonal elements are zero, then the row vectors of the transform matrix

“c” are the independent orthogonal vectors. Thereby, similar to the least norm method, an inverse transform matrix “d” is
formally obtained by

d=Transpose[c].Inverse[c.Transpose[c]];
%//MatrixFormi

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

0. 0. 0.

0.5 0. 0.

0. 1. 0.
0. 0. 1.

0. 0. 1.
0. 0. 1.

0. 1. 0.

0.5 0. 0.
0. 0. 0.

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
Using this inverse transform matrix “d”, we can recover the original vector “x” by

Chapter 5 Eigen Pattern Image Processing.nb 80

d .b80., 1., 2., 3., 3., 3., 2., 1., 0. <
Thus, the original vector “x” is successfully obtained by means of the inverse transform matrix “d”. In this case,

the target vector “x” has a 3 level resolution and we have set the 3 level resolution. This leads to a successful recovery
result. However, it is difficult to set up the resolution in accordance with exact one. In such case, we confront to the zero
row vector of the transform matrix, even though these vectors are the independent orthogonal ones. In such a case, it is
difficult to derive an exact inverse transform matrix “d”.

Function eigenMatrix

This function “eigenMatrix” is derived from an input vector “base”. The resulting transform matrix becomes a

rectangular matrix with the “resolution”th rows and length of the vector “base”th columns.

eigenMatrix = Compile @88base, _Real, 1 <, 8resolution, _Integer <<,
Module @8p = 0., dataPrime = 80<,

n = Length @base D, i = 0, j = 0<,
dataPrime = Round@resolution * base � Max@Abs@base DDD;

Table @
If @Sign @base @@j DDD *dataPrime @@j DD == i,

p = 1. � base @@j DD, p = 0. D; p,8i, resolution <, 8j, n <DDD;

Function eigenPattern

This function “eigenPattern” derives an eigen pattern directly from an input vector “base”. This functional type
routine looses a structured process for the eigen pattern extraction, but it is extremely useful routine to handle a large size
base function.

eigenPattern =

Compile @88base, _Real, 1 <, 8resolution, _Integer <<,
Module @8dummy= Abs@base D, out = 80<, i = 0<,
out = Round@resolution *dummy� Max@dummyDD;
Table @Count @out, i D, 8i, resolution <DDD;

Function inverseEigenMatrix

The inverse transform matrix “inverseEigenMatrix” is based on the fact that each of the row vectors in the
transform matrix “eigenMat” is an orthogonal vector. The output matrix of the Mathematica function
“inverseEigenMatrix” has a transposed form of the transform matrix “eigenMat”.

inverseEigenMatrix = Compile @88eigenMat, _Real, 2 <<,
Module @8v = 80. <, d = 880. <<, dim = 80<<,
dim = Dimensions @eigenMat D;
v = Table @eigenMat @@i DD .eigenMat @@i DD, 8i, dim @@1DD<D;
d = ZeroMatrix @dim@@1DDD;
Do@If @v@@i DD =!= 0., d @@i, i DD = 1. � v@@i DDD, 8i, dim @@1DD<D;
Transpose @eigenMat D . dDD;

81 Chapter 5 Eigen Pattern Image Processing.nb

Function inverseEigenPattern

This “inverseEigenPattern” routine recovers an original image directly from an eigen pattern along with a base
function “base”. Because of the different numerical processes, this function gives a recovered vector with a small
difference compared with those of the function “inverse EigenMatrix”.

inverseEigenPattern =

Compile @88eigen, _Real, 1 <, 8base, _Real, 1 <, 8resolution, _Integer <<,
Module @8out = 880. <<, d = 80. <<,
d = 1. *Round@resolution * base D � resolution;
out = Transpose @Table @d, 8resolution <DD;
out .eigen �Apply @Plus, eigen DDD;

5.3 The nature of eigen patterns

à 5.3.1 One-dimensional image

Sample images

Let us consider the four one-dimensional images in time domain having the different frequencies, time phase and
waveforms.

resolution=100;
sample1D={Table[Sin[2Pi i/resolution],{i,0,resolution,0.1}],

Table[Sin[6Pi i/resolution],{i,0,resolution,0.1}],
Table[Abs[Sin[2Pi i/resolution]],{i,0,resolution,0.1}],
Table[Cos[2Pi i/resolution],{i,0,resolution,0.1}]};

Figure 1 shows the one-dimensional sample images.

label={"Fig.1(a)","Fig.1(b)","Fig.1(c)","Fig.1(d)"};
sample1DG=Table[ListPlot[sample1D[[i+j]],

PlotRange->All,PlotJoined->True,AxesLabel->{"time","Amp."},
PlotStyle->RGBColor[i,0,j/4],
PlotLabel->StringForm["`1`",label[[i+j]]],
DisplayFunction->Identity],{j,1,4,2},{i,0,1}];

Chapter 5 Eigen Pattern Image Processing.nb 82

Show[GraphicsArray[sample1DG],ImageSize->{400,250}];

200 400 600 800 1000
time

0.2

0.4

0.6

0.8

1
Amp. Fig.1HcL

200 400 600 800 1000
time

-1

-0.5

0.5

1
Amp. Fig.1HdL

200 400 600 800 1000
time

-1

-0.5

0.5

1
Amp. Fig.1HaL

200 400 600 800 1000
time

-1

-0.5

0.5

1
Amp. Fig.1HbL

Eigen patterns

Let us compute the eigen pattern transform matrices by

eigenMat=Table[eigenMatrix[sample1D[[i]],resolution],{i,4}];

then we evaluate the eigen patterns, which are shown in Fig.2.

eigenPatternM=Table[eigenMat[[i]].sample1D[[i]],{i,4}];

83 Chapter 5 Eigen Pattern Image Processing.nb

label={"Fig.2(a)","Fig.2(b)","Fig.2(c)","Fig.2(d)"};
eigenM1DG=Table[ListPlot[eigenPatternM[[i+j]],

PlotRange->All,PlotJoined->True,
AxesLabel->{"Reso.","Amp."},
PlotLabel->StringForm["`1`",label[[i+j]]],
DisplayFunction->Identity],{j,1,4,2},{i,0,1}];

Show[GraphicsArray[eigenM1DG],ImageSize->{400,250}];

20 40 60 80 100
Reso.10

20

30

40

50

60

Amp. Fig.2HcL

20 40 60 80 100
Reso.10

20
30
40
50
60

Amp. Fig.2HdL

20 40 60 80 100
Reso.10

20

30

40

50

60

Amp. Fig.2HaL

20 40 60 80 100
Reso.10

20

30

40

50

60

Amp. Fig.2HbL

Comparison the original one-dimensional images in Fig.1 and their eigen patterns reveals that all of the eigen
patterns are the same even though their frequencies, time phase and waveforms are different. To check this, we compute
a correlation coefficient between them.

Table[
corRelation[eigenPatternM[[1]],eigenPatternM[[i]]],

{i,2,4,1}]81., 1., 0.999956 <
Thus, our method has extracted the unique eigen pattern that has a common nature of the sinusoidal waveform.

Inverse transform

The recovering to the original time domain one-dimensional images from the eigen pattern depends on an inverse
transform matrix. Because of the same eigen pattern, the time domain image is determined by which transform matrix to
be used for constructing the inverse transform matrix. In this textbook, we recover the sinusoidal waveform from the
eigen pattern of the co-sinusoidal waveform shown in Fig.1 (d).

At first, we construct the inverse transform matrix based on the transform matrix of the sinusoidal waveform in
Fig. 1(a).

inverseMat=inverseEigenMatrix[eigenMat[[1]]];

Second, we recover the sinusoidal waveform from the eigen pattern of co-sinusoidal waveform in Fig 2(d). Figure
3 shows a recovered sinusoidal waveform.

Chapter 5 Eigen Pattern Image Processing.nb 84

sinR=inverseMat.eigenPatternM[[4]];
sinRG=ListPlot[sinR,PlotRange->All,PlotJoined->True,

PlotStyle->RGBColor[1,0,0],AxesLabel->{"time","Amp."},
PlotLabel->"Fig.3. Recovered"];

200 400 600 800 1000
time

-1

-0.5

0.5

1

Amp. Fig.3. Recovered

To check up recoverability, we compute a maximum absolute difference between the original and recovered
one-dimensional image data.

Max[Abs[sample1D[[1]]-sinR]]

0.0218712

As you can see, about 2 percent error has been occurred by the finite resolution=100 limit. Finally, we remove the
needless memories and check the used memories. Thereby, it is possible to know that the Mathematica front-end uses
about 1.7 mega bytes memories.

Remove["sample1D","sample1DG","label","eigenMat","eigenPatternM",
"eigenM1DG","inverseMat","sinR","sinRG"];

memoryUsed

1706K Bytes used

à 5.3.2 Eigen pattern of a monochrome image

Sample images

This section extracts the eigen patterns of the monochrome images. At first, we have to read in a sample image data
by

sample=rgbBMP["BF001.bmp"];

After computing an array size and three-dimensional vector magnitude of the sample image, Fig. 4 shows the
original monochrome sample image.

85 Chapter 5 Eigen Pattern Image Processing.nb

dim=Dimensions[sample];
monoSample=vectorMag3D[sample];
ListDensityPlot[monoSample,PlotRange->All,Mesh->False,Frame->False,

PlotLabel->"Fig.4. Original monochrome sample"];

Fig.4. Original monochrome sample

In order to remove an effect of background in Fig. 4, we apply a round shape window to the sample image.

At first, a window function, we work out a 128 by 128 pixels list “win128” having a window's radius 50.

win128=window[128,128,50];

Convolution between the window and sample image data yields a window operated image. Further, we work out
the other sample images based on the original sample in Fig. 4. Figure 5 shows the monochrome sample images. The
differences among them are the angle and resolutions.

monoSampleW=win128*monoSample;
monoSampleWD={monoSampleW,Transpose[monoSampleW],

Table[monoSampleW[[dim[[2]]-i+1,j]],{i,1,dim[[2]],2},{j,dim[[3]]}],
Table[monoSampleW[[i,dim[[3]]-j+1]],{i,dim[[2]]},{j,1,dim[[3]],2}]};

label={"(a)","(b)","(c)","(d)"};
mSamplewDG=Table[ListDensityPlot[monoSampleWD[[i]],PlotRange->All,

Mesh->False,Frame->False,AspectRatio->dim[[2]]/dim[[3]],
PlotLabel->StringForm["`1`",label[[i]]],
DisplayFunction->Identity],{i,4}];

Chapter 5 Eigen Pattern Image Processing.nb 86

Show[GraphicsArray[{{mSamplewDG[[1]],mSamplewDG[[2]]},
{mSamplewDG[[3]],mSamplewDG[[4]]}}],
PlotLabel->"Fig.5. Monochrome images",
ImageSize->{400,400}];

Fig.5. Monochrome images

HcL HdL

HaL HbL

Eigen patterns

In order to extract the eigen patterns of the images in Fig. 5, we set the resolutions of the x- and y-axes to the
values of 16 and 16, respectively. After rearranging the sample image data into one-dimensional form, we compute their
eigen patterns. Consequently obtained eigen patterns take a one-dimensional form, so that we rearrange the eigen patterns
into a two-dimensional form. Figure 6 shows the eigen patterns of the monochrome image samples in Fig. 5.

xReso=16;
yReso=16;
resolution=xReso*yReso;
eigen2D=Table[eigenPattern[Flatten[monoSampleWD[[i]]],

resolution],{i,4}];

eigen2DG=Table[ListPlot3D[convert2D[eigen2D[[i]],xReso,yReso],
PlotRange->All,Mesh->False,Boxed->False,
PlotLabel->StringForm["`1`",label[[i]]],
DisplayFunction->Identity],{i,4}];

87 Chapter 5 Eigen Pattern Image Processing.nb

Show[GraphicsArray[{{eigen2DG[[1]],eigen2DG[[2]]},{eigen2DG[[3]],
eigen2DG[[4]]}}],PlotLabel->"Fig.6. Eigen patterns",
ImageSize->{400,400}];

Fig.6. Eigen patterns

HcL

5
10

15

5

10

15

0
100
200
300
400

5
10

15

HdL

5
10

15

5

10

15

0
100
200
300
400

5
10

15

HaL

5
10

15

5

10

15

0
200
400
600
800

5
10

15

HbL

5
10

15

5

10

15

0
200
400
600
800

5
10

15

Even though the sample images in Fig. 5 are the different angled and resolutions, their eigen patterns are similar
ones. The sample images having the same resolution take the same eigen pattern even if they are angled. The lower
resolution sample images take the eigen patterns having smaller maximum amplitude.

