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PREFACE

Here is another completely new research area I like to draw you attention to get your kind involvement to 
promote  and  advance  it:  Field  Theory  of  Computer  Graphics.  It  was  started  by  Professor  Yoshifuru  Saito  with  rich
application results; I am finding it remarkable.

The basic idea is as follows:

When we visualize objects, we cognized them through some incoming information media as changes of the field we
are observing.  The reverse is true; when display, we represent the light change of the display field.  In neither case,
we cannot directly handle objects unless we use mechanics to touch them or process them mechanically.  That why
field theory is very important.  The field theory has not been well developed in case of digital and finite fields.  Mainly
analogue and infinite cases are well known in classical electromagnetism.

Professor Yoshifuru Saito.  He is  among the most novel and practical  academics on this earth.  He has been very little
outside of Japan, and I appreciate your kindness to grasp what he presents in contents, not through texts.  He formulate
beautifully too, so your time will be rewarded. 

Sincerely yours,

T. L. Kunii

August 18th 1999

Selected sentences from the e-mail of Professor Tosiyasu L. Kunii
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1.1 Introduction

This chapter introduces the basic image handling tools for image processing by Mathematica. 

The programming language Mathematica is  composed  of  the two major  frame parts  [1].  One is  the front-end
processor,  which is  an interface between the computer and user.  The front-end is not only used for the text and code
writing for the Mathematica notebook but also it displays the computed results. Enormous capability is included in the
functions of front-end. For further details, click the help menu of the Mathematica front-end. The other frame part is the
kernel,  which carries out the practical  computations including a large number of  functions for  simple computation as
well as plotting the figures. The kernel is a computational engine of the Mathematica when regarding the front-end as a
driving  cockpit.  Both  of  the  front-end  and  kernel  require  a  large  memory  to  use  the  Mathematica with  comfortable
environment.

1.2 Preparation of Mathematica

We never have the machine installed infinitely large number of memories, so that it is preferable and essential to
use the memory conserve command of Mathematica.  This command works to conserve the memory by interchanging
the contents of variable when using the same name. Also, we install the warning messages suppressing command for the
similar variable name. Warning messages are sometimes very important and useful for debugging the codes, but in most
cases, that give a negative impression to user. Further, the default package of the Mathematica includes various func-
tions, but it  is required to install the other standard packages for handling and processing the image data. Thereby, in
this chapter we install  a “Linear algebra package”. These packages can be installed as follows. We write the package
input commands and click the right-hand cell by a mouse cursor. After that, we push the enter plus shift keys simulta-
neously. 

Thus,  we  have  installed  the  required  Mathematica packages  for  starting  a  session  of  this  chapter.  It  must  be
noted here that never push the shift plus enter keys to the cell including the just installed packages. When the shift pus
enter operation to the installed packages is again carried out, you will get an enormous error messages punch from the
Mathematica. 

<<Utilities`MemoryConserve`

$MemoryIncrement=100000;

Off[General::spell1,MemoryConserve::start,MemoryConserve::end];

<< LinearAlgebra`MatrixManipulation`;



1.3 Image data input

One of the major aims of this book is to describe a computer graphics methodology, so that we have to insert
the image data. Currently, we are available a large number of image data formats for the digital computers, one of the
most popular and primitive image data formats is a 24-bitmap form. The 24-bitmap image data consist of the red, green
and blue color  components.  Each  of  the  color  components has 8  bits  dynamic  range,  and  takes the numerical  values
between 0 and 1 The 24-bitmap image data is read in the Mathematica notebook by means of “MathLink” utility, which
connects  the  Mathematica kernel  to  the  external  object  package.  In  this  book,  we  install  a  package  called
“RGBsplit.exe”  in  order  to  input  the  24-bitmap  image  data.  This  package  was  developed  by  one  of  my students.  In
order to install the “RGBsplit.exe”, we have to check the existence of “RGBsplit.exe” in the current directly. Typing a
following command carries this out and hitting the shift plus enter keys simultaneously.

FileNames[];AF0380100.bmp, AF038 0128.bmp, AF038 0256.bmp,

AF038064.bmp, BF001.bmp, BF001M.bmp, Chapter 1 Basic Tools.nb,
Chapter 2 Monochrome Image Processing.nb,

Chapter 3 Color Image Processing.nb,

Chapter 4 Wavelet Image Processing.nb,
Chapter 5 Eigen Pattern Image Processing.nb,

Chapter 6 Image Identifications.nb, imageDB63.m, imageTST10.m,
Preface.nb, RGBsplit.exe, Sor04.exe, Wall 0A0128.bmp ?

As you can see, there is the “RGBsplit.exe”, so we install this object by a following command.

link=Install["RGBsplit.exe"]

LinkObject #.\RGBsplit.exe, 2, 2 '
 Using this “RGBsplit.exe”,  we read in an image file “BF001.bmp” having 24-bitmap format and check up its
array size in the Mathematica notebook by “Dimensions” command.

sample=RGBsplit["BF001.bmp"];

Dimensions[sample];128, 128, 3 ?
The 24-bitmap-image file “BF001.bmp” has been read in the Mathematica notebook as a list named “sample”,

which is a three dimensional array of 128 by 128 by 3 elements. The output of the command “Dimensions” reveals that
the first, second and third figures in the wavy parentheses are the number of pixels used for the vertical, horizontal axes
and  color  components,  respectively.  The  1,2  and  3  of  the  color  components  correspond  to  the  red,  green  and  blue,
respectively. 

Let us draw the red, green and blue components images, independently. The following steps carry this out. At
first,  the numerical  values representing the red,  green and blue components are respectively substituted into indepen-
dent  lists  “red”,  “green”  and  “blue”.  After  that,  “ListDensityPlot”  command  is  used  for  drawing  the  monochrome
images.
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red=Table[sample[[i,j,1]],{i,128},{j,128}];

green=Table[sample[[i,j,2]],{i,128},{j,128}];

blue=Table[sample[[i,j,3]],{i,128},{j,128}];

redG=ListDensityPlot[red,

Mesh->False,Frame->False,PlotLabel->"Red",

DisplayFunction->Identity];

greenG=ListDensityPlot[green,

Mesh->False,Frame->False,PlotLabel->"Green",

DisplayFunction->Identity];

blueG=ListDensityPlot[blue,

Mesh->False,Frame->False,PlotLabel->"blue",

DisplayFunction->Identity];

Show[GraphicsArray[{redG,greenG,blueG}],

PlotLabel->"Fig.1. Color components",

ImageSize->{450,150}];

Fig.1. Color components

Red Green blue

The meanings of the option commands such as “Mesh”, “Frame” and “DisplayFunction” can be obtained by the
command “Options[ListDensityPlot]” or clicking the help menu of the Mathematica front-end, e.g.

Options[ListDensityPlot];AspectRatio � 1, Axes � False, AxesLabel � None,

AxesOrigin � Automatic, AxesStyle � Automatic, Background � Automatic,

ColorFunction � Automatic, ColorOutput � Automatic,
DefaultColor � Automatic, Epilog � ;?, Frame � True, FrameLabel � None,

FrameStyle � Automatic, FrameTicks � Automatic, ImageSize � Automatic,

Mesh � True, MeshRange � Automatic, MeshStyle � Automatic,
PlotLabel � None, PlotRange � Automatic, PlotRegion � Automatic,

Prolog � ;?, RotateLabel � True, Ticks � Automatic,
DefaultFont � $DefaultFont, DisplayFunction � $DisplayFunction,

FormatType � $FormatType, TextStyle � $TextStyle ?
The readers are very surprised by so many options even though a relatively simple command “ListDensityPlot”,

but never mind such a too many options. The readers are essentially led to use a limited number of options and com-
mands in Mathematica depending on demands of their affectivities.

Thus,  we have succeeded in  reading the image file  into  the Mathematica notebook.  To conserve the memory
used  for  the  “RGBsplit.exe”  object  from  an  entire  computer  memory,  we  remove  this  object  from  the  memory  by
“Uninstall” command.