The correlation coefficient computations between them suggest that all of the sample images in Fig. 5 are the same
ones.

Thus, the meaning of the eigen pattern may be understood by every one. Before to continue the next section, we
remove the needless variables and check the memories used.

Table[corRelation[eigen2D[[1]],eigen2D[[i]]],{i,2,4,1}]81., 0.998162, 0.998309 <
Remove["monoSample","monoSampleW","mSamplewDG","eigen2DG"];
memoryUsed

3414K Bytes used

Chapter 5 Eigen Pattern Image Processing.nb 88

Inverse transform

In this section, we generate or recover the monochrome images from the monochrome image eigen patterns in
Fig.6. Similar to the one-dimensional image recovery, the recovered images are depended on the base image data. The
base image data work as a guideline for which type image will be recovered from the same eigen pattern. We select the
data representing a sample image of Fig. 5(a) as the base image data, after that we recover the monochrome images from
the eigen patterns in Fig. 6(b)-(d). Figure 7 shows the recovered monochrome images formatted by the based image of
Fig. 5(a). As you can see, we have just recovered the same images to the windowed one in Fig. 5(a).

recover2D=Table[inverseEigenPattern[eigen2D[[i]],
Flatten[monoSampleWD[[1]]],resolution],{i,2,4,1}];

recover2DG=Table[ListDensityPlot[
convert2D[recover2D[[i]],dim[[2]],dim[[3]]],
PlotRange->All,Mesh->False,Frame->False,
PlotLabel->StringForm["`1`",label[[i+1]]],
DisplayFunction->Identity],{i,3}];

Show[GraphicsArray[recover2DG],PlotLabel->"Fig.7. Recovered images",
ImageSize->{450,150}];

Fig.7. Recovered images

HbL HcL HdL

Similar to that of the one-dimensional images, the correlation coefficient computations between the images in Fig.
5(a) and in Fig. 7 suggest that all of the sample images in Fig. 5 are the same ones. Finally, we remove the needless
variables and check the used memories.

Table[corRelation[Flatten[monoSampleWD[[1]]],recover2D[[i]]],{i,3}]80.999997, 0.999997, 0.999997 <
Remove["monoSampleWD","recover2D","recover2DG","eigen2D"];
memoryUsed

2238K Bytes used

à 5.3.3 Eigen pattern of a color image

Sample images

The sample data read in the Mathematica front-end are converted into the color image data format. After that, we
have a color sample image as shown in Fig. 8.

89 Chapter 5 Eigen Pattern Image Processing.nb

Show[convertRGB[sample],AspectRatio->dim[[2]]/dim[[3]],
PlotLabel->"Fig.8. Original color sample"];

Fig.8. Original color sample

To reduce a background effect of the sample image, we employ a simple round shape of window. After window
operation, we work out the angled and low resolution color image data. Figure 9 shows the color image samples.

sampleW=Table[win128*sample[[i]],{i,dim[[1]]}];
sampleWD={sampleW,Table[Transpose[sampleW[[i]]],{i,dim[[1]]}],

Table[sampleW[[k,dim[[2]]-i+1,j]],
{k,dim[[1]]},{i,1,dim[[2]],2},{j,dim[[3]]}],

Table[sampleW[[k,i,dim[[3]]-j+1]],
{k,dim[[1]]},{i,dim[[2]]},{j,1,dim[[3]],2}]};

samplewDG=Table[Show[convertRGB[sampleWD[[i]]],
AspectRatio->dim[[2]]/dim[[3]],
PlotLabel->StringForm["`1`",label[[i]]],
DisplayFunction->Identity],{i,4}];

Chapter 5 Eigen Pattern Image Processing.nb 90

Show[GraphicsArray[{{samplewDG[[1]],samplewDG[[2]]},{samplewDG[[3]],
samplewDG[[4]]}}],PlotLabel->"Fig.9. Color images",
ImageSize->{400,400}];

Fig.9. Color images

HcL HdL

HaL HbL

We remove the needless variables, because the computations of color image eigen pattern require an enormous
memories. Checking the used memories reveals that our Mathematica front-end is now using about 2.5 mega bytes
memories. Even though a relatively small memory is used, next section may require a virtual memory use.

Remove["sample","sampleW","samplewDG"];
memoryUsed

2462K Bytes used

Eigen patterns

We compute the color image eigen patterns. The red, green and blue color components are not independently
computed but simultaneously computed. This leads to a enormous memory. Figure 10 shows the color image eigen
patterns. Surprisingly, all of the color images in Fig. 9 take the similar eigen patterns, even if their images are the angled
and low-resolution ones.

eigen3D=Table[eigenPattern[Flatten[sampleWD[[i]]],
resolution],{i,4}];

91 Chapter 5 Eigen Pattern Image Processing.nb

eigen3DG=Table[ListPlot3D[convert2D[eigen3D[[i]],xReso,yReso],
PlotRange->All,Mesh->False,Boxed->False,
PlotLabel->StringForm["`1`",label[[i]]],
DisplayFunction->Identity],{i,4}];

Show[GraphicsArray[{{eigen3DG[[1]],eigen3DG[[2]]},{eigen3DG[[3]],
eigen3DG[[4]]}}],PlotLabel->"Fig.10. Eigen patterns",
ImageSize->{400,400}];

Fig.10. Eigen patterns

HcL

5
10

15

5

10

15

0
500

1000
1500

5
10

15

HdL

5
10

15

5

10

15

0
500

1000
1500

5
10

15

HaL

5
10

15

5

10

15

0
1000
2000
3000

5
10

15

HbL

5
10

15

5

10

15

0
1000
2000
3000

5
10

15

Similar to that of monochrome images, the sample images having the same resolution take the same eigen pattern
even if they are angled. The lower resolution sample images take the eigen patterns having smaller maximum amplitude.
However, computation of the correlation coefficients between them reveals that all of the sample images in Fig. 9 are the
same ones.

Before to move on the next computations, we remove the needless variables and check the used memories.

Table[corRelation[eigen3D[[1]],eigen3D[[i]]],{i,2,4,1}]81., 0.999644, 0.999782 <
Remove["eigen3DG","win128"];
memoryUsed

2462K Bytes used

Chapter 5 Eigen Pattern Image Processing.nb 92

Inverse transform

We generate or recover the color images from the color image eigen patterns in Fig.10. Similar to the
one-dimensional and monochrome image recovery, the recovered images are depended on the base image data. Also
described in the monochrome image recovery from their eigen patterns, the base image data work as a guideline for
which type image will be recovered from the same eigen pattern. We select the data representing a sample image of Fig.
9(a) as the base image data. And then we recover the color images from the eigen patterns in Fig. 10(b)-(d). Figure 11
shows the recovered color images formatted by the base image in Fig. 9(a).

recover3D=Table[inverseEigenPattern[eigen3D[[i]],
Flatten[sampleWD[[1]]],resolution],{i,2,4,1}];

k=dim[[2]]*dim[[3]];
recoverC=Table[Take[recover3D[[i]],{k*(j-1)+1,k*j}],

{i,3},{j,dim[[1]]}];
color2D=Table[convert2D[recoverC[[i,j]],dim[[2]],dim[[3]]],

{i,3},{j,dim[[1]]}];

recover3DG=Table[Show[convertRGB[color2D[[i]]],
PlotLabel->StringForm["`1`",label[[i+1]]],
AspectRatio->dim[[2]]/dim[[3]],
DisplayFunction->Identity],{i,3}];

Show[GraphicsArray[recover3DG],PlotLabel->"Fig.11. Recovered images",
ImageSize->{450,150}];

Fig.11. Recovered images

HbL HcL HdL

Computation of the correlation coefficients between the images in Fig. 9(a) and in Fig. 11 suggests that all of the
sample images in Fig. 9 are the same ones. Finally, we remove the needless variables and check the used memories.

Table[corRelation[Flatten[sampleWD[[1]]],recover3D[[i]]],{i,3}]80.999998, 0.999998, 0.999998 <
memoryUsed

4028K Bytes used

93 Chapter 5 Eigen Pattern Image Processing.nb

5.4 Summary

In this chapter, we have discussed about the image eigen pattern not the eigen values. Derivation of the eigen
patterns has been based on the nonlinear transformation employing a rectangular transform matrix. Depending on the
image as well as resolution, even if the transform matrix is a rectangular, we have successfully recovered the images from
their eigen patterns. The wavelet transform has extracted one of the eigen patterns. The wavelet spectrum of an image has
extracted the characteristics of the image but not extracted the common characteristics of among the images. On the other
side, the method described in this chapter has been able to extract the common characteristics among the images. We
have defined the eigen pattern representing the common image characteristics. According to this definition, it has been
demonstrated that any angled and low-resolution images have the same eigen pattern as long as the angled and
low-resolution images visualize the same object. In the other words, when keeping the distinct eigen pattern of an image,
we can identify the image from the others. This means that the image eigen pattern defined above may have an enormous
applications for the image identification, cognition and visualization

In the first section of this chapter, we have described a key idea deriving an eigen pattern. In the second section,
we have described to the practical Mathematica codes deriving the eigen pattern. Also, we have examined the nature of
eigen pattern employing several one-dimensional image examples, which are the time domain sinusoidal waves. The
third section has derived an eigen pattern of the monochrome images. This has verified the angle and resolution
independencies of the image eigen pattern. In addition to this section, the fourth section has derived the eigen pattern of
color images, and recovered the original images from their eigen patterns.

à RRRREEEEFFFFEEEERRRREEEENNNNCCCCEEEESSSS

[1] Stephen Wolfram, The Mathematica Book, 3rd ed. (Wolfram Media/Cambridge University Press,
1996).

[2] J.D.Jackson, "Classical Electrodynamics 3rd Edition," John Wiley & Sons, New York (1998).

Chapter 5 Eigen Pattern Image Processing.nb 94

Chapter 6. Image Identification in Real
Domain

6.1 Introduction

In the previous chapters, we described to the basic tools, sketch generation, three-dimensional angled lighting
image generation, image governing equation, illusive image generation, wavelet image processing and eigen pattern of
the computer graphics images based on the classical field theory. The image identification is one of the most important
applications of the computer graphics, because it leads to work out the artificial human eyes. When we can realize the
capability of human eyes information processing by computers, the most of the works requiring the information
processing of the human eyes can be replaced by the computers equipped CCD. As is well known, our human society is
composed of the cooperated works to maintain the social system, consuming products and peacekeeping. Many of them
are relayed on the information processing ability of human eyes. Thus, one of the final targets of this book is aimed to
construct a frame part of the artificial human eyes.

In this chapter, we try to identify the particular images in a large number of database images by means of the
three different approaches. The first is a conventional correlation analysis. The other approaches are based on the inverse
analysis methodologies. The inverse analysis is essentially reduced into solving for the ill posed linear system of
equations. An inverse solution method yields a solution vector. In this solution vector, it is assumed that the most
dominant or positive maximum element in the solution vector identifies a particular image. Also, a weighted sum of
entire images generates a synthesized image, while the weights are the elements of solution vector. We employ the two
inverse solution methodologies. One is a conventional least squares and the other is an iterative method so called vector
generalized sampled pattern matching (vector GSPM in short). A difference between them is that the former always
requires an inverse matrix but latter never require the inverse matrix. This means that the least squares can be applied
only the limited cases, where a least squares projective operator is successfully evaluated, but the vector GSPM can be
universally applicable to any types of ill posed system matrix.

The image identifications are carried out in the four different domains. The first is a real domain, the second is a
Fourier spectrum domain, the third is a wavelet spectrum domain, and the fourth is an eigen pattern domain. In the
Fourier spectrum domain, we carry out the image identifications using the absolute values of Fourier spectra in order to
remove the spatial phase differences among the test and database images.

The solutions of ill posed system of equations are generally depending on a system structure and not uniquely
evaluated. In the other words, a typical ill posed system of equations is that a number of equations is less or larger than
those of the unknowns. This means that the former and latter have the infinitely large number of solutions and no
solution exactly satisfying the entire equations, respectively. In most of the image identification problems, the number of
equations and unknowns are corresponding to the number of equations and the database images. Thereby, the image
identification problem is reduced into solving for an ill posed problem, which is composed of the larger number of
equations than those of the unknowns. In such an ill posed system, it is difficult to evaluate the solution exactly
satisfying the all equations. Thus, least square is one of the well-established methodologies. Even though, the least
squares are well-established methodology, it requires, in essence, computing an inverse matrix. Because of too ill posed
system matrix, we sometimes confront a singular matrix. In order to overcome this difficulty, we introduce an iterative
solution technique so called "vector GSPM". This iterative solution strategy is described in detail in this chapter.

6.2 Preparation of Mathematica

à 6.2.1 Mathematica utilities and packages

Before to move on the practical computations, we have to install the memory conserve utilities and the warning
messages suppressing. In addition Mathematica utilities， the “ LinearAlgebra‘MatrixManipulation” package has to
be installed [1].

<<Utilities`MemoryConserve`
$MemoryIncrement=100000;
Off[General::spell1,MemoryConserve::start,MemoryConserve::end];
<< LinearAlgebra`MatrixManipulation ;̀

à 6.2.2 Mathematica functions

Here, we define several functions that are described and used in the previous chapters. The functions
“convertRGB”, “corRelation”, "imageNormalize", “memoryUsed“, "wavelet base functions", "waveletMatrix",
waveletND" and "eigenPattern" have been defined in the previous chapters, so that the comments of such functions are
not described.

Function convertRGB

Function window

Function corRelation

Function imageNormalize

Function memoryUsed

Wavelet base functions

Function waveletMatrix

Function waveletND

Function eigenPattern

96 Chapter 6 Image Identifications.nb

6.3 Graphics image system of equations

à 6.3.1 Input vector

Let us consider a test color image Iń n with n by n resolution:

Iń n e fr Hxi, yjL, fgHxi, yjL, fbHxi, yjL
i=1,2,.,n, j=1,2,.,n (1)

where the functions fr , fg, fb refer to the red, green and blue components; xi, yj denote the on x-axis and on y-axis
locations of a pixel, respectively.

Arranging the pixels of image Iń n into a column-wise form gives an input vector Y with -th order as

Y = @ fr Hx1, y1L, fr Hx2, y2L, . , fr Hxn, y1L, fr Hx1, y2L, fr Hx2, y2L, . ,

fr Hxn, y2L, . , fr Hxn-1, ynL, fr Hxn, ynL,
 fgHx1, y1L, fgHx2, y2L, . , fgHxn, y1L, fgHx1, y2L, fgHx2, y2L, . ,

 fgHxn, y2L, . , fgHxn-1, ynL, fgHxn, ynL,
 fbHx1, y1L, fbHx2, y2L, . , fbHxn, y1L, fbHx1, y2L, fbHx2, y2L, . ,

 fbHxn, y2L, . , fgHxn-1, ynL, fgHxn, ynLDT (2)

à 6.3.2 . System matrix

Let us assume the p-th m by m database images:

CHkL
ḿ m e gHkL

r Hxi, yjL, gHkL
gHxi, yjL, gHkL

bHxi, yjL
i=1,2,.,m, j=1,2,.,m, k=1,2,.,p, (3)

where the functions gHkL
r , g

HkL
g, gHkL

b refer to the red, green and blue components of the database image, respectively.

By means of the wavelet transform, the database images with m by m resolution are reduced into the images with
n by n resolution as same as the test image one. Denoting the database images with n by n resolution by

CHkL
n´n e gHkL

r Hxi, yjL, gHkL
gHxi, yjL, gHkL

bHxi, yjL
i=1,2,.,n, j=1,2,.,n, k=1,2,.,p, (3)

 k-th vector of a system matrix is given by

dHkL = @gr Hx1, y1L, gr Hx2, y2L, . , gr Hxn, y1L, gr Hx1, y2L, gr Hx2, y2L, . ,

gr Hxn, y2L, . , gr Hxn-1, ynL, gr Hxn, ynL,
 ggHx1, y1L, ggHx2, y2L, . , ggHxn, y1L, ggHx1, y2L, ggHx2, y2L, . ,

 ggHxn, y2L, . , ggHxn-1, ynL, ggHxn, ynL,
 gbHx1, y1L, gbHx2, y2L, . , gbHxn, y1L, gbHx1, y2L, gbHx2, y2L, . ,

 gbHxn, y2L, . , ggHxn-1, ynL, ggHxn, ynLDT (4)

Thus, a system matrix with 3×n×n -th rows and p-th columns is given by

D = @dH1L, dH2L, . , dHpLD. (5)

Chapter 6 Image Identifications.nb 97

à 6.3.3 System of equations

Denoting a solution vector X with order p, a system of graphics image equations is formally written by

Y=DX. (6)

à 6.3.4 Least squares

In most case, the number of equations is much greater than those of unknowns p, so that it is possible to apply a
conventional least squares mean to Eq. (6) [2]:

X = @DT DD-1 DT Y (7)

By considering the input vector Y in Eq. (6) and the column vector d in Eq. (5), it is revealed that the elements in
the solution vector X are the weights wi(i=1,2, . ,p) to the database images. This means a sythersized image S is
composed of

S=Úi=1
p wi Ci, (8)

where Ci is the database image.

When w1 = 1and the other weights are zero in Eq.(8), then it is obvious that the test image is the same to the first
database image . In the other words, the test image is identified as the first database image. A Mathematica function
"leastSQ" gives a least squares solution.

Mathematica function leastSQ

This function "leastSQ" gives a least squares solution of the ill posed system. In order to use this function, it is
essental that a number of equations is larger than those of unknows, and a product between the transpose of system and
original system matrices should be a positive definite square matrix. The parameters "systemMat" and "vector" are the
system matrix and input vector, respectively.

leastSQ = Compile @88systemMat, _Real, 2 <, 8vector, _Real, 1 <<,
Module @8tMat = 880. <<, matP = 880. <<<,
tMat = Transpose @systemMat D;
matP = Inverse @tMat .systemMat D;
matP. tMat .vector DD;

à 6.3.5 Vector generalized sampled pattern matching method

The product between the transpose of system DT and original system D matrices sometimes not becomes to be a
positive definite square matrix. In such a case, it is difficult to apply the least squares to Eq. (6). To overcome this
difficulity, we describe here an iterative solution method called "vector GSPM".

Normalized system of equations

Eq. (6) can be rewritten by

Y=Úi=1
p xi di ,

X = @x1, x2, .H, xLpDT. (9)

98 Chapter 6 Image Identifications.nb

Further modification to Eq. (9) becomes

Y��������ÈYÈ = ã
i=1

p

ÈdiÈ��������ÈYÈ di��������ÈdiÈ , or Y '=D'X' (10)

Eq. (3) means that the normalized input vector Y' is always given by a linear combination of the weighted
solutions with normalized column vectors d1������������Èd1È , d2�����������Èd2È ,., dp������������ÈdpÈ .
Objective function

Eq. (2) means that the input vector Y is always given by means of a linear combination of the column vector Ci

(i=1,2,.,m). Therefore, when an angle between the input vectors of Y and of CX(k) given in terms of the k-th iterative

solution X(k) is defined by

hHXHkLL =
Y�������ÈYÈ DX HkL

����������������ÈDX HkLÈ
=

Y�������ÈYÈ ÈYÈ�������ÈYÈ DX HkL
����������������ÈDX HkLÈ =

Y�������ÈYÈ â
i=1

p
 xi

HkL Èdi Èdi���������������ÈYÈÈdi È������������������������������������Éâ
i=1

p
 xi

HkL Èdi Èdi���������������ÈYÈÈdi È É
=Y '

D' X ' HkL��������������������ÈD' X ' HkLÈ , (11)

then

hHXHkLL ® 1, (12)

means that the solution vector X'HkL satisfies the Eq. (10), i.e.,

Y' = D' X'HkL. (13)

When an initial solution vector X' (0) is given by

X 'H0L = D'T Y ', (14)

then the first deviation to the normalized input vector Y ' becomes

DY'H1L=Y'-
D' X 'H0L������������������ÈD' X 'H0LÈ , (15)

By means of Eqs.(13) and (14), the k-th iterative solution vector X'HkL is given by

X'HkL = X'Hk-1L + D'TDY' Hk-1L

Chapter 6 Image Identifications.nb 99

=X' Hk-1L + D'T[Y '-
D' X 'Hk-1L

����������������������ÈD' X 'Hk-1LÈ]
= D'T Y' +AI p -

D' X 'Hk-1L
����������������������ÈD' X 'Hk-1LÈ E X'

Hk-1L
(16)

Convergence condition

Convergence of the iterative scheme Eq. (16) should be examined by considering a state transition matrix S from

the solution vectors X(k-1) to X(k) in Eq. (16):

T = Ip -
D' X 'Hk-1L

����������������������ÈD' X 'Hk-1LÈ . (17)

When the maximum eigen value of T is less than 1, then the solution is always converged to an exact solution vector.
However, the state transition matrix T in Eq. (10) is not a constant but function of the solution vector . This means that

the convergence depends on the solution vector X(k). As is well known the eigen values of a unit square matrix are the

multiple roots of 1. The convergence condition of our problem is described byÈI p È ³ ÈT È,ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Ip

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ³ Ip -
D' X 'Hk-1L

����������������������ÈD' X 'Hk-1LÈ
or

ÈD' X'Hk-1L ÈÈ Ip È ³ È D' X' Hk-1L ÈÈ I p - D'T D' È . (18)

In Eq . H18L, all of the diagonal elements in the matrixD'T D' are 1, and the other off-diagonal elements of this
matrix are always less than 1. Thereby, the convergence condition is always held. This means that Eq. (16) gives an
absolutely stable iterative solution. A following Mathematica function "vectorGSPM" gives this iterative solution [3,4].