Uninstall[link];

Off[General::spell1];
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1.4 Monochrome image

Many of the digital cameras can take a color image, but still the monochrome images are used for the industrial
use for sake of its cost performance. Two types of monochrome images are considered in this book. One is the bitmap
image  file  having  only  the  monochrome information.  When  we read  such  a  monochrome image in  the  Mathematica
notebook by the “RGBsplit.exe” command,

link=Install["RGBsplit"];

monoSample=RGBsplit["BF001M.bmp"];

Uninstall[link];

Off[General::spell1];

then after substituting the numerical values included in the list “monoSample” into a list “monoData”, we check up the
numerical  values  included  in  the  list  “monoData”  by  a  command  “==“.  The  command “==“  gives  the  “True”  if  the
objects are the same else “False”.

dim=Dimensions[monoSample];

monoData=

Table[monoSample[[i,j,k]],

{k,dim[[3]]},{i,dim[[1]]},{j,dim[[2]]}];

The first, we compare the first and second components.

monoData[[1]]==monoData[[2]]

True

This result  means that  the first  and second image components in the list  “monoData” are  the same numerical
values. Similarly, we check up equivalence between the first and third components in the list “monoData”.

monoData[[1]]==monoData[[3]]

True

Thereby, the monochrome image data in the list “monoData” by installing the command “RGBsplit.exe” have
the same color components, which represent a monochrome image as shown in Fig.2.
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ListDensityPlot[monoData[[1]],

Mesh->False,Frame->False,PlotLabel->"Fig.2. Monochrome"];

Fig.2. Monochrome

Thus, we can handle the monochrome image data by installing the command “RGBsplit.exe”. However, it must
be noted here that the monochrome image format will greatly depend on a processing tool. In this textbook, we worked
out  a  sample  monochrome  image  “BF001M.bmp”  form  the  color  image  data  “BF001.bmp”  by  a  popular
commercial/shareware base image drawing software “PaintShopPro” for the Widows 95, 98 and NT versions.

The other way to obtain a monochrome image is to compose the monochrome images from the red, green and
blue color components shown in Fig.1. We take up here the two types of monochrome images. One is the y component
intensity of the yjk style, and the other is the NTSC style used in the televisions. Figure 3 shows both of the synthesized
yjk and NTSC types monochrome images from the color components shown in Fig.1.
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yjk  + .5 - red . .25 - green . .125 - blue /;

tvM  +.3 - red . .59 - green . .11 - blue /;

yjkG  ListDensityPlot #yjk, Mesh 0! False, Frame 0! False,

PlotLabel 0! "Intensity y of yjk style",

DisplayFunction 0! Identity ';

tvMG  ListDensityPlot #tvM, Mesh 0! False, Frame 0! False,

PlotLabel 0! "NTSC style",

DisplayFunction 0! Identity ';

Show#GraphicsArray #;yjkG, tvMG ?',

PlotLabel 0! "Fig.3. Two types of monochrome images",

ImageSize 0! ;300, 150 ?';

Fig.3. Two types of monochrome images

Intensity y of yjk style NTSC style

1.5 Color image

In order to represent a color image in a list “sample”, we have to use the two Mathematica commands; one is
the  “RGBColor”  function,  which  converts  the  numerical  data  representing  the  red,  green  and  blue  components  into
RGB color form. The other is the “RasterArray” function, which displays a color image from the RGB color data.

At first, we convert the numerical data in the list “red”, “green” and “blue” into a RGB color form by means of
the function “RGBColor”. Secondly, we draw a color graphics image by combining a set of display commands “Show”,
“Graphics”, and “RasterArray”.
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rgbSample=Table[RGBColor[red 3i,j 7,green 3i,j 7,blue 3i,j 7],

{i,128},{j,128}];

Show[Graphics[RasterArray[rgbSample],

AspectRatio->Automatic],PlotLabel->"Fig.4. Color graphics image"];

Fig.4. Color graphics image

1.6 Window operation 

Sometimes, we are required to focus on a particular region on an image. In such case, it is convenient to use a
window  operation  extracting  a  region  of  interest  [2].  Window  operation  is  one  of  the  convolution  operations,  and
performs the element-to-element  multiplications  between the two lists  containing the window and image data.  In  this
textbook, we work out a simple round shape of window constructed by a following function. 

window #xl_, yl_, radius_ ' :  

Module #;i  0, j  0, k  0, p  0, q  0, win  ;;0. ???,

win  ZeroMatrix #yl, xl ';

p  Round#0.5 yl '; q  Round#0.5 xl ';

Do#j  Round#Sqrt #radius^2 0 i ^2 '';

Do#win ##p . i, k ''  1., ;k, q 0 j, q . j ?',;i, 0radius, radius ?';

win ';

In the function “window”, the parameters “xl”, “yl” and “radius” are the number of pixels in the direction of x,
y  axes  and  a  radius  of  circular  window,  so  that  the  a  number  of  pixels  for  the  parameter  “radius”  should  be  always
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smaller than those of the half of “xl” as well as “yl”. Using this function, we work out a 128 by 128 pixels list “win128”
having a window's radius 60. 

win128=window[128,128,60];

By means of the window “win128”, we carry out the convolution operations to the monochrome as well as each
of the color components in Fig.1. 

wMonoG=ListDensityPlot[win128*monoData[[1]],

Mesh->False,Frame->False,PlotLabel->"Monochrome",

DisplayFunction->Identity];

redW=win128*red;

greenW=win128*green;

blueW=win128*blue;

After converting the color image data into  a RGB form, we draw the images having circular  shape windows.
Figure 5 shows the circular window operated images.

rgbSampleW=

Table[RGBColor[redW 3i,j 7,greenW 3i,j 7,blueW 3i,j 7],

{i,128},{j,128}];

wColorG=Show[Graphics[RasterArray[rgbSampleW],

AspectRatio->1.0],PlotLabel->"Color",

DisplayFunction->Identity];

Show[GraphicsArray[{wMonoG,wColorG}],

PlotLabel->"Fig. 5. Examples of window operation",

ImageSize->{300,150}];

Fig. 5. Examples of window operation

Monochrome Color

1.7 Summary

This chapter has described about  the most basic and fundamental part  of  this book. In  spite of  no knowledge
about the programming language “Mathematica”,  every one may be understood how to input and draw the images in
the Mathematica notebook. Also, every one may be revealed that an image processing is not the simple try and error
processes  using  the  image  handling  software,  but  are  the  Mathematical  list  and  matrix  operations.  One  of  the  best
merits  using  the  Mathematica is  that  every  one  can  use  the  codes  described  in  this  textbook  only  setting  up  their
original bitmap image data. 
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2.1 Introduction

At the beginning of this chapter, we introduce a concept of the gradient and curl operations of the classical field 
theory. Most of the conventional computer graphics, space derivatives are often carried out in order to extract the edges
of  a  target  object  in  a  screen.  An introduction  of  the  vector  operations  instead of  simple  spatial  derivatives renders  a
physical meaning to the operations.  As an application of  the gradient and curl  operations, we draw the sketch images,
even though the sketch drawing is  one of  the art  works based on the human emotion. Regarding the numerical values
representing  a  monochrome image  as  a  scalar  or  one  component  of  vector  potentials,  gradient  operation  to  the  scalar
potentials  or  curl  operations  to  the  vector  potentials  yields  one  of  the  vector  fields.  Depending  on  the  magnitude  of
potentials,  a vector  distribution takes different  form. A vector  magnitude distribution leads to a sketch image. Further,
inner product operation among the vectors yields the other type images. 

Second stage of the field theory in this chapter is to apply the Laplacian operator to the image data when 
regarding the numerical values representing an image as the scalar potentials. The Laplacian operation leads to a static
image  governing  equation.  A  Poisson  type  partial  differential  equation  is  the  static  image  governing  equation.  It  is
demonstrated that a size or resolution of an image can be changed freely. 

The image data in computer graphics are essentially discretized quantities so that we have to carry out the vector 
calculus in terms of the discrete Mathematical means. In this textbook, the gradient and curl operations are carried out by
the central finite differences, and the Laplacian operation is carried out by the 9 points finite difference formula.

2.2 Preparation of  Mathematica

Before to move on the practical image processing, we have to install the memory conserve utilities and the 
warning  messages  suppressing  command  for  the  similar  variable  name.  In  addition,  the
“LinearAlgebra`MatrixManipulation” and “Graphic`'PlotField” packages have to be installed. The former is used for the
list and matrix operations, and the latter is used for plotting the vector fields [1]. 



MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa packages packages packages packages

<<Utilities`MemoryConserve`
$MemoryIncrement=100000;
Off[General::spell1,MemoryConserve::start,MemoryConserve::end];
<< LinearAlgebra`MatrixManipulation ;̀
<<Graphics`PlotField`

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa function function function function rgbBMP rgbBMP rgbBMP rgbBMP

Further, we define several functions for image processing and data handling. The functions “rgbBMP”, 
“convertRGB” and “monoNTSC” are defined as follows. The function “rgbBMP” works to read in the 24-bitmap color
image data. A parameter “colorFile” refers to a file name.

rgbBMP@colorFile_ D : =
Module @8i = 0, j = 0, k = 0, dim = 80<, input = 8880. <<<<,
link = Install @"RGBsplit.exe" D; Pause @0.01 D;
input = RGBsplit @colorFile D;
Uninstall @link D;
Off @General::spell1 D;
dim = Dimensions @input D;
Table @input @@i, j, k DD, 8k, 3 <,8i, dim @@1DD<, 8j, dim @@2DD<DD;

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa function function function function convertRGB convertRGB convertRGB convertRGB

The function “convertRGB” converts the numerical data representing a color image into a RGB form in order to 
visualize  the image  on  the Mathematica notebook.  The parameter  “colorData”  refers  to  a  list  including the  numerical
values.

convertRGB @colorData_ D : =
Module @8i = 0, j = 0, dim = 80<, out <,
dim = Dimensions @colorData D;
Graphics @

RasterArray @
Table @RGBColor @colorData @@1, i, j DD,

colorData @@2, i, j DD, colorData @@3, i, j DDD,8i, dim @@2DD<, 8j, dim @@3DD<DDDD;

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa function function function function monoNTSC monoNTSC monoNTSC monoNTSC

The function “monoNTSC” construct a NTSC style monochrome image data from the color image data. The 
parameter “colorData” refers to a list including the numerical values.

monoNTSC@colorData_ D : =
Module @8i = 0, j = 0, dim = 80<<,
dim = Dimensions @colorData D;
Table @0.3 * colorData @@1, i, j DD + 0.59 * colorData @@2, i, j DD +

0.11 * colorData @@3, i, j DD,8i, dim @@2DD<, 8j, dim @@3DD<DD;
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2.3 Sample image synthesis

In this section, we construct a sample monochrome image from a color image. At first, we read in a color image 
file “BF001.bmp” by means of the function “rgbBMP”.

colorSample=rgbBMP["BF001.bmp"];

Second, after converting the color image data “colorSample” into the RGB form by the function “convertRGB”, 
the original color image data is composed.

colorSampleG=Show[convertRGB[colorSample],
PlotLabel->"Color image",AspectRatio->1,
DisplayFunction->Identity];

Third, after composing a monochrome image data “monoSample” by the function “monoNTSC”, we compute a 
monochrome sample image.

monoSampleG=
ListDensityPlot[monoSample=monoNTSC[colorSample],

Mesh->False,Frame->False,PlotLabel->"Monochrome",
DisplayFunction->Identity];

Finally, we draw the original and monochrome sample images, which are shown in Fig.1. A reason why we use 
the  color  image  sample  “BF001.bmp”  not  the  monochrome  image  sample  “BF001M.bmp”  is  to  introduce  the  color
handling functions “rgbBMP” and “convertRGB” for the later chapters. 

Show[GraphicsArray[{colorSampleG,monoSampleG}],
PlotLabel->"Fig.1. Sample images",ImageSize->{400,200}];

Fig.1. Sample images

Color image Monochrome
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2.4 Characteristic vector distribution

The list “monoSample” is a simple two-dimensional array that contains the numerical values representing the 
NTSC style monochrome image.  When we regard the numerical values in  the list  “monoSample”  as one of  the scalar
potentials, then it is possible to obtain a set of divergent fields by gradient operation. On the other side, when we regard
the numerical values in the list “monoSample” as one of the vector potential components, a set of rotational vector fields
can  be  computed  by  curl  operation.  In  order  to  derive  the  divergent  as  well  as  rotational  vector  of  the  sample
monochrome image shown in  Fig.1,  we define  the  “grad2D”  and “curl2D”  functions.  The former  and  latter  functions
derive  the  divergent  and  rotational  vectors,  respectively.  The  “grad2D”  function  is  defined  by  a  following  function,
where a parameter “darta2D” refers to a list containing two-dimensional scalar potentials.

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa function function function function grad2D grad2D grad2D grad2D
Gradient operation:

Vdiv = - ÑU = - ¶U�����������¶x i - ¶U�����������¶y j, (1)

Where Vdiv,  U,  i  and j  are  the  divergent  vector  to  be  evaluated,  input  scalar  potential  and unit

directional vectors in the direction of x- and y-axes, respectively.

grad2D=Compile[{{data2D,_Real,2}},
Module[{i=0,j=0,dim=Dimensions[data2D],

c1={Table[data2D[[1,j]],{j,dim[[2]]}]},
c2=Transpose[{Join[{data2D[[1,1]]},

Table[data2D[[i,1]],{i,dim[[1]]}]]}],
e2D=AppendRows[c2,AppendColumns[c1,data2D]]},

Table[{-0.5(e2D[[i,j]]+e2D[[i+1,j]])+
0.5(e2D[[i,j+1]]+e2D[[i+1,j+1]]),
-0.5(e2D[[i,j]]+e2D[[i,j+1]])+
0.5(e2D[[i+1,j]]+e2D[[i+1,j+1]])},
{i,dim[[1]],1,-1},{j,dim[[2]]}]]];

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa function function function function curl2D curl2D curl2D curl2D

 Similarly, the “curl2D” function is defined by a following way, where a parameter “darta2D” refers to a list 
containing one of  the vector  potential  components arraigned in a two-dimensional form. Both of  the gradient  and curl
operations have been carried out by the central finite differences.

Curl operation :

Vrot = - Ñ ´Uz = ¶Uz�������������¶y i - ¶Uz�������������¶x j, (2)
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Where  Vrot,  Uz,  i  and  j  are  the  rotational  vector  to  be  evaluated,  input  z-component  of  vector

potential and unit directional vectors in the direction of x- and y-axes, respectively.

curl2D=Compile[{{data2D,_Real,2}},
Module[{i=0,j=0,dim=Dimensions[data2D],

c1={Table[data2D[[1,j]],{j,dim[[2]]}]},
c2=Transpose[{Join[{data2D[[1,1]]},

Table[data2D[[i,1]],{i,dim[[1]]}]]}],
e2D=AppendRows[c2,AppendColumns[c1,data2D]]},

Table[{-0.5(e2D[[i,j]]+e2D[[i,j+1]])+
0.5(e2D[[i+1,j]]+e2D[[i+1,j+1]]),
0.5(e2D[[i,j]]+e2D[[i+1,j]])-
0.5(e2D[[i,j+1]]+e2D[[i+1,j+1]])},

{i,dim[[1]],1,-1},{j,dim[[2]]}]]];

Let us compute the divergent as well as rotational vectors from the sample monochrome image. We apply the 
functions “grad2D” and “ curl2D” to the list “monoSample”.  After computing the divergent and rotational vectors, we
plot the vector distributions. Figure 2 shows both of the divergent and rotational vector distributions, where the vectors
are periodically sampled with 4 pixels.

divV=-grad2D[monoSample];
rotV=curl2D[monoSample];
dim=Dimensions[divV];
divVG=ListPlotVectorField[

Table[divV[[i,j,k]],{i,1,dim[[1]],4},
{j,1,dim[[1]],4},{k,dim[[3]]}],
Frame->False,PlotLabel->"Div. vectors",
DisplayFunction->Identity];

rotVG=ListPlotVectorField[
Table[rotV[[i,j,k]],{i,1,dim[[1]],4},

{j,1,dim[[1]],4},{k,dim[[3]]}],
Frame->False,PlotLabel->"Rot. vectors",
DisplayFunction->Identity];

Show[GraphicsArray[{divVG,rotVG}],ImageSize->{400,200},
PlotLabel->"Fig.2. Vector distributions"];

Fig.2. Vector distributions

Div. vectors Rot. vectors
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The divergent and rotational vectors are the orthogonal each other. To check up this, we compute the inner 
products between them located at the same position, and then we print out the maximum as well as minimum values of
the inner products. 

innerPro=Table[divV[[i,j]].rotV[[i,j]],
{i,dim[[1]]},{j,dim[[2]]}];

Print["Max=",Max[innerPro]," Min=",Min[innerPro]];

Max=0. Min =0.

Thus, we have confirmed that the divergent and rotational vectors are orthogonal. This means that both of the 
divergent and rotational vectors of a monochrome image independently exist each other. In the other words, according to
the Helmholtz's theorem, taking a sum of the divergence and rotational field vectors can represent any vector fields, so
that taking a sum of the divergent and rotational vectors represents the characteristic vector distribution of a monochrome
image [2]. Figure 3 shows a characteristic vector distribution of the monochrome image in Fig.1, where the vectors are
periodically sampled with 2 pixels.

Helmholtz's theorem:

V = Vrot+ Vdiv , (3)

Where V, Vdiv and Vrot are the arbitrary, divergent and rotational vectors, respectively.

chractV=divV+rotV;
ListPlotVectorField[

Table[chractV[[i,j,k]],{i,1,dim[[1]],2},
{j,1,dim[[1]],2},{k,dim[[3]]}],

Frame->False,
PlotLabel->"Fig.3.Characteristic vector distribution"];

Fig.3.Characteristic vector distribution
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2.5 Sketch generation

Sketch is one of the art works extracting the characteristics of a target object and then depicting by a set of 
monochrome lines. From such a viewpoint, it is difficult to work out a sketch art by means of computers. However, we
have succeeded in extracting the characteristic vector distribution of the monochrome image. If this characteristic vector
distribution exactly representing the distinct characteristics of the image, then it is possible to sketch the image. One of
the  simplest  ways  for  sketching  the  monochrome  image  is  to  plot  the  magnitudes  of  the  characteristic  vectors
distribution. In order to do this, we define a function “vectMag2D”, which compute the vector magnitudes distribution at
each position. A parameter “vector2D” is a three-dimensional array containing the two-dimensional vector components. 