Mathematica function vectorGSPM

The parameters of this functions are as follows:

systemMatrix: arbitraly rectangular n by m system matrix,

inputVector: input vector with order n,

iteration: maximum number of iterations,

if this is zero or negative integer, the maximum number of iterations is set to m.

The output of this function is given in terms of one-dimensional array, which is composed of two parts. The first
header part is the solution vector and remaining last part is the pattern matching figures.

100 Chapter 6 Image Identifications.nb

vectorGSPM=
Compile[{{systemMatrix,_Real,2},{inputVector,_Real,1},

{iteration,_Integer}},
Module[{m=Length[systemMatrix[[1]]],defaultIteration=10 m,

innerProduct=N[{}],outputVector={0.},dummy={0.},
systemMatrixPrime={{0.}},normalizedInput={0.},
transposedSystemPrime={{0.}},columnNorm={0.}},

normalizedInput=
inputVector/Sqrt[inputVector.inputVector];

transposedSystemPrime=Transpose[systemMatrix];
columnNorm=Table[Sqrt[transposedSystemPrime[[i]].

transposedSystemPrime[[i]]],{i,m}];
If[iteration>0, defaultIteration=iteration];
transposedSystemPrime=

Table[transposedSystemPrime[[i]]/columnNorm[[i]],{i,m}];
systemMatrixPrime=Transpose[transposedSystemPrime];
outputVector=transposedSystemPrime.normalizedInput;

Do[dummy=((dummy=systemMatrixPrime.outputVector)/
Sqrt[dummy.dummy]);

innerProduct=Join[innerProduct,{normalizedInput.dummy}];
outputVector=outputVector+transposedSystemPrime.

(normalizedInput-dummy),
{defaultIteration}];

dummy=systemMatrixPrime.outputVector;

If[Abs[Max[dummy]-Min[dummy]]<2.22044604925031308 10^-16,
Print["Solution has no pattern !"]];

Join[(Sqrt[inputVector.inputVector]/Sqrt[dummy.dummy])*
outputVector/columnNorm,innerProduct]

]];

6.4 Modeling

à 6.4.1 Test image

We read in the test image data from a data file "testRGB10.m".

test=<<"imageTST10.m";//Timing86.16 Second, Null <

Chapter 6 Image Identifications.nb 101

After checking a size of read image data “testRGB10.m”, Fig 1 shows the test images, which are identified from
the 63 database images in Fig. 2 below.

dimT=Dimensions[test];
testG=Table[Show[convertRGB[test[[i]]],

AspectRatio->dimT[[3]]/dimT[[4]],
PlotLabel->StringForm["T`1`",i],
DisplayFunction->Identity],{i,dimT[[1]]}];

Show[GraphicsArray[Table[Table[testG[[i+j]],{j,0,4}],{i,1,dimT[[1]]-4,5}]],
PlotLabel->"Fig.1. Test images",
ImageSize->{85*5,90*2}];

Fig.1. Test images

T6 T7 T8 T9 T10

T1 T2 T3 T4 T5

à 6.4.2 Database images

Original database image

In this section, we read in the database images. Each of the database images is composed of the 128 by 128
pixels, and is not a distinct image but overlapped images.

dataBase = << "imageDB63.m"; �� Timing8126.71 Second, Null <
dimDB=Dimensions[dataBase]863, 3, 128, 128 <

Resolution adjustment of the database image

The reolution of the test images in Fig.1 is 64 by 64 pixels, so that the resolution of the database is higher than
those of test ones. In order to set up the same resolution database images to the test ones, we construct the low-resolution
database images by a simple 2 by 2 pixels averaging.

dbColor= Table[0.25*(dataBase[[i,j,k,l]]+dataBase[[i,j,k+1,l]]+
dataBase[[i,j,k,l+1]]+dataBase[[i,j,k+1,l+1]]),
{i,dimDB[[1]]},{j,dimDB[[2]]},{k,1,dimDB[[3]],2},{l,1,dimDB[[4]],2}];

102 Chapter 6 Image Identifications.nb

We compute the image data of the modified database.

dbColorG = Table[Show[convertRGB[dbColor[[i]]],
AspectRatio->Automatic,DisplayFunction->Identity,
PlotLabel->StringForm["DB`1`",i]],{i,dimDB[[1]]}];

Figure 2 shows the modified 63 database images. Our problem is to find an each of the test images in Fig. 1 from
these database images.

Chapter 6 Image Identifications.nb 103

Show@GraphicsArray @Table @Table @dbColorG @@i + j DD, 8j, 0, 6 <D,8i, 1, dimDB @@1DD - 6, 7 <DD, ImageSize -> 864 *7, 64 *8<,
PlotLabel -> "Fig.2. Modified database images" D;

memoryUsed

Fig.2. Modified database images

DB57 DB58 DB59 DB60 DB61 DB62 DB63

DB50 DB51 DB52 DB53 DB54 DB55 DB56

DB43 DB44 DB45 DB46 DB47 DB48 DB49

DB36 DB37 DB38 DB39 DB40 DB41 DB42

DB29 DB30 DB31 DB32 DB33 DB34 DB35

DB22 DB23 DB24 DB25 DB26 DB27 DB28

DB15 DB16 DB17 DB18 DB19 DB20 DB21

DB8 DB9 DB10 DB11 DB12 DB13 DB14

DB1 DB2 DB3 DB4 DB5 DB6 DB7

14682K Bytes used

104 Chapter 6 Image Identifications.nb

6.5 Image identification in real domain

In this section, we search for the image containing the same as those of test from the database images in Fig. 2.
At first, we compute the correlation coefficients between the test and database images. The maximum correlation
coefficient reveals the identified image. Second and third approaches are the inverse solution strategies. This means that
we set up the image system of equations, and then we solve them by the least squares and vector GSPM means. Both
approaches provide the solution vectors. Taking the maximum element in the solution vector gives an identified image.
Further, combination of the solution vector and database images generates the synthesized images.

à 6.5.1 Correlation analysys

Data arrangement

In order to compute the correlation coefficients between the test and database images, we rearrange the image
data in column-wise form.

baseMat=Table[Flatten[dbColor[[i]]],{i,dimDB[[1]]}];
testV=Table[Flatten[test[[i]]],{i,dimT[[1]]}];

Correlation coefficients

Compute the correlation coefficients between the test and database image data.

corCoe=Table[corRelation[baseMat[[i]],testV[[j]]],
{j,dimT[[1]]},{i,dimDB[[1]]}];

Taking the maximum correlation coefficient to each of the test images gives the identified images by the
correlation analysis.

identified=Table[Position[corCoe[[i]],Max[corCoe[[i]]]],
{i,dimT[[1]]}]//Flatten855, 57, 59, 61, 63, 10, 63, 14, 16, 18 <

Figure 3 shows the identified images along with test ones. As you can see, the fairly good results have obtained.
Only one test image “T7” was not exactly identified.

Chapter 6 Image Identifications.nb 105

Show[GraphicsArray[
Table[{testG[[i]],dbColorG[[identified[[i]]]],

testG[[i+1]],dbColorG[[identified[[i+1]]]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.3. Test(T) and identified(DB) images",
ImageSize->{4*100,5*100}];

Remove["corCoe","identified"];memoryUsed

Fig.3. TestHTL and identifiedHDBL images

T9 DB16 T10 DB18

T7 DB63 T8 DB14

T5 DB63 T6 DB10

T3 DB59 T4 DB61

T1 DB55 T2 DB57

18305K Bytes used

106 Chapter 6 Image Identifications.nb

à 6.5.2 Least squares

System matrix

We construct a system matrix by transposing the “baseMat” used for the correlation analysis.

systemMat=Transpose[baseMat];

Least squares solution

Compute the least squares solutions.

solution=Table[leastSQ[systemMat,testV[[i]]],{i,dimT[[1]]}];//Timing8149.07 Second, Null <
Compute the image data of the least squares solutions.

solutionG=Table[ListPlot[solution[[i]],
PlotRange->All,PlotJoined->True,
PlotLabel->StringForm["LS`1 "̀,i],
DisplayFunction->Identity],{i,dimT[[1]]}];

Figure 4 shows the solution vectors. Obviously, the test images “T1”-“T5” were exactly identified, but remaining
test images “T6”-”T10” were doubtful results. This means that it is difficult to represent the test images “T6-T10” by the
simple linear combination of the database images in Fig. 2.

Chapter 6 Image Identifications.nb 107

Show[GraphicsArray[
Table[{solutionG[[i]],solutionG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],ImageSize->{400,500},
PlotLabel->"Fig.4. Least squares solutions"];

Fig.4. Least squares solutions

10 20 30 40 50 60
-0.1

0.1

0.2

0.3

LS9

10 20 30 40 50 60
-0.1

0.1

0.2

LS10

10 20 30 40 50 60
-0.1

0.1
0.2
0.3
0.4

LS7

10 20 30 40 50 60

-0.2
-0.1

0.1
0.2
0.3

LS8

10 20 30 40 50 60

0.2

0.4

0.6

0.8

LS5

10 20 30 40 50 60

-0.15
-0.1

-0.05

0.05
0.1
0.15
0.2

LS6

10 20 30 40 50 60

0.2

0.4

0.6

LS3

10 20 30 40 50 60

0.2

0.4

0.6

0.8

LS4

10 20 30 40 50 60

0.2
0.4
0.6
0.8

LS1

10 20 30 40 50 60

0.2
0.4
0.6
0.8

LS2

Image identification

Taking the maximum elements in the solution vectors, we can obtain the identified images by least squares.

identified=Table[Position[solution[[i]],Max[solution[[i]]]],
{i,dimT[[1]]}]//Flatten855, 57, 59, 61, 63, 18, 63, 14, 16, 55 <

108 Chapter 6 Image Identifications.nb

Figure 5 shows the identified images by means of the least squares. Even though, the test images “T6-T10” were
not represented by the linear combination of the database images, over 70% is successfully identified.

Show[GraphicsArray[
Table[{testG[[i]],dbColorG[[identified[[i]]]],

testG[[i+1]],dbColorG[[identified[[i+1]]]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.5. Test(T) and identified(DB) images",
ImageSize->{4*100,5*100}];

memoryUsed

Fig.5. TestHTL and identifiedHDBL images

T9 DB16 T10 DB55

T7 DB63 T8 DB14

T5 DB63 T6 DB18

T3 DB59 T4 DB61

T1 DB55 T2 DB57

21892K Bytes used

Chapter 6 Image Identifications.nb 109

Image synthesize

By means of Eq. (8), we synthesize the image satisfying the image system of equations in a least square sense.

comLS=Table[Sum[solution[[i,j]]*dbColor[[j]],
{j,dimDB[[1]]}],{i,dimT[[1]]}];

comLSN=Table[imageNormalize[comLS[[i,j]]],{i,dimT[[1]]},{j,dimT[[2]]}];

comLSG=Table[Show[convertRGB[comLSN[[i]]],
AspectRatio->Automatic,DisplayFunction->Identity,
PlotLabel->StringForm["LS`1 "̀,i]],{i,dimT[[1]]}];

Figure 6 shows the synthesized images along with the input test images. In accordance with the solution vectors
shown in Fig. 4, the images “T1-T5” were well synthesized but the others were poor results.