MathematicaMathematicaMathematicaMathematica function function function function vectorMag2D vectorMag2D vectorMag2D vectorMag2D

vectorMag2D=Compile[{{vector2D,_Real,3}},
Module[{i=0,j=0,dim=Dimensions[vector2D]},

Sqrt[Table[vector2D[[i,j,1]]̂ 2+vector2D[[i,j,2]]̂ 2,
{i,dim[[1]],1,-1},{j,dim[[2]]}]]]];

After computing the vector magnitude distribution of Fig. 3, we plot this in reversing the black and white mode. 
Thus, an obtained sketch is shown in Fig. 4. Obviously, this figure extracts the characteristics of the monochrome image
in Fig. 1, and also represents them by a set of monochrome lines.
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sketch=vectorMag2D[chractV];
ListDensityPlot[Max[sketch]-sketch,

PlotRange->All,Mesh->False,Frame->False,
PlotLabel->"Fig.4. Sketch"];

Fig.4. Sketch

2.6 Three-dimensional image generation

As shown in Fig.4, the sketch captures the characteristics of the sample monochrome image. Thereby, it may be 
possible to work out the filters extracting the various characters from the vectors distribution in Fig.3. 

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa function function function function imageNormalize imageNormalize imageNormalize imageNormalize

Before to continue the discussions, we define a Mathematica function “imageNormalize”, which converts the 
2-dimensional image data between the values 0 and 1. 

imageNormalize = Compile @88data2D, _Real, 2 <<,
Module @8minimum = Min@data2D D<,Hdata2D - minimumL� Max@data2D - minimumDDD;

In this textbook, we work out the different angled lighting images based on the nature of vector fields. Let us 
consider the six different directed unit vectors “viewV” given by
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rotation=6;
viewV=Table[{Cos[2.Pi i/rotation],Sin[2.Pi i/rotation]},

{i,0,rotation-1}];

then after computing the inner product “angle” between the vectors in Fig.3 and in the list “viewV”, we normalize the
inner products to the values between 0 and 1 by the function “imageNormalize”.

angle=Table[chractV[[i,j]].viewV[[k]],
{k,rotation},{i,dim[[1]],1,-1},{j,dim[[2]]}];

Consequently obtained results are shown in Fig. 5, where the first image is represented in terms of the red, green 
and  blue  colors  which  are  corresponding  to  the  lighting  angles  0,  120  and  240  degrees,  respectively.  The  remaining
images in Fig.5 are the shadowed three-dimensional relief images at each of the lighting angles. 

angleN=Table[imageNormalize[angle[[i]]],{i,rotation}];
angleNG=Table[Table[ListDensityPlot[angleN[[i]],

PlotRange->All,Mesh->False,Frame->False,
PlotLabel->StringForm["`1`deg.",(i-1)360/rotation],
DisplayFunction->Identity]],
{i,rotation}];

Show[convertRGB[Table[angleN[[i]],{i,1,rotation,rotation/3}]],
AspectRatio->1,PlotLabel->"Fig.5.Lighting effect"];

Show[GraphicsArray[
Table[Table[angleNG[[i+j]],{j,0,2}],{i,1,rotation,3}]],
ImageSize->{450,300},PlotLabel->"Angle"];

Fig.5.Lighting effect
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Angle

180deg. 240deg. 300deg.

0deg. 60deg. 120deg.

Further, we compute the more realistic three-dimensional image by convoluting the relief images in Fig.5 with 
the original monochrome image in Fig.1. The obtained images are shown in Fig.6.

cAngle=Table[monoSample*(1-imageNormalize[angle[[i]]]),{i,rotation}];

cAngleG=Table[Table[ListDensityPlot[cAngle[[i]],
PlotRange->All,Mesh->False,Frame->False,
PlotLabel->StringForm["`1`deg.",(i-1)360/rotation],
DisplayFunction->Identity]],
{i,rotation}];

Show[convertRGB[Table[cAngle[[i]],{i,1,rotation,rotation/3}]],
AspectRatio->1,PlotLabel->"Fig.6.Convoluted images"];

Show[GraphicsArray[
Table[Table[cAngleG[[i+j]],{j,0,2}],{i,1,rotation,3}]],
ImageSize->{450,300},PlotLabel->"Angle"];
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Fig.6.Convoluted images

Angle

180deg. 240deg. 300deg.

0deg. 60deg. 120deg.

After setting a mouse cursor on a following image, twice clicking the left side button of mouse animates the facial 
changes depending on the lighting angles. This is only effective on the Mathematica notebook.

Do[Show[GraphicsArray[{cAngleG[[i]]}]],{i,rotation}];
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2.7 Monochrome static image governing equation

As shown above, the vectored imaging makes it possible to process the image in various ways. In this section, we 
establish a monochrome image governing equation.

Regarding the numerical values representing a monochrome image as one of he scalar potentials derives this equation. As
is well known in the classical field theory, application of the second order partial derivatives to a scalar potential yields a
field source density. Namely, when we apply the Laplacian operator to the monochrome image data shown in Fig. 1, then
it  is  possible  to  obtain  a  source  density  distribution  of  the  image.  A  function  “laplace2D”  is  given  by  a  following
Mathematica code. This function is based on a 9 points finite difference formula, where the potentials along the edges of
a target area are assumed to zero. Also, a parameter “data2D” refers to a two-dimensional array including a monochrome
image data.

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa function function function function    llllaaaappppllllaaaacccceeee2222DDDD

Laplacian operation:

s =  Ñ2U = ¶2U��������������¶x2  + ¶2U��������������¶y2 , (4)

where σ  and U are the field source density to be evaluated and input scalar potential, respectively.
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laplace2D=Compile[{{data2D,_Real,2}},
Module[{e2D={{0.}},out={{0.}},dim={0},

max=0.,i=0,j=0,nx=0,ny=0},
dim=Dimensions[data2D];
ny=dim[[1]]+1;nx=dim[[2]]+1;
e2D=Table[0.,{ny+1},{nx+1}];
Do[e2D[[i,j]]=data2D[[i-1,j-1]],

{i,2,ny},{j,2,nx}];
Table[e2D[[i+1,j-1]]+4.*e2D[[i+1,j]]+

e2D[[i+1,j+1]]+4.*e2D[[i,j-1]]-
20.*e2D[[i,j]]+4.*e2D[[i,j+1]]+
e2D[[i-1,j-1]]+4.*e2D[[i-1,j]]+
e2D[[i-1,j+1]],

{i,2,ny},{j,2,nx}]/6.]];

Using this function, we compute the source density of the monochrome image in Fig. 1. Figure 7 shows the 
source density distribution.

source=laplace2D[monoSample];
ListDensityPlot[source,PlotRange->All,

Mesh->False,Frame->False,
PlotLabel->"Fig.7. Source density"];

Fig.7. Source density

According to the classical field theory, when we are given a source density distribution, then it is possible to 
establish a field  governing equation.  A field  governing equation having time independent  source density  is  one of  the
Poisson type equations. Obviously, our given image source density distribution in Fig. 7 is independent to the time, so
that  the  static  monochrome image governing equation  becomes a  Poisson  type partial  differential  equation.  Further,  a
solution of this governing equation should recover the original monochrome image.

In order to solve the image governing equation, we employ a 9 points finite difference formula assuming the zero 
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Dirichlet  boundary  condition  at  the  image  edges.  A  function  “poissonSOR”  gives  an  iterative  solution  by  a  simple
successive over relaxation method. A parameter “source” of this function refers to the image source density.