110 Chapter 6 Image Identifications.nb

Show[GraphicsArray[
Table[{testG[[i]],comLSG[[i]],testG[[i+1]],comLSG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.6. Test(T) and sythesized(LS) images",
ImageSize->{4*100,5*100}];

Remove["solution","solutionG","identified","comLS","comLSN","comLSG"];
memoryUsed

Fig.6. TestHTL and sythesizedHLSL images

T9 LS9 T10 LS10

T7 LS7 T8 LS8

T5 LS5 T6 LS6

T3 LS3 T4 LS4

T1 LS1 T2 LS2

21889K Bytes used

Chapter 6 Image Identifications.nb 111

à 6.5.3 Vector GSPM

Vector GSPM solutions

The image system of equations has a larger number of equations than those of unknowns so that it is an ill posed
system. In the other words, there are no solutions satisfying all of the equations, simultaneously. This means that the
solution vector of the image system of equation depends on the solution strategy. To clarify the differences between the
solution methods, we employ the vector GSPM method, which has promising results to the physical ill posed system of
equations[3,4].

solution=Table[vectorGSPM[systemMat,testV[[i]],500],{i,dimT[[1]]}];//Timing8652.24 Second, Null <
After a relatively long computation time, we classify the solutions into the solution and pattern matching figure

parts.

sol = Table @Take@solution @@i DD, dimDB @@1DDD, 8i, dimT @@1DD<D;
matF = Table @Take@solution @@i DD, -500D, 8i, dimT @@1DD<D;

Figure 7 shows the convergence processes to the test images. As described in Eq. (18), any solution vectors by
the vector GSPM method have been converged to the fixed vectors. The pattern-matching figure “Ganma” in Fig. 7
corresponds to the value of objective function of Eq. (12), so that the value near to 1 means a goodness of the solutions.

convG=Table[ListPlot[matF[[i]],
PlotRange->All,PlotJoined->True,AxesLabel->{"Itas.","Ganma"},
PlotLabel->StringForm["SPM`1`",i],DisplayFunction->Identity],
{i,dimT[[1]]}];

112 Chapter 6 Image Identifications.nb

Show[GraphicsArray[
Table[{convG[[i]],convG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],ImageSize->{400,500},
PlotLabel->"Fig.7. Convergence processes"];

Fig.7. Convergence processes

100200300400500Itas.

-0.75
-0.5
-0.25
0.25
0.5
0.75

1
Ganma SPM9

100200300400500Itas.0.75

0.85
0.9

0.95

Ganma SPM10

100200300400500Itas.
0.94
0.95
0.96
0.97
0.98
0.99
Ganma SPM7

100200300400500Itas.-0.2

0.2
0.4
0.6
0.8

1
Ganma SPM8

100200300400500Itas.
0.975
0.98
0.985
0.99
0.995

Ganma SPM5

100200300400500Itas.0.88

0.92
0.94
0.96
0.98

Ganma SPM6

100200300400500Itas.
0.975
0.98
0.985
0.99
0.995

Ganma SPM3

100200300400500Itas.0.975

0.985
0.99

0.995
Ganma SPM4

100200300400500Itas.
0.975
0.98
0.985
0.99
0.995

Ganma SPM1

100200300400500Itas.0.965
0.975
0.98

0.985
0.99

0.995

Ganma SPM2

Figure 8 shows the solution vectors by the vector GSPM method. Similar to these of least squares, the test images
“T1-T5” were successfully identified but the other images were not represented by the linear combination of the database
images in Fig. 2.

solutionG=Table[ListPlot[sol[[i]],
PlotRange->All,PlotJoined->True,
PlotLabel->StringForm["SPM`1`",i],DisplayFunction->Identity],
{i,dimT[[1]]}];

Chapter 6 Image Identifications.nb 113

Show[GraphicsArray[
Table[{solutionG[[i]],solutionG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],ImageSize->{400,500},
PlotLabel->"Fig.8. Vector GSPM solutions"];

Fig.8. Vector GSPM solutions

10 20 30 40 50 60-0.02

0.02
0.04
0.06
0.08
0.1

SPM9

10 20 30 40 50 60

-0.2
-0.1

0.1
0.2
0.3

SPM10

10 20 30 40 50 60
-0.05

0.05

0.1

0.15
SPM7

10 20 30 40 50 60

-0.2
-0.1

0.1
0.2
0.3

SPM8

10 20 30 40 50 60

0.2
0.4
0.6
0.8
1

SPM5

10 20 30 40 50 60

-0.05
-0.025

0.025
0.05
0.075

0.1
SPM6

10 20 30 40 50 60

0.2
0.4
0.6
0.8

1

SPM3

10 20 30 40 50 60

0.1
0.2
0.3
0.4
0.5

SPM4

10 20 30 40 50 60

0.2
0.4
0.6
0.8

1
1.2

SPM1

10 20 30 40 50 60
0.1
0.2
0.3
0.4
0.5
0.6
0.7

SPM2

Image identification

Taking the maximum elements in the solution vectors in Fig. 8 gives the identified images by the iterative means.
Figure 9 shows the identified images. The seven test images were exactly identified.

identified=Table[Position[sol[[i]],Max[sol[[i]]]],
{i,dimT[[1]]}]//Flatten855, 57, 59, 61, 63, 18, 63, 14, 16, 55 <

114 Chapter 6 Image Identifications.nb

Show[GraphicsArray[
Table[{testG[[i]],dbColorG[[identified[[i]]]],

testG[[i+1]],dbColorG[[identified[[i+1]]]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.9. Test(T) and identified(DB) images",
ImageSize->{4*100,5*100}];

memoryUsed

Fig.9. TestHTL and identifiedHDBL images

T9 DB16 T10 DB55

T7 DB63 T8 DB14

T5 DB63 T6 DB18

T3 DB59 T4 DB61

T1 DB55 T2 DB57

22333K Bytes used

Chapter 6 Image Identifications.nb 115

Image synthesize

Similar to those of the least squares, it is possible to synthesize the images, which suggest the solvability of the ill
posed system of equations. When we can synthesize a clear image, it means that the system could be solved with
satisfactory accuracy.

comLS=Table[Sum[sol[[i,j]]*dbColor[[j]],
{j,dimDB[[1]]}],{i,dimT[[1]]}];

comLSN=Table[imageNormalize[comLS[[i,j]]],{i,dimT[[1]]},{j,dimT[[2]]}];

comLSG=Table[Show[convertRGB[comLSN[[i]]],
AspectRatio->Automatic,DisplayFunction->Identity,
PlotLabel->StringForm["SPM`1`",i]],{i,dimT[[1]]}];

Figure 10 shows the synthesized images by means of the iterative solutions. As expected from the solution
vectors in Fig. 8, the test images “T1-T5” were clearly synthesized similar to the test images in Fig. 1.

116 Chapter 6 Image Identifications.nb

Show[GraphicsArray[
Table[{testG[[i]],comLSG[[i]],testG[[i+1]],comLSG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.10. Test(T) and sythesized(GSPM) images",
ImageSize->{4*100,5*100}];

Remove["systemMat","solution","solutionG",
"identified","comLS","comLSN","comLSG"];memoryUsed

Fig.10. TestHTL and sythesizedHGSPML images

T9 SPM9 T10 SPM10

T7 SPM7 T8 SPM8

T5 SPM5 T6 SPM6

T3 SPM3 T4 SPM4

T1 SPM1 T2 SPM2

22216K Bytes used

Chapter 6 Image Identifications.nb 117

6.6 Image identification in Fourier spectrum domain

In the previous section, we carried out the image identifications by means of the correlation as well as inverse
approaches in the real domain. The correlation analysis provided a fairly good result but the others did not so good
results. One of the reasons why the inverse approaches could not provide the good results is that the target position in
each of the database images is not always coincided with those of the test images. On of the methods to remove this
difficulty is to employ the Fourier transform. The image data are represented in terms of the complex spatial frequencies.
A combination of the real and imaginary parts having the same spatial frequency represents a position of the image
having such the spatial frequency. In the other words, when we take the absolute values of the complex frequencies, it is
possible to remove the spatial phase difference.

Thus, we have to try the image identification in the Fourier spectrum or spatial frequency domain.

à 6.6.1 Correlation analysys

Fourier transform

At first, we compute the Fourier spectra of the test and database images.

baseMat=Table[Flatten[Table[TakeMatrix[
Abs[Fourier[dataBase[[i,j]]]],{1,1},{dimDB[[3]]/4,dimDB[[4]]/4}],
{j,dimDB[[2]]}]],{i,dimDB[[1]]}];

testV=Table[Flatten[Table[TakeMatrix[
Abs[Fourier[test[[i,j]]]],{1,1},{dimT[[3]]/2,dimT[[4]]/2}],
{j,dimT[[2]]}]],{i,dimT[[1]]}];

Correlation coefficients

Compute the correlation coefficients between the test and database image data.

corCoe=Table[corRelation[baseMat[[i]],testV[[j]]],
{j,dimT[[1]]},{i,dimDB[[1]]}];

Taking the maximum correlation coefficient to each of the test images gives the identified images by the
correlation analysis.

identified=Table[Position[corCoe[[i]],Max[corCoe[[i]]]],
{i,dimT[[1]]}]//Flatten855, 57, 59, 61, 63, 19, 12, 14, 25, 18 <

Figure 11 shows the identified images along with test ones. In the Fourier spectrum domain, the correlation
analysis gives an improved result even though somewhat spatial phase differences are observed.

118 Chapter 6 Image Identifications.nb

Show[GraphicsArray[
Table[{testG[[i]],dbColorG[[identified[[i]]]],

testG[[i+1]],dbColorG[[identified[[i+1]]]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.11. Test(T) and identified(DB) images",
ImageSize->{4*100,5*100}];

Remove["corCoe","identified"];memoryUsed

Fig.11. TestHTL and identifiedHDBL images

T9 DB25 T10 DB18

T7 DB12 T8 DB14

T5 DB63 T6 DB19

T3 DB59 T4 DB61

T1 DB55 T2 DB57

19686K Bytes used

Chapter 6 Image Identifications.nb 119

à 6.6.2 Least squares

System matrix

Transposing the “baseMat” used for the correlation analysis yields a system matrix.

systemMat=Transpose[baseMat];

Least squares solution

Compute the least squares solutions.

solution=Table[leastSQ[systemMat,testV[[i]]],
{i,dimT[[1]]}];//Timing841.3 Second, Null <

Compute the image data of the least squares solutions.

solutionG=Table[ListPlot[solution[[i]],
PlotRange->All,PlotJoined->True,
PlotLabel->StringForm["LS`1 "̀,i],
DisplayFunction->Identity],{i,dimT[[1]]}];

Figure 12 shows the solution vectors. Obviously, the test images “T1”-“T5” were exactly identified, but
remaining test images “T6”-”T10” were doubtful results. This means that the it is difficult to represent the test images
“T6-T10” by the simple linear combination of the database images in Fig. 2, even if the Fourier spectrum domain.