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa function function function function poissonSOR poissonSOR poissonSOR poissonSOR
Poisson's equation:

 Ñ2U = s, (5)

where σ  and U are the input field source density and scalar potential to be evaluated, respectively.

poissonSOR=Compile[{{source,_Real,2}},
Module[{i=0,j=0,omg=1.8,error=1.,solutionI=0.,diff=0.,

max=1.*10^-5,dim={0},solution={{0.}},dummy={{0.}}},
dim=Dimensions[source];
solution=Table[0.,{dim[[1]]+2},{dim[[2]]+2}];
dummy=solution;
Do[dummy[[i+1,j+1]]=source[[i,j]],

{i,dim[[1]]},{j,dim[[2]]}];
While[error>max,

error=0.;
Do[solutionI=0.05*

(solution[[i+1,j+1]]+4.*solution[[i+1,j]]+
solution[[i+1,j-1]]+4.*solution[[i,j+1]]+
4.*solution[[i,j-1]]+solution[[i-1,j+1]]+
4.*solution[[i-1,j]]+solution[[i-1,j-1]]+
6.*dummy[[i,j]]);
diff=solutionI-solution[[i,j]];
solution[[i,j]]=solution[[i,j]]+omg*diff;
error=error+Abs[diff],

{i,2,dim[[1]]+1},{j,2,dim[[2]]+1}]];
Table[solution[[i+1,j+1]],

{i,dim[[1]]},{j,dim[[2]]}]]]; 

By means of this solution routine, we can solve an image governing equation whose source density has been 
obtained by the Laplacian operation to the monochrome image dada “monoSample”. This function is useful code to show
a  practical  over-relaxation  technique  using  9  points  finite  differences,  but  requires  an  extremely  long  CPU  time.  To
overcome  this  difficulty,  we  employ  the  MathLink  utility  connecting  an  externally  exploited  object  file  to  the
Mathematica kernel.

MathematicaMathematicaMathematicaMathematica    functionfunctionfunctionfunction poissonSOR2D poissonSOR2D poissonSOR2D poissonSOR2D

A function “poissonSOR2D” is the faster solving routine utilizing the MathLink utility of Mathematica. The 
function  “poissonSOR2D  has  two  parameters.  One  is  the  source  density.  Also,  the  other  is  a  one-dimensional  list
including  the  desired  number  of  pixels;  the  first  and  second  integers  of  this  list  refer  to  the  number  of  pixels  in  the
directions of x- and y-axes, respectively. 
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poissonSOR2D[source2D_,size_]:= 
Module[{i,j,relax = 1.8,link,in,out,dim,

dx,dy,interP}, 
    dim= Dimensions[source2D];
    dx=(1.*(dim[[2]]-1))/(size[[2]]-1); 
    dy=(1.*(dim[[1]]-1))/(size[[1]]-1);
    interP=ListInterpolation[source2D]; 
    in=Table[interP[i,j],
    {i,1,dim[[1]],dy},{j,1,dim[[2]],dx}];
    link = Install["Sor04.exe"];Pause[0.01];
    out=Sor[in,relax];
    Uninstall[link];
    out]; 

Figure 8 shows a recovered monochrome image whose numerical values are contained in a list “recoverMono”.  
A “Timing” command of Mathematica gives a CPU time used in the computations.

recoverMono=
poissonSOR2D[-source,Dimensions[source]];//Timing827.94 Second, Null <

ListDensityPlot[recoverMono,PlotRange->All,Mesh->False,
Frame->False,PlotLabel->"Fig.8. Recovered image"];

Fig.8. Recovered image

To check up the validity of solution, we print out the maximum difference between the original and recovered 
image data. Consequently, it is revealed that our solution has a good accuracy.

Max[Abs[monoSample-recoverMono]]

4.10691 ´ 10-7

Chapter 2 Monochrome Image Processing.nb 24



2.8  Image resolution

The image governing equation has been successfully solved with good accuracy. This mean when we change a 
number of pixels representing a recovered image then it is possible to change a resolution of the image. 

Using this function “poissonSOR2D”, we produce the two images whose resolutions are lower (100 by 100) and 
higher (150 by 150) than those of the original 128 by 128 image. 

low=poissonSOR2D[-source,{100,100}];//Timing810.75 Second, Null <
high=poissonSOR2D[-source,{150,150}];//Timing845.29 Second, Null <

The left and right in Fig. 9 show the images having 100 by 100 and 150 by 150 resolutions, respectively.

lowG=ListDensityPlot[low,PlotRange->All,Mesh->False,
Frame->False,PlotLabel->"100 by 100 image",
DisplayFunction->Identity];

highG=ListDensityPlot[high,PlotRange->All,Mesh->False,
Frame->False,PlotLabel->"150 by 150 image",
DisplayFunction->Identity];

Show[GraphicsArray[{lowG,highG}],ImageSize->{400,200},
PlotLabel->"Fig.9. Low and high resolution images"];

Fig.9. Low and high resolution images

100 by 100 image 150 by 150 image

Because of the discretization error, the low-resolution image on the left in Fig. 8 includes a little bits of noise. 
However, observation of the images in Fig.8 suggests that the image governing equation makes it possible to reproduce
the images having any resolutions.
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2.9 Illusive image generation

Comparison the source density image in Fig.7 with the shadowed relief images in Fig.5 reveals that the angled 
lighting  images  are  very  similar  to  those  of  source  density.  This  is  because  an  inner  product  operation  between  the
vectors changes the vectors into the scalar quantities. 

Let us try to solve a Poisson's equation for the inner product images in Fig.5 as the source densities, and then we 
draw the images from the obtained solutions.

illusion=Table[poissonSOR2D[-angle[[i]],{128,128}],
{i,rotation}];

Figure 10 shows the images derived from the inner product image data “angle”. Thus, when we regard the inner 
product  image data as the source density,  then the solutions  of  the Poisson's  equation for  these input  source densities
produce  the  illusive  images  emphasizing  the  lighting  effects.  Further,  the  illusive  images  in  Fig.  9  are  smooth  and
beautiful  ones compared with these in Fig.  5.  Solving the Poisson's  equation is  one of  the surface integrations so that
small noisy components are smoothed.

illusionG=Table[ListDensityPlot[illusion[[i]],
PlotRange->All,Mesh->False,Frame->False,
PlotLabel->StringForm["`1`deg.",(i-1)360/rotation],
DisplayFunction->Identity],
{i,rotation}];
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Show[GraphicsArray[
Table[Table[illusionG[[i+j]],{j,0,2}],{i,1,rotation,3}]],
ImageSize->{450,300},PlotLabel->"Fig.10. Illusive images"];

Fig.10. Illusive images

180deg. 240deg. 300deg.

0deg. 60deg. 120deg.

After setting a mouse cursor on a following image, twice clicking the left side button of mouse animates the facial 
changes depending on the lighting angles. This is only effective on the Mathematica notebook.

Do[Show[GraphicsArray[{illusionG[[i]]}]],{i,rotation}];
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2.10 Summary

This chapter has described about the image processing techniques based on the classical field theory. As a result, 
it has been shown that the vectored approach not the simple spatial derivatives leads to the fruitful results. For example,
the  characteristic  vector  distribution  has  been  derived  by  means  of  the  Helmholtz's  theorem.  Simple  magnitude
computation of  the characteristic vectors has yielded the sketch image. Further, an application of vector field nature to
the characteristic vectors of an image has worked out one of the angled lighting images. Namely, we have worked out the
unit  directional  vectors,  and  then  a  set  of  inner  products  between  the  characteristic  and  unit  vectors  has  yielded  the
images as if lighted up from the different directions. 

The other important result of this chapter is that we have derived the static monochrome image governing 
equation.  This  governing equation  is  one  of  the Poisson's  equations,  which is  able  to  produce the different  resolution
images, freely.
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3.1 Introduction

In chapter 2, we have described the basic principle and practical examples of the field theory of computer 
graphics. This chapter extends the basic principles of the field theory to the color graphics images. In the monochrome
images,  we  have  only  a  set  of  numerical  values  representing  an  monochrome  image.  Thereby,  in  order  to  derive  the
image  vectors,  it  is  essential  to  use  the  partial  derivative  operators,  such  as  gradient  and  curl.  However,  in  the  color
graphics  image,  we  have  three  independent  components,  i.e.,  red,  green  and  blue  color  components.  Thereby,  it  is
possible to derive the image vectors without any spatial derivations. The first part of this chapter devotes to describe the
nature and applications of these color image vectors.

In the second part, we describe the image processing techniques to generate the sketch and painted images. Two 
methodologies are considered for a monochrome image generation. One is to utilize a magnitude distribution of the color
image vectors and the other is based on a distribution of the inner products between the unit directional and color image
vectors. Combining the sketches of red, green and blue components generates a sketch image drawn by the color pencils.
Each of the sketch components is generated by means of the characteristic vectors described in chapter 2. Combination of
the painted red, green and blue component also generates a painted color image.

In third part, the high-resolution color images are generated from a low-resolution color image. The image 
governing equations of the red, green and blue components in a color graphic image are independently solved with higher
resolution. Consequently, a composition of the solutions leads to the high-resolution color images. A correlation analysis
between the generated and exact image data reveals that good high-resolution image can be generated by means of the
differential equations.

Finally, similar to that of monochrome image, we generate the two-types of three-dimensional images. One is a 
shadowed lighting color image, and the other is an illusive image. Both images are based on the two-dimensional red,
green  and  blue  color  characteristic  vectors.  The  inner  products  between  the  unit  directional  and  the  color  component
characteristic  vectors  generate  the  shadowed  lighting  images  of  the  red,  green  and  blue  color  components.  The
convolutions between the shadowed and original color component images generate the shadowed lighting color images.
The  solutions  of  image  governing  equation  regarding  each  of  the  shadowed  lighting  color  component  images  as  the
source densities generate the illusive images. Because of the color effects, the impressive three-dimensional images can
be obtained.



3.2 Preparation of Mathematica

à 3.2.1 Mathematica utilities and packages

Before to move on the practical image processing, we have to install the memory conserve utilities and the 
warning message suppress  command.  In  addition,  the “LinearAlgebra`MatrixManipulation”,  “Graphics`PlotField”  and
“Graphics`PlotField3D”  packages  have  to  be  installed.  The  last  one  is  added  in  this  chapter  in  order  to  plot  the
three-dimensional vectors [1]. 

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa utilities utilities utilities utilities  and and and and add-on add-on add-on add-on packages packages packages packages

<<Utilities`MemoryConserve`
$MemoryIncrement=100000;
Off[General::spell1,MemoryConserve::start,MemoryConserve::end];
<< LinearAlgebra`MatrixManipulation ;̀
<<Graphics`PlotField3D ;̀

à 3.2.2 Mathematica functions

Here, we define several functions that have been described and used in the previous chapters. 

FunctionFunctionFunctionFunction  rgbBMP rgbBMP rgbBMP rgbBMP

The function “convertRGB” converts the numerical data representing color image into a RGB form. This makes it 
possible to visualize the color images on the Mathematica notebook. The parameter “colorData” refers to a list including
the numerical values.

rgbBMP@colorFile_ D : =
Module @8i = 0, j = 0, k = 0, dim = 80<, input = 8880. <<<<,
link = Install @"RGBsplit.exe" D; Pause @0.01 D;
input = RGBsplit @colorFile D;
Uninstall @link D;
Off @General::spell1 D;
dim = Dimensions @input D;
Table @input @@i, j, k DD, 8k, 3 <,8i, dim @@1DD<, 8j, dim @@2DD<DD;

FunctionFunctionFunctionFunction  convertRGB convertRGB convertRGB convertRGB

The function “convertRGB” converts the numerical data representing color image into a RGB form. This is used 
to visualize the image on the Mathematica notebook. The parameter “colorData” refers to a list including the numerical
values.
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convertRGB @colorData_ D : =
Module @8i = 0, j = 0, dim = 80<, out <,
dim = Dimensions @colorData D;
Graphics @

RasterArray @
Table @RGBColor @colorData @@1, i, j DD,

colorData @@2, i, j DD, colorData @@3, i, j DDD,8i, dim @@2DD<, 8j, dim @@3DD<DDDD;

FunctionFunctionFunctionFunction  grad2D grad2D grad2D grad2D

The function “grad2D” computes the divergent vectors of a monochrome image. The parameter “data2D” refers 
to a two-dimensional list including the numerical values regarded as the scalar potentials.

grad2D=Compile[{{data2D,_Real,2}},
Module[{i=0,j=0,dim=Dimensions[data2D],

c1={Table[data2D[[1,j]],{j,dim[[2]]}]},
c2=Transpose[{Join[{data2D[[1,1]]},

Table[data2D[[i,1]],{i,dim[[1]]}]]}],
e2D=AppendRows[c2,AppendColumns[c1,data2D]]},

Table[{-0.5(e2D[[i,j]]+e2D[[i+1,j]])+
0.5(e2D[[i,j+1]]+e2D[[i+1,j+1]]),
-0.5(e2D[[i,j]]+e2D[[i,j+1]])+
0.5(e2D[[i+1,j]]+e2D[[i+1,j+1]])},
{i,dim[[1]],1,-1},{j,dim[[2]]}]]];

FunctionFunctionFunctionFunction  curl2D curl2D curl2D curl2D

The “curl2D” function generates the rotational vectors. A parameter “darta2D” refers to a two-dimensional list 
containing one of the vector potential components Both of the functions “grad2D” and “curl2D” are based on the central
finite differences.

curl2D=Compile[{{data2D,_Real,2}},
Module[{i=0,j=0,dim=Dimensions[data2D],

c1={Table[data2D[[1,j]],{j,dim[[2]]}]},
c2=Transpose[{Join[{data2D[[1,1]]},

Table[data2D[[i,1]],{i,dim[[1]]}]]}],
e2D=AppendRows[c2,AppendColumns[c1,data2D]]},

Table[{-0.5(e2D[[i,j]]+e2D[[i,j+1]])+
0.5(e2D[[i+1,j]]+e2D[[i+1,j+1]]),
0.5(e2D[[i,j]]+e2D[[i+1,j]])-
0.5(e2D[[i,j+1]]+e2D[[i+1,j+1]])},

{i,dim[[1]],1,-1},{j,dim[[2]]}]]];

FunctionFunctionFunctionFunction  eigen2DVect eigen2DVect eigen2DVect eigen2DVect

The “eigen2DVect” function is given by a summation of divergent and rotational vectors. The parameter 
“monoSample” is a two-dimensional list regarded as either scalar or one component of vector potentials.

eigen2DVect[monoSample_]:=Module[{out},
out=-grad2D[monoSample]+curl2D[monoSample];out]
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FunctionFunctionFunctionFunction  vectorMag2D vectorMag2D vectorMag2D vectorMag2D

The “vectorMag2D” function computes the magnitudes of the two-dimensional vectors including a list “vector2D”
.

vectorMag2D=Compile[{{vector2D,_Real,3}},
Module[{i=0,j=0,dim=Dimensions[vector2D]},

Sqrt[Table[vector2D[[i,j,1]]̂ 2+vector2D[[i,j,2]]̂ 2,
{i,dim[[1]],1,-1},{j,dim[[2]]}]]]];

FunctionFunctionFunctionFunction  laplace2D laplace2D laplace2D laplace2D

The “laplace2D” function carries out the Laplacian operation to the input data listed in “data2D”. This operation 
is based on the 9 points finite difference formula assuming the zero Dirichlet boundary condition along with an image
enclosing line.

laplace2D=Compile[{{data2D,_Real,2}},
Module[{e2D={{0.}},out={{0.}},dim={0},

max=0.,i=0,j=0,nx=0,ny=0},
dim=Dimensions[data2D];
ny=dim[[1]]+1;nx=dim[[2]]+1;
e2D=Table[0.,{ny+1},{nx+1}];
Do[e2D[[i,j]]=data2D[[i-1,j-1]],

{i,2,ny},{j,2,nx}];
Table[e2D[[i+1,j-1]]+4.*e2D[[i+1,j]]+

e2D[[i+1,j+1]]+4.*e2D[[i,j-1]]-
20.*e2D[[i,j]]+4.*e2D[[i,j+1]]+
e2D[[i-1,j-1]]+4.*e2D[[i-1,j]]+
e2D[[i-1,j+1]],

{i,2,ny},{j,2,nx}]/6.]];

FunctionFunctionFunctionFunction  poissonSOR2D poissonSOR2D poissonSOR2D poissonSOR2D

The “poissonSOR2D” function gives an iterative solution of the Poisson's equation. A discretizing strategy used 
in this code is a 9 point finite difference formula, and an over relaxation method solves a system of linear equations. In
order  to  get  a  solution  as  soon  as  possible,  a  MathLink  utility  is  employed.  A  command  “Pause”  is  essential  for
establishing a reliable linkage between the Mathematica kernel and external object.

The function “poissonSOR2D has two parameters. One is the source density. Also, the other is a one-dimensional 
list including the desired number of pixels; the first and second integers of this list refer to the number of pixels in the
directions of x- and y-axes, respectively. 
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poissonSOR2D[source2D_,size_]:= 
Module[{i,j,relax = 1.8,link,in,out,dim,

dx,dy,interP}, 
    dim= Dimensions[source2D];
    dx=(1.*(dim[[2]]-1))/(size[[2]]-1); 
    dy=(1.*(dim[[1]]-1))/(size[[1]]-1);
    interP=ListInterpolation[source2D]; 
    in=Table[interP[i,j],
    {i,1,dim[[1]],dy},{j,1,dim[[2]],dx}];
    link = Install["Sor04.exe"];Pause[0.01];
    out=Sor[in,relax];
    Uninstall[link];
    out]; 

FunctionFunctionFunctionFunction  imageNormalize imageNormalize imageNormalize imageNormalize

This function “imageNormalize” converts the two-dimensional image data between the values 0 and 1. 

imageNormalize = Compile @88data2D, _Real, 2 <<,
Module @8minimum = Min@data2D D<,Hdata2D - minimumL� Max@data2D - minimumDDD;

FunctionFunctionFunctionFunction  hueColor hueColor hueColor hueColor

The “hueColor” function provides a customized hue color function. This function gives a color pattern only 
depending on an absolute value of “z”. The graphics objects “colorBar10” and “colorBar5” are the color tables.