120 Chapter 6 Image Identifications.nb

Show[GraphicsArray[
Table[{solutionG[[i]],solutionG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],ImageSize->{400,500},
PlotLabel->"Fig.12. Least squares solutions"];

Fig.12. Least squares solutions

10 20 30 40 50 60

-0.1
-0.05

0.05
0.1
0.15
0.2

LS9

10 20 30 40 50 60
-0.1

0.1

0.2

0.3

0.4
LS10

10 20 30 40 50 60

-0.1
-0.05

0.05
0.1
0.15
0.2
0.25

LS7

10 20 30 40 50 60
-0.1

0.1

0.2

0.3
LS8

10 20 30 40 50 60

0.1

0.2

0.3

0.4

LS5

10 20 30 40 50 60-0.05

0.05
0.1
0.15
0.2
0.25

LS6

10 20 30 40 50 60

0.1

0.2

0.3

0.4
LS3

10 20 30 40 50 60

0.1

0.2

0.3

0.4
LS4

10 20 30 40 50 60

0.1

0.2

0.3

0.4
LS1

10 20 30 40 50 60

0.1

0.2

0.3

0.4

LS2

Image identification

Taking the maximum elements in the solution vectors, we can obtain the identified images by least squares.

identified=Table[Position[solution[[i]],Max[solution[[i]]]],
{i,dimT[[1]]}]//Flatten855, 57, 59, 61, 63, 10, 12, 14, 25, 18 <

Chapter 6 Image Identifications.nb 121

Figure 13 shows the identified images by means of the least squares. Surprisingly, all of the test images were
successfully identified. Further, the identified images are better than that of the correlation analysis.

Show[GraphicsArray[
Table[{testG[[i]],dbColorG[[identified[[i]]]],

testG[[i+1]],dbColorG[[identified[[i+1]]]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.13. Test(T) and identified(DB) images",
ImageSize->{4*100,5*100}];

memoryUsed

Fig.13. TestHTL and identifiedHDBL images

T9 DB25 T10 DB18

T7 DB12 T8 DB14

T5 DB63 T6 DB10

T3 DB59 T4 DB61

T1 DB55 T2 DB57

20658K Bytes used

122 Chapter 6 Image Identifications.nb

Image synthesize

By means of Eq. (8), we synthesize the image satisfying the image system of equations in a least square sense.

comLS=Table[Sum[solution[[i,j]]*dbColor[[j]],
{j,dimDB[[1]]}],{i,dimT[[1]]}];

comLSN=Table[imageNormalize[comLS[[i,j]]],{i,dimT[[1]]},{j,dimT[[2]]}];

comLSG=Table[Show[convertRGB[comLSN[[i]]],
AspectRatio->Automatic,DisplayFunction->Identity,
PlotLabel->StringForm["LS`1 "̀,i]],{i,dimT[[1]]}];

Figure 14 shows the synthesized images along with the input test images. In accordance with the solution vectors
shown in Fig. 12, the images “T1-T5” were well synthesized also the others were improved comparing with that of the
real domain.

Chapter 6 Image Identifications.nb 123

Show[GraphicsArray[
Table[{testG[[i]],comLSG[[i]],testG[[i+1]],comLSG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.14. Test(T) and sythesized(LS) images",
ImageSize->{4*100,5*100}];

Remove["solution","solutionG","identified","comLS",
"comLSN","comLSG"];

memoryUsed

Fig.14. TestHTL and sythesizedHLSL images

T9 LS9 T10 LS10

T7 LS7 T8 LS8

T5 LS5 T6 LS6

T3 LS3 T4 LS4

T1 LS1 T2 LS2

20638K Bytes used

124 Chapter 6 Image Identifications.nb

à 6.6.3 Vector GSPM

Vector GSPM solution

To clarify the differences between the solution methods of the ill posed system, we employ the vector GSPM
method, which has a similar result that of the least squares in the real domain.

solution=Table[vectorGSPM[systemMat,testV[[i]],500],{i,dimT[[1]]}];//Timing8117.16 Second, Null <
The pattern matching figures of the iterative solutions are as follows. These figures suggest that all of the

solutions have been obtained over 99% pattern matching accuracy.

Table @Take@solution @@i DD, -1D, 8i, dimT @@1DD<D �� Flatten80.999335, 0.999449, 0.999252, 0.99946, 0.999164, 0.999426, 0.999229,

0.999288, 0.999294, 0.999106 <
Figure 15 shows the solution vectors by the vector GSPM method. Similar to these of least squares, the test

images “T1-T5” were successfully identified but the other images were not yet represented by the linear combination of
the database images in Fig. 2.

sol = Table @Take@solution @@i DD, dimDB @@1DDD, 8i, dimT @@1DD<D;

solutionG=Table[ListPlot[sol[[i]],
PlotRange->All,PlotJoined->True,
PlotLabel->StringForm["SPM`1`",i],
DisplayFunction->Identity],
{i,dimT[[1]]}];

Chapter 6 Image Identifications.nb 125

Show[GraphicsArray[
Table[{solutionG[[i]],solutionG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],ImageSize->{400,500},
PlotLabel->"Fig.15. Vector GSPM solutions"];

Fig.15. Vector GSPM solutions

10 20 30 40 50 60

-0.04
-0.02

0.02
0.04
0.06
0.08

SPM9

10 20 30 40 50 60

0.005
0.01

0.015
0.02

0.025
SPM10

10 20 30 40 50 60

0.005
0.01
0.015
0.02

SPM7

10 20 30 40 50 60

0.05

0.1

0.15

SPM8

10 20 30 40 50 60

0.005
0.01
0.015
0.02
0.025

SPM5

10 20 30 40 50 60-0.01

0.01
0.02
0.03
0.04
0.05

SPM6

10 20 30 40 50 60
-0.02

0.02
0.04
0.06
0.08

SPM3

10 20 30 40 50 60
-0.02

0.02
0.04
0.06
0.08

SPM4

10 20 30 40 50 60

0.01

0.02

0.03

SPM1

10 20 30 40 50 60
-0.02

0.02
0.04
0.06

SPM2

Image identification

Taking the maximum elements in the solution vectors in Fig. 16 gives the identified images by the iterative
means. Figure 17 shows the identified images. All of the test images have been perfectly identified.

identified=Table[Position[sol[[i]],Max[sol[[i]]]],
{i,dimT[[1]]}]//Flatten855, 57, 59, 61, 63, 10, 12, 14, 16, 18 <

126 Chapter 6 Image Identifications.nb

Show[GraphicsArray[
Table[{testG[[i]],dbColorG[[identified[[i]]]],

testG[[i+1]],dbColorG[[identified[[i+1]]]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.16. Test(T) and identified(DB) images",
ImageSize->{4*100,5*100}];

memoryUsed

Fig.16. TestHTL and identifiedHDBL images

T9 DB16 T10 DB18

T7 DB12 T8 DB14

T5 DB63 T6 DB10

T3 DB59 T4 DB61

T1 DB55 T2 DB57

20831K Bytes used

Image synthesize

Similar to those of the least squares, it is possible to synthesize the images, which suggest the solvability of the ill
posed system of equations. When we can synthesize a clear image, it means that the system could be solved, vice versa.

Chapter 6 Image Identifications.nb 127

comLS=Table[Sum[sol[[i,j]]*dbColor[[j]],
{j,dimDB[[1]]}],{i,dimT[[1]]}];

comLSN=Table[imageNormalize[comLS[[i,j]]],{i,dimT[[1]]},{j,dimT[[2]]}];

comLSG=Table[Show[convertRGB[comLSN[[i]]],
AspectRatio->Automatic,DisplayFunction->Identity,
PlotLabel->StringForm["SPM`1`",i]],{i,dimT[[1]]}];

Figure 17 shows the synthesized images by means of the iterative solutions. As expected from the solution
vectors in Fig. 15, all of the test images were not clearly synthesized.

128 Chapter 6 Image Identifications.nb

Show[GraphicsArray[
Table[{testG[[i]],comLSG[[i]],testG[[i+1]],comLSG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.17. Test(T) and sythesized(GSPM) images",
ImageSize->{4*100,5*100}];

Remove["systemMat","solution","solutionG","identified",
"comLS","comLSN","comLSG"];

memoryUsed

Fig.17. TestHTL and sythesizedHGSPML images

T9 SPM9 T10 SPM10

T7 SPM7 T8 SPM8

T5 SPM5 T6 SPM6

T3 SPM3 T4 SPM4

T1 SPM1 T2 SPM2

19848K Bytes used

Chapter 6 Image Identifications.nb 129

6.7 Image identification in wavelet spectrum domain

à 6.7.1 Correlation analysis

In the previous section, we carried out the image identifications in the real and spatial frequency domains. As a
result, it ha been clarified that the usefulness of the methodologies depends greatly on the domain. Namely, in the real
domain, the correlation analysis was superior methodology than the inverse approaches. But in the frequency domain, the
inverse approaches are far superior to the correlation analysis. The difference between the real and frequency domains is
that one is a practical real domain and the other is a completely abstract domain. In addition to these domains, we have a
neutral domain between the real and frequency domain. This is a wavelet spectrum domain, which holds both of the real
and frequency domain information. Wavelet transform is one of the linear transforms and is one of the data sorting
methodologies. Depending on the wavelet base functions, wavelet spectrum holds the nature of Fourier spectrum and
also includes the real domain information.

Thus, the image identification in the wavelet spectrum domain is significant research theme.

Wavelet transform

Employing the Daubechies 8th order base functions, we compute the wavelet transform matrices. After that, we
compute the wavelet spectra of the test as well as database images.

wMat={waveletMatrix[dimDB[[3]],daub8],
waveletMatrix[dimDB[[4]],daub8]};

baseMat=Table[Flatten[Table[TakeMatrix[
waveletND[dataBase[[i,j]],wMat,2],{1,1},{dimT[[3]],dimT[[4]]}],
{j,dimDB[[2]]}]],{i,dimDB[[1]]}];

wMat={waveletMatrix[dimT[[3]],daub8],
waveletMatrix[dimT[[3]],daub8]};

testV=Table[Flatten[Table[waveletND[test[[i,j]],wMat,2],
{j,dimDB[[2]]}]],{i,dimT[[1]]}];

Correlation coefficients

Compute the correlation coefficients between the test and database wavelet spectra.

corCoe=Table[corRelation[baseMat[[i]],testV[[j]]],
{j,dimT[[1]]},{i,dimDB[[1]]}];

Taking the highest correlation coefficient to each of the test images gives the identified images by the correlation
analysis.

identified=Table[Position[corCoe[[i]],Max[corCoe[[i]]]],
{i,dimT[[1]]}]//Flatten855, 57, 59, 61, 63, 10, 63, 14, 16, 18 <

130 Chapter 6 Image Identifications.nb

Figure 18 shows the identified images along with test ones. In the wavelet spectrum domain, the correlation
analysis gives the same result in the real domain, i.e., only one test image has not been identified exactly.

Show[GraphicsArray[
Table[{testG[[i]],dbColorG[[identified[[i]]]],

testG[[i+1]],dbColorG[[identified[[i+1]]]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.18. Test(T) and identified(DB) images",
ImageSize->{4*100,5*100}];

Remove["corCoe","identified"];memoryUsed

Fig.18. TestHTL and identifiedHDBL images

T9 DB16 T10 DB18

T7 DB63 T8 DB14

T5 DB63 T6 DB10

T3 DB59 T4 DB61

T1 DB55 T2 DB57

30901K Bytes used

Chapter 6 Image Identifications.nb 131

à 6.7.2 Least squares

System matrix

Transposing the “baseMat” used for the correlation analysis yields a system matrix.

systemMat=Transpose[baseMat];

Least squares solution

Compute the least squares solutions.

solution=Table[leastSQ[systemMat,testV[[i]]],
{i,dimT[[1]]}];//Timing8152.85 Second, Null <

Compute the image data of the least squares solutions.

solutionG=Table[ListPlot[solution[[i]],
PlotRange->All,PlotJoined->True,
PlotLabel->StringForm["LS`1 "̀,i],DisplayFunction->Identity],
{i,dimT[[1]]}];

Figure 19 shows the least squares solution vectors. Similar to the results of previous least squares, the test images
“T1”-“T5” were exactly identified, but remaining test images “T6”-”T10” were doubtful results.