hueColor[z_]:=Hue[Abs[z],Abs[z],1];
colorBar10=ListDensityPlot[Table[i,{2},{i,0.,1,0.1}],

Frame->False,Mesh->False,AspectRatio->0.1,
ColorFunction->hueColor,DisplayFunction->Identity];

colorBar5=ListDensityPlot[Table[i,{2},{i,0.,1,0.2}],
Frame->False,Mesh->False,AspectRatio->0.1,
ColorFunction->hueColor,DisplayFunction->Identity];

3.3 Sample color image

In this section, we have to input a sample color image. To demonstrate a distribution of color characteristic 
vectors  and  its  applicability  to  a  nondestructive  testing  of  the  concrete  cracks,  we  read  a  color  image  file
“Wall-A-128.bmp” by the function rgbBMP.

sample=rgbBMP["Wall-A-128.bmp"];

After computing a resolution of the input image, we construct its color image.
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dim=Dimensions[sample];
sampleG=Show[convertRGB[sample],

PlotLabel->"Sample color image",
AspectRatio->dim[[2]]/dim[[3]],
DisplayFunction->Identity];

Further we construct the monochrome images of red, green and blue components. Figure 1 shows the input color 
image and its components.

color={"Red","Green","Blue"};
colorCompG=Table[ListDensityPlot[sample[[i]],

PlotRange->All,Mesh->False,Frame->False,
PlotLabel->StringForm["`1`",color[[i]]],
AspectRatio->dim[[2]]/dim[[3]],
DisplayFunction->Identity],{i,3}];

Show[
GraphicsArray[

{{sampleG,colorCompG[[1]]},
{colorCompG[[2]],colorCompG[[3]]}}],

PlotLabel->"Fig.1. Sample and its color components"];

Fig.1. Sample and its color components

Green Blue

Sample color image Red
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3.4 Color characteristic vectors

Color image is always composed of the three-color components depending on a wavelength of light [2]. The 
longest,  middle and shortest  wavelengths are corresponding to the red, green and blue color components, respectively.
Since a classification of the color components is based on this fact, then project the red, green and blue respectively to
the x-, y- and z-axes components of a Cartesian coordinate system yields a set of three-dimensional vectors. This defines
the three-dimensional  color  image characteristic  vectors.  Figure 2  shows the color  characteristic vectors of  the sample
image in Fig. 1.

vectored3D=Flatten[Table[{{j,i,k},(0.1/Sqrt[3.])*
{sample[[1,i,j]],sample[[2,i,j]],sample[[3,i,j]]}},
{i,1,dim[[2]],2},{j,1,dim[[3]],2},{k,1}],2];

ListPlotVectorField3D[vectored3D,
VectorHeads -> True,ColorFunction->hueColor,
PlotLabel->"Fig.2. Color vectors",
BoxRatios -> {1, 1, 0.1},Boxed->False];

Show[GraphicsArray[{colorBar10}],ImageSize->{200,20}]; 

Fig.2. Color vectors

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa function function function function  VectorMag3D VectorMag3D VectorMag3D VectorMag3D

Since each of the vector lengths corresponds to light reflection strength, a comparison between the vector 
distribution and color bar reveals that a light reflection strength of the wall is not uniform but somewhat random nature.
Reader may suppose that this sample concrete wall has several cracks. In order to confirm this, we compute a distribution
of vector magnitudes in Fig. 2 by a following Mathematica function “vectorMag3D”. A parameter “vectorData3D” refers
to the three-dimensional vector data.
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vectorMag3D=Compile[{{vectorData3D,_Real,3}},
Module[{mag={{0.}},max=0.,min=0.,i=0,j=0,dim={0}},

dim=Dimensions[vectorData3D];
mag=Sqrt[Table[vectorData3D[[1,i,j]]̂ 2+

vectorData3D[[2,i,j]]̂ 2+
vectorData3D[[3,i,j]]̂ 2,
{i,dim[[2]]},{j,dim[[3]]}]];

min=Min[mag];max=Max[mag-min];
If[max=!=0.,Return[(mag-min)/max],

Print["Zero vectors !"];
Return[mag]]]];

Using this function, we compute the magnitude of the characteristic vectors in Fig. 1.

vectMag=vectorMag3D[sample];

After that, we construct an image data of the vector magnitude distribution.

vectMagG=ListDensityPlot[vectMag,
PlotRange->All,Mesh->False,Frame->False,
PlotLabel->"Vector magnitude",
DisplayFunction->Identity];

Before simply plotting the vector magnitude image, we classify the vector magnitude distribution into 5 levels by 
their  magnitude,  and  then  we  construct  the  classified  image  data.  Figure  3  shows  the  classified  vector  magnitude
distributions.

nx=5;
vectMagCG=ListDensityPlot[1. Round[nx vectMag]/nx,

PlotRange->All,Mesh->False,Frame->False,
PlotLabel->StringForm["Classified`̀ ",nx],
ColorFunction->hueColor,DisplayFunction->Identity];

Show[GraphicsArray[{vectMagG,vectMagCG}],
PlotLabel->"Fig.3. Vector magnitude distribution",
ImageSize->{400,200}];

Show[GraphicsArray[{colorBar5}],ImageSize->{400,20}]; 

Fig.3. Vector magnitude distribution

Vector magnitude Classified5
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A simple vector magnitude image on the left in Fig. 3 does not extract the cracks clearly, but the blue lines shows 
the cracks in the classified image on the right. To extract the cracks more clearly, we use the other vector property “inner 
product” between the unit directional and characteristic vectors. Defining a following Mathematica function 
“innerPro3D” carries out a three-dimensional inner product computation.

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa function function function function  innerPro3D innerPro3D innerPro3D innerPro3D

innerPro3D=Compile[{{vector3D,_Real,3}},
Module[{ref={0.},vec={0.},dim={0},i=0,j=0},

ref={1.,1.,1.}/Sqrt[3.];
dim=Dimensions[vector3D];
Table[

vec={vector3D[[1,i,j]],vector3D[[2,i,j]],
vector3D[[3,i,j]]};ref.vec,

{i,dim[[2]]},{j,dim[[3]]}]
]];

We compute an inner product distribution between the unit directional and characteristic vectors in Fig. 2 by 
means of this function.

innerPro=innerPro3D[sample];

We construct an image data of the inner products, and then we classify the inner products into 5 levels by the 
magnitude. 

innerProG=ListDensityPlot[innerPro,
PlotRange->All,Mesh->False,Frame->False,
PlotLabel->"Inner products",DisplayFunction->Identity];

Figure 4 shows the inner product distributions. A simple inner product distribution on the left in Fig.4 does not 
extract the cracks but the classified distribution on the right clearly extracts the cracks as the light blue dotted lines.

innerProCG=ListDensityPlot[1. Round[nx innerPro]/nx,
PlotRange->All,Mesh->False,Frame->False,
PlotLabel->StringForm["Classified`̀ ",nx],
ColorFunction->hueColor,DisplayFunction->Identity];

Show[GraphicsArray[{innerProG,innerProCG}],
PlotLabel->"Fig.4. Inner product distribution",
ImageSize->{400,200}];

Show[GraphicsArray[{colorBar5}],ImageSize->{400,20}]; 
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Fig.4. Inner product distribution

Inner products Classified5

Thus, it is obvious that the vectored representation of color image is useful methodology for the nondestructive 
inspections.

3.5 Sketch and painted image generation

As described in chapter 2, the sketch is one of the human art works. However, we have succeeded in work out a 
plausible monochrome sketch by computer graphics with the aid of field theory. 

In this section, we propose the two methodologies to work out the sketch from a color graphics image. Both 
methods are based on the nature of color characteristic vectors. The distributions of the vector magnitude and of the inner
products gives the monochrome images. Observing the left side images in Figs 3 and 4 easily recognizes this. Applying
the method developed to a monochrome image in chapter 2 to these images generates the sketch images.

Before to move on the next computations, we remove the needless memories from the Mathematica front end 
processor and check up the used memories.