132 Chapter 6 Image Identifications.nb

Show[GraphicsArray[
Table[{solutionG[[i]],solutionG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],ImageSize->{400,500},
PlotLabel->"Fig.19. Least squares solutions"];

Fig.19. Least squares solutions

10 20 30 40 50 60
-0.05

0.05
0.1
0.15

LS9

10 20 30 40 50 60

-0.1

-0.05

0.05

0.1
LS10

10 20 30 40 50 60
-0.05

0.05
0.1
0.15
0.2

LS7

10 20 30 40 50 60

-0.1
-0.05

0.05
0.1
0.15

LS8

10 20 30 40 50 60

0.1

0.2

0.3

0.4
LS5

10 20 30 40 50 60

-0.075
-0.05

-0.025

0.025
0.05
0.075

0.1
LS6

10 20 30 40 50 60

0.05
0.1
0.15
0.2
0.25
0.3
0.35

LS3

10 20 30 40 50 60

0.1
0.2
0.3
0.4

LS4

10 20 30 40 50 60

0.1
0.2
0.3
0.4

LS1

10 20 30 40 50 60

0.1

0.2

0.3

0.4
LS2

Image identification

Taking the maximum elements in the solution vectors, we can obtain the identified images by least squares.

identified=Table[Position[solution[[i]],Max[solution[[i]]]],
{i,dimT[[1]]}]//Flatten855, 57, 59, 61, 63, 18, 63, 14, 16, 55 <

Chapter 6 Image Identifications.nb 133

Figure 20 shows the identified images by means of the least squares. The seven images were successfully
identified but remaining four images were not identified by the least squares. This result is just same as those of the real
domain. Thereby, the nature of wavelet spectrum domain is similar to those of real domain.

Show[GraphicsArray[
Table[{testG[[i]],dbColorG[[identified[[i]]]],

testG[[i+1]],dbColorG[[identified[[i+1]]]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.20. Test(T) and identified(DB) images",
ImageSize->{4*100,5*100}];

memoryUsed

Fig.20. TestHTL and identifiedHDBL images

T9 DB16 T10 DB55

T7 DB63 T8 DB14

T5 DB63 T6 DB18

T3 DB59 T4 DB61

T1 DB55 T2 DB57

34472K Bytes used

134 Chapter 6 Image Identifications.nb

Image synthesize

By means of Eq. (8), we synthesize the image satisfying the image system of equations in a least square sense.

comLS=Table[Sum[solution[[i,j]]*dbColor[[j]],
{j,dimDB[[1]]}],{i,dimT[[1]]}];

comLSN=Table[imageNormalize[comLS[[i,j]]],{i,dimT[[1]]},{j,dimT[[2]]}];

comLSG=Table[Show[convertRGB[comLSN[[i]]],
AspectRatio->Automatic,DisplayFunction->Identity,
PlotLabel->StringForm["LS`1 "̀,i]],{i,dimT[[1]]}];

Figure 21 shows the synthesized images along with the input test images. In accordance with the solution vectors
shown in Figs. 19 and 4, the images “T1-T5” were well synthesized but the others were still poor results. This result is
also similar to those of the real domain.

Chapter 6 Image Identifications.nb 135

Show[GraphicsArray[
Table[{testG[[i]],comLSG[[i]],testG[[i+1]],comLSG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.21. Test(T) and sythesized(LS) images",
ImageSize->{4*100,5*100}];

Remove["solution","solutionG","identified","comLS","comLSN","comLSG"];
memoryUsed

Fig.21. TestHTL and sythesizedHLSL images

T9 LS9 T10 LS10

T7 LS7 T8 LS8

T5 LS5 T6 LS6

T3 LS3 T4 LS4

T1 LS1 T2 LS2

34468K Bytes used

136 Chapter 6 Image Identifications.nb

à 6.7.3 Vector GSPM

Vector GSPM solution

Compute the solution vectors by the vector GSPM solutions.

solution=Table[vectorGSPM[systemMat,testV[[i]],500],{i,dimT[[1]]}];//Timing8645.71 Second, Null <
The pattern matching figures of the iterative solutions are as follows.

Table @Take@solution @@i DD, -1D, 8i, dimT @@1DD<D �� Flatten80.996572, 0.993255, 0.992069, 0.995135, 0.993046, 0.992186,

0.98957, 0.963951, 0.978248, 0.989402 <
Compute the image data of the vector GSP solutions.

sol = Table @Take@solution @@i DD, dimDB @@1DDD, 8i, dimT @@1DD<D;
solutionG = Table @ListPlot @sol @@i DD,

PlotRange -> All, PlotJoined -> True,
PlotLabel -> StringForm @"SPM`1 "̀, i D,
DisplayFunction -> Identity D,8i, dimT @@1DD<D;

Figure 22 shows the solution vectors by the vector GSPM method. Similar to these of least squares, the test
images “T1-T5” were successfully identified but the other images were not yet represented by the linear combination of
the database images in Fig. 2.

Chapter 6 Image Identifications.nb 137

Show[GraphicsArray[
Table[{solutionG[[i]],solutionG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],ImageSize->{400,500},
PlotLabel->"Fig.22. Vector GSPM solutions"];

Fig.22. Vector GSPM solutions

10 20 30 40 50 60

-0.1
-0.05

0.05
0.1
0.15
0.2

SPM9

10 20 30 40 50 60

-0.2
-0.15
-0.1

-0.05

0.05
0.1
0.15

SPM10

10 20 30 40 50 60
-0.05

0.05
0.1
0.15

SPM7

10 20 30 40 50 60
-0.02

0.02
0.04
0.06

SPM8

10 20 30 40 50 60

0.1
0.2
0.3
0.4
0.5
0.6

SPM5

10 20 30 40 50 60
-0.05

0.05

0.1

SPM6

10 20 30 40 50 60

0.1
0.2
0.3
0.4
0.5
0.6

SPM3

10 20 30 40 50 60

0.1
0.2
0.3
0.4
0.5

SPM4

10 20 30 40 50 60

0.1
0.2
0.3
0.4
0.5

SPM1

10 20 30 40 50 60

0.1
0.2
0.3
0.4
0.5

SPM2

138 Chapter 6 Image Identifications.nb

Image identification

Taking the maximum elements in the solution vectors in Fig. 22 gives the identified images by the iterative
means. Figure 23 shows the identified images. The result is just same as those of the real domain. Three test images were
not exactly identified and the vector GSPM method successfully identified remaining seven images.

Here we describe the reason why the nature of wavelet spectrum and real domains are the same. The reason of
this is very simple, we have not take the particular wavelet spectrum including the mother wavelet into account but all of
the wavelet spectrum have been used to the image identification. In order to emphasis the nature of wavelet spectrum
domain, we have to take the particular wavelet spectrum into account. However, we did not carry out this because we did
not establish a firm methodology which wavelet spectrum should be taken in to account the image identifications.
Further, the nature of wavelet spectrum is greatly depending on the employed base functions. But, we did not have
enough knowledge which base function should be employed. When we employ the wavelet base function and take the
wavelet spectrum into account for the case by case, we may be possible to get the good result for the inverse approaches.
But this has no general meaning. Thus, we talked all of the wavelet spectra into account for the image identification. As a
result, it has been clarified that a simple sorting of the image data does not change the results.

identified=Table[Position[sol[[i]],Max[sol[[i]]]],
{i,dimT[[1]]}]//Flatten855, 57, 59, 61, 63, 18, 63, 14, 16, 55 <

Chapter 6 Image Identifications.nb 139

Show[GraphicsArray[
Table[{testG[[i]],dbColorG[[identified[[i]]]],

testG[[i+1]],dbColorG[[identified[[i+1]]]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.23. Test(T) and identified(DB) images",
ImageSize->{4*100,5*100}];

memoryUsed

Fig.23. TestHTL and identifiedHDBL images

T9 DB16 T10 DB55

T7 DB63 T8 DB14

T5 DB63 T6 DB18

T3 DB59 T4 DB61

T1 DB55 T2 DB57

34664K Bytes used

Image synthesize

Similar to those of the least squares, it is possible to synthesize the images, which suggest the solvability of the ill
posed system of equations.

140 Chapter 6 Image Identifications.nb

comLS=Table[Sum[sol[[i,j]]*dbColor[[j]],
{j,dimDB[[1]]}],{i,dimT[[1]]}];

comLSN=Table[imageNormalize[comLS[[i,j]]],{i,dimT[[1]]},{j,dimT[[2]]}];

comLSG=Table[Show[convertRGB[comLSN[[i]]],
AspectRatio->Automatic,DisplayFunction->Identity,
PlotLabel->StringForm["SPM`1`",i]],{i,dimT[[1]]}];

Figure 24 shows the synthesized images by means of the iterative solutions. As expected from the solution
vectors in Figs. 22 and 8, only the test images “T1-T5” were clearly synthesized similar to the test images in Fig. 1.

Chapter 6 Image Identifications.nb 141

Show[GraphicsArray[
Table[{testG[[i]],comLSG[[i]],testG[[i+1]],comLSG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.24. Test(T) and sythesize(GSPM) images",
ImageSize->{4*100,5*100}];

Remove["wMat","systemMat","solution","solutionG","identified",
"comLS","comLSN","comLSG"];

memoryUsed

Fig.24. TestHTL and sythesizeHGSPML images

T9 SPM9 T10 SPM10

T7 SPM7 T8 SPM8

T5 SPM5 T6 SPM6

T3 SPM3 T4 SPM4

T1 SPM1 T2 SPM2

31035K Bytes used

142 Chapter 6 Image Identifications.nb

6.8 Image identification in eigen pattern domain

In chapter 5, we have defined the eigen pattern of the image. The eigen pattern can be derived by means of a
nonlinear transformation. Any linear transformations utilize the square transform matrices such as the Fourier and
wavelet transforms, and are capable of recovering the original data exactly. But our eigen pattern is derived by means of
the rectangular transform matrices, so that an inverse transform of the eigen pattern approximately recovers the original
data. As shown in chapter 5, even though the nonlinear transform, the eigen pattern represents a distinct characteristic of
the target image not depending on the image resolution and position.

Thus, in this section, we carry out the image identifications in the eigen pattern domain.

à 6.8.1 Image eigen pattern

The eigen pattern can be derived by means of the rectangular transform matrices. This makes it possible to derive
the same resolution eigen pattern from the different resolution images.

Consideration of 8-bits resolution in each of the red, green and blue color components leads to set the 256
resolution of the color image. Further, the test images in Fig. 2 were windowed in order to reduce the effects of
background of image. Thereby, we apply a window operation to the 256 by 256 resolution database images.

resolution=256;
win128=window[128,128,64-8];
dbW=Table[win128*dataBase[[i,j]],{i,dimDB[[1]]},{j,dimDB[[2]]}];

à 6.8.2 Correlation analysys

Data arrangement

In order to implement the correlation analysis in the eigen pattern domain, we compute the eigen patterns of the
windowed test and 256 by 256 resolution database images.

baseMat=Table[eigenPattern[Flatten[dbW[[i]]],resolution],
{i,dimDB[[1]]}];

win64=window[64,64,32-4];
testW=Table[win64*test[[i,j]],{i,dimT[[1]]},{j,dimT[[2]]}];
testV=Table[eigenPattern[Flatten[testW[[i]]],resolution],

{i,dimT[[1]]}];

Correlation coefficients

We compute the correlation coefficients between the eigen patterns of test and database images.

corCoe=Table[corRelation[baseMat[[i]],testV[[j]]],
{j,dimT[[1]]},{i,dimDB[[1]]}];

Chapter 6 Image Identifications.nb 143

Taking the maximum correlation coefficient to each of the test images, we can obtain the identified database
image corresponding to the tested one.

identified=Table[Position[corCoe[[i]],Max[corCoe[[i]]]],
{i,dimT[[1]]}]//Flatten855, 57, 59, 61, 59, 13, 11, 6, 16, 18 <

Figure 25 shows the identified images together with tested ones. Only the six test images were correctly
identified. This result suggests that the correlation analysis is only effective methodology in the real domain. In the other
words, the correlation analysis is useful methodology to identify the images taking into account the resolution and
position of the test images.

144 Chapter 6 Image Identifications.nb

Show[GraphicsArray[
Table[{testG[[i]],dbColorG[[identified[[i]]]],

testG[[i+1]],dbColorG[[identified[[i+1]]]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.25. Test(T) and identified(DB) images",
ImageSize->{4*100,5*100}];

Remove["corCoe","identified","win128","win64","dbW"];
memoryUsed

Fig.25. TestHTL and identifiedHDBL images

T9 DB16 T10 DB18

T7 DB11 T8 DB6

T5 DB59 T6 DB13

T3 DB59 T4 DB61

T1 DB55 T2 DB57

17453K Bytes used

Chapter 6 Image Identifications.nb 145

à 6.8.2 Least squares

System matrix

Transpose of the “baseMat” used for correlation analysis yields a system matrix.

systemMat=Transpose[baseMat];

Inverse check

In order to get the least squares solution, a product between the transpose of system and original system matrices
should be a positive definite square matrix. However, in the eigen pattern domain, this condition is not held.

Inverse[Transpose[systemMat].systemMat];

Inverse::sing : Matrix �1� is singular.

à 6.8.3 Vector GSPM

Vector GSPM solution

According to the previous inverse matrix check for the least squares, the system of eigen patterns is badly ill
posed, so that we set a number of iterations 1000 to the vector GSPM method.

solution=Table[vectorGSPM[systemMat,testV[[i]],1000],{i,dimT[[1]]}];//Timin
g832.68 Second, Null <

After a few computation times, we classify the solutions into the solution and pattern matching figure parts.

sol = Table @Take@solution @@i DD, dimDB @@1DDD, 8i, dimT @@1DD<D;
matF = Table @Take@solution @@i DD, -1000D, 8i, dimT @@1DD<D;

Figure 26 shows the convergence processes to the test images. As described in Eq. (18), any solution vectors by
the vector GSPM method have been converged to the fixed vectors. The pattern-matching figure “Ganma” in Fig. 26
corresponds to the value of objective function of Eq. (12), so that the value near to 1 means a goodness of the solutions.

convG=Table[ListPlot[matF[[i]],
PlotRange->All,PlotJoined->True,AxesLabel->{"Itas.","Ganma"},
PlotLabel->StringForm["SPM`1`",i],DisplayFunction->Identity],
{i,dimT[[1]]}];

146 Chapter 6 Image Identifications.nb

Show[GraphicsArray[
Table[{convG[[i]],convG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],ImageSize->{400,500},
PlotLabel->"Fig.26. Convergence processes"];

Fig.26. Convergence processes

2004006008001000Itas.

0.95
0.96
0.97
0.98
0.99

Ganma SPM9
2004006008001000Itas.

0.97
0.98
0.99

Ganma SPM10

2004006008001000Itas.

0.94
0.95
0.96
0.97
0.98
0.99

Ganma SPM7
2004006008001000Itas.

0.9
0.92
0.94
0.96
0.98

Ganma SPM8

2004006008001000Itas.

0.8
0.85
0.9
0.95

Ganma SPM5

2004006008001000Itas.
0.986
0.988
0.992
0.994
0.996
0.998

Ganma SPM6

2004006008001000Itas.

0.75
0.8
0.85
0.9
0.95

Ganma SPM3

2004006008001000Itas.

0.92
0.94
0.96
0.98

Ganma SPM4

2004006008001000Itas.

0.92
0.94
0.96
0.98

Ganma SPM1
2004006008001000Itas.

0.93
0.94
0.95
0.96
0.97
0.98
0.99

Ganma SPM2

Compute the image data of the vector GSP solutions.

solutionG=Table[ListPlot[sol[[i]],
PlotRange->All,PlotJoined->True,
PlotLabel->StringForm["SPM`1`",i],
DisplayFunction->Identity],
{i,dimT[[1]]}];

Chapter 6 Image Identifications.nb 147

Figure 27 shows the solution vectors by the vector GSPM method. The solution vectors are quite different
compared with all of the previous solutions. The solutions to the test images “T1-T5” are not the one-peak solutions
shown in Figs. 5,9,13,16,20 and 23, but every solution vector is composed of the several peak elements. This means that
the eigen pattern system of equations has been established under the same conditions to the tested and database images.
Namely, the eigen pattern in each of the images represents the resolution and position independent characters.

Show[GraphicsArray[
Table[{solutionG[[i]],solutionG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],ImageSize->{400,500},
PlotLabel->"Fig.27. Vector GSPM solutions"];

Fig.27. Vector GSPM solutions

10 20 30 40 50 60
-0.02

0.02
0.04
0.06
0.08

SPM9

10 20 30 40 50 60
-0.04
-0.02

0.02
0.04
0.06
0.08
0.1

SPM10

10 20 30 40 50 60
-0.02

0.02
0.04
0.06
0.08
0.1

SPM7

10 20 30 40 50 60-0.02

0.02
0.04
0.06
0.08
0.1

SPM8

10 20 30 40 50 60
-0.04
-0.02

0.02
0.04
0.06
0.08
0.1

SPM5

10 20 30 40 50 60
-0.02

0.02
0.04
0.06
0.08

SPM6

10 20 30 40 50 60
-0.05

0.05

0.1

SPM3

10 20 30 40 50 60
-0.02

0.02
0.04
0.06

SPM4

10 20 30 40 50 60
-0.02

0.02
0.04
0.06
0.08
0.1

SPM1

10 20 30 40 50 60

-0.02
-0.01

0.01
0.02
0.03
0.04

SPM2

148 Chapter 6 Image Identifications.nb

Image identification

Taking the maximum elements in the solution vectors in Fig. 27 gives the identified images by the iterative
means. Figure 28 shows the identified images.

identified=Table[Position[sol[[i]],Max[sol[[i]]]],
{i,dimT[[1]]}]//Flatten855, 57, 59, 61, 54, 10, 12, 14, 16, 18 <

Surprisingly, all of the test images in Fig.1 were identified from the 63 database images in Fig. 2. Thus, we have
confirmed that the concept of eigen pattern makes it possible to remove the effects of image resolution and position, and
leads to a sophisticate image identification methodology.

Chapter 6 Image Identifications.nb 149

Show[GraphicsArray[
Table[{testG[[i]],dbColorG[[identified[[i]]]],

testG[[i+1]],dbColorG[[identified[[i+1]]]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.28. Test(T) and identified(DB) images",
ImageSize->{4*100,5*100}];

memoryUsed

Fig.28. TestHTL and identifiedHDBL images

T9 DB16 T10 DB18

T7 DB12 T8 DB14

T5 DB54 T6 DB10

T3 DB59 T4 DB61

T1 DB55 T2 DB57

18051K Bytes used

Image synthesize

According to Eq. (8), we synthesize the images by combining the solution vectors in Fig. 27 and the database
image in Fig.2.

150 Chapter 6 Image Identifications.nb

comLS=Table[Sum[sol[[i,j]]*dbColor[[j]],
{j,dimDB[[1]]}],{i,dimT[[1]]}];

comLSN=Table[imageNormalize[comLS[[i,j]]],{i,dimT[[1]]},{j,dimT[[2]]}];

comLSG=Table[Show[convertRGB[comLSN[[i]]],
AspectRatio->Automatic,DisplayFunction->Identity,
PlotLabel->StringForm["SPM`1`",i]],{i,dimT[[1]]}];

Figure 29 shows the synthesized images. Fairly well images reflecting on their test images were obtained
excepting the images “T2” and “T5”. This is as a matter of course fact because all of the test images have been exactly
identified.

Chapter 6 Image Identifications.nb 151

Show[GraphicsArray[
Table[{testG[[i]],comLSG[[i]],testG[[i+1]],comLSG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.29. Test(T) and sythesize(GSPM) images",
ImageSize->{4*100,5*100}];

Remove["systemMat","solution","solutionG",
"identified","comLS","comLSN","comLSG"];memoryUsed

Fig.29. TestHTL and sythesizeHGSPML images

T9 SPM9 T10 SPM10

T7 SPM7 T8 SPM8

T5 SPM5 T6 SPM6

T3 SPM3 T4 SPM4

T1 SPM1 T2 SPM2

21389K Bytes used

152 Chapter 6 Image Identifications.nb

6.9 Summary

In this chapter, we have tried to identify the particular images in a large number of database images by means of
the three different approaches. The first was a conventional correlation analysis. The other approaches were based on the
inverse analysis methodologies. The inverse analysis is essentially reduced into solving for the ill posed linear system of
equations. Hence, we have derived the image system of equations. To obtain the solution of the image system of
equations, we have employed two methodologies. On is the well known least squares, and the other is the vector GSPM
method. The former requires using a matrix inversion. This limits the application of the least squares. The latter is an
iterative scheme to solve the ill posed system of equations. Iterative solution strategy can be applied to any ill posed
system, but always gives a converged solution. To overcome this difficulty, we have introduced the vector GSPM
method, which guarantees the converged solutions.

These identification methodologies have been implemented in the real, Fourier, wavelet and eigen pattern
domains. As the results, it has been clarified that the correlation approach is the distinguished methodology in the real
domain. This means that the correlation analysis has to take into account the resolution, position and background of a
target image. On the other side, the inverse approaches are superior methodologies in the frequency and eigen pattern
domains. Particularly, iterative solution strategy is a powerful tool to identify the images.

Summarizing the implemented results is as follows:

Correlation analysis: 90% in real domain,

100% in Fourier spectrum domain,

90% in wavelet spectrum domain

60% in eigen pattern domain.

Least squares: 70% in real domain,

100% in Fourier spectrum domain,

70% in wavelet spectrum domain

Not available in eigen pattern domain.

vector GSPM 70% in real domain,

100% in Fourier spectrum domain,

70% in wavelet spectrum domain

100% in eigen pattern domain.

Chapter 6 Image Identifications.nb 153

à REFERENCES

[1] Stephen Wolfram, The Mathematica Book, 3rd ed. (Wolfram Media/Cambridge University Press, 1996).

[2] G.Strang, “ Linear Algebra and its Applications “, 1976, Academic Press, Inc.

[3] Y.Midorikawa, J.Ogawa, T.Doi, S.Hayano and Y.Saito, “ Inverse analysis for magnetic field source searching in thin
film conductor “, IEEE Transaction on Magnetics, Vol.MAG-33, No.5, Sep.,1997, pp.4008-4010.

[4] K.Yoda, Y.Saito and H.Sakamoto, “ Dose optimization of proton and heavy ion therapy using generalized sampled
pattern matching,” Phys.Med.Biol., IOP Publishing,1997,pp.2411-2420.

154 Chapter 6 Image Identifications.nb