Remove["sampleG","colorCompG","vectored3D","vectMag",
"vectMagG","nx","sample","dim"];

Unprotect[In,Out];Clear[In,Out];Protect[In,Out];
Print["Memory: ",Round[N[MemoryInUse[]/1000]],"K Bytes used"];

Memory: 2158K Bytes used

We read in the image file “AF038-256.bmp” by means of the function rgbBMP, and compute the size of a list 
“sample”.

sample=rgbBMP["AF038-256.bmp"];
dim=Dimensions[sample];

Figure 5 shows a sample image.
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Show[convertRGB[sample],PlotLabel->"Fig.5. Color image",
AspectRatio->dim[[2]]/dim[[3]]];

Fig.5. Color image

à 3.5.1 Monochrome sketch

We compute a magnitude distribution of the color characteristic vectors as well as an inner product distribution 
between the unit directional and characteristic vectors of Fig. 5. Further we compute both of the image data.

vectMagG=ListDensityPlot[vectMag=vectorMag3D[sample],
PlotRange->All,Mesh->False,Frame->False,
PlotLabel->"By vector magnitude",
DisplayFunction->Identity];

innerProG=ListDensityPlot[innerPro=innerPro3D[sample],
PlotRange->All,Mesh->False,Frame->False,
PlotLabel->"By inner product",DisplayFunction->Identity];

Figure 6 shows the monochrome images. 
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Show[GraphicsArray[{vectMagG,innerProG}],
ImageSize->{400,200},
PlotLabel->"Fig.6. Monochrome images"];

Fig.6. Monochrome images

By vector magnitude By inner product

At first, we compute the monochrome characteristic vectors to the both images in Fig.6 by the function 
“eigen2Dvect”.  Second,  we  compute  the  magnitude  distributions  of  the  monochrome  characteristic  vectors  by  the
function “vectorMag2D”. Consequently, we compute the image data reversing the black and white mode.

monoMG=ListDensityPlot[1-vectorMag2D[eigen2DVect[vectMag]],
Mesh->False,Frame->False,PlotRange->All,
PlotLabel->"By vector magnitude",
DisplayFunction->Identity];

monoIG=ListDensityPlot[1-vectorMag2D[eigen2DVect[innerPro]],
Mesh->False,Frame->False,PlotRange->All,
PlotLabel->"By inner product",
DisplayFunction->Identity];

Figure 7 shows the monochrome images. 

Show[GraphicsArray[{monoMG,monoIG}],ImageSize->{400,200},
PlotLabel->"Fig.7. Monochrome sketches"];

Fig.7. Monochrome sketches

By vector magnitude By inner product
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Thus, we have succeeded in drawing the monochrome sketch images. Both images on the right and left in Fig.7 
are based on the three-dimensional color as well as two-dimensional monochrome characteristic vector natures.

à 3.5.2 Color sketch

In order to draw a sketch by color pencils, it is essential to use the red, green and blue color components of the 
image shown in Fig. 5. In addition, the monochrome sketches to the red, green and green color components are required.
These processes are carried out by a following computation.

colorSketchData=
Table[1-vectorMag2D[eigen2DVect[sample[[i]]]],{i,dim[[1]]}];

Figure 8 shows the sketches of the red, green and blue components in Fig. 5.

Show[GraphicsArray[
Table[ListDensityPlot[colorSketchData[[i]],

PlotRange->All,Mesh->False,Frame->False,
PlotLabel->StringForm["`̀ ",color[[i]]],
DisplayFunction->Identity],{i,dim[[1]]}]],

PlotLabel->"Fig.8. Components of color sketch",
ImageSize->{450,150}];

Fig.8. Components of color sketch

Red Green Blue

After normalizing the image data in Fig. 8 between the values of  0 and 1, we convert the red, green and blue 
color sketch data into a color image data by means of the function “convertRGB”. Consequently, we can obtain a color
sketch as shown in Fig. 9.
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normalizedCSD=Table[
imageNormalize[colorSketchData[[i]]],{i,dim[[1]]}];

Show[convertRGB[normalizedCSD],
PlotLabel->"Fig.9. Color sketch",
AspectRatio->dim[[2]]/dim[[3]]];

Fig.9. Color sketch

Thus, it is obvious that the field theory makes it possible to draw the monochrome as well as color sketch images.

à 3.5.3 Painted image generation

Sometimes, it is required a painted image as if painted by artist. In order to generate such an image, this section 
describes a simple methodology. A key idea is to emulate a paint touch imaging by classifying the numerical data into a
limited number of gropes depending on their magnitudes. Computer graphics is able to draw any high-resolution images,
but the painted image by artist is essentially composed of a limited number of color components. Thereby, classification
of the numerical data into a limited number of gropes depending on their magnitudes makes it possible to emulate a paint
touch.

At first, we classify the numerical data into 5 gropes depending on their magnitudes.

level=5.;
pSample=Table[Round[level*sample[[i]]]/level,{i,dim[[1]]}];

Figure 10 shows the monochrome images classified into 5 groups. 
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Show[GraphicsArray[
Table[ListDensityPlot[pSample[[i]],

PlotRange->All,Mesh->False,Frame->False,
PlotLabel->StringForm["`̀ ",color[[i]]],
DisplayFunction->Identity],{i,dim[[1]]}]],

PlotLabel->"Fig.10. Components of color painted image",
ImageSize->{450,150}];

Fig.10. Components of color painted image

Red Green Blue

Combination of the red, green and blue components in Fig. 10 yields a painted image as shown in Fig. 11.

Show[convertRGB[pSample],
PlotLabel->"Fig.11. Painted color image",
AspectRatio->dim[[2]]/dim[[3]]];

Fig.11. Painted color image
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3.6 High-resolution image generation

In this section, we generate the high-resolution color images by means of the image governing equation, i.e. a 
Poisson type partial differential equation. 

At  first,  we  read  in  a  low-resolution  color  image.  Second,  we  derive  the  source  densities  of  the  red,  green  and  blue
components composing the low-resolution color image. Third, we solve each of the partial differential equations having
the red, green and blue component source density inputs, independently. Setting the high-resolution conditions generates
the high-resolution red,  green and blue component  images. Finally,  composition of the generated high-resolution color
components gives a high-resolution color image. We generate two high-resolution images from the one low-resolution
image. Recoverability is checked up by the correlation coefficients between the generated and original color image data.

 Before to continue the computation, we remove the needless memories by a following command and check up the 
used memories.

Remove["vectMagG","innerProG","monoMG","monoIG","colorSketchData",
"normalizedCSD","level","pSample"];

Unprotect[In,Out];Clear[In,Out];Protect[In,Out];
Print["Memory: ",Round[N[MemoryInUse[]/1000]],"K Bytes used"];

Memory: 4578K Bytes used

More memories than the previous session were used. This means that the response speed of Mathematica 
front-end processor becomes slow.

In order to obtain the low-resolution source densities, we have to read in a low-resolution color image data 
“AF038-64.bmp” whose image is shown in Fig. 12.
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sampleL=rgbBMP["AF038-64.bmp"];
dim=Dimensions[sampleL];
Show[convertRGB[sampleL],PlotLabel->StringForm[

"Fig.12.Original̀ 1  ̀by ̀ 2`pixles image",dim[[2]],dim[[3]]],
AspectRatio->dim[[2]]/dim[[3]]];

Fig.12.Original64 by 64pixles image

We compute the source densities regarding the red, green and blue components as the scalar potentials. This is 
carried out by means of the function “laplace2D”.

source=-Table[laplace2D[sampleL[[i]]],{i,dim[[1]]}];

We solve the Poison's type partial differential equations to generate the 128 by 128 and 256 by 256 resolution 
images. It must be noted that a large CPU time is required for generating a higher-resolution image. Further, because of
the  numerical  errors,  the  solutions  are essentially  containing  a little  bit  of  errors.  Normalize the  solutions  reduces the
effects of numerical errors.

The first 128 by 128 resolution image data are computed by a following simple command.

sampleH1=Table[imageNormalize[poissonSOR2D[source[[i]],
{128,128}]],{i,dim[[1]]}];

Higher-resolution image generation requires longer CPU time, because higher resolution image generation is 
reduced into solving a larger linear system of equations. must be noted that a high-resolution color image generation by
differential equations essentially requires a relatively large CPU time. A Mathematica command “Timing” used bellow
gives a required CPU time in second.

sampleH2=Table[imageNormalize[poissonSOR2D[source[[i]],
{256,256}]],{i,dim[[1]]}];//Timing81072.03 Second, Null <

The normalized solutions are converted into the RGB color image data, and an original 128 by 128 resolution 
image data “AF-038-128.bmp” is read in a list “sampleH1C”.
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sample1G=Show[convertRGB[sampleH1],PlotLabel->"Generated 128×128",
AspectRatio->dim[[2]]/dim[[3]],DisplayFunction->Identity];

sample1CG=Show[convertRGB[sampleH1C=rgbBMP["AF038-128.bmp"]],
PlotLabel->"Original",AspectRatio->dim[[2]]/dim[[3]],
DisplayFunction->Identity];

sample2G=Show[convertRGB[sampleH2],PlotLabel->"Generated 256×256",
AspectRatio->dim[[2]]/dim[[3]],DisplayFunction->Identity];

sample2CG=Show[convertRGB[sample],PlotLabel->"Original",
AspectRatio->dim[[2]]/dim[[3]],DisplayFunction->Identity];

Figure 13 shows the obtained high-resolution images arranging with their original ones. 

Show[GraphicsArray[{{sample1G,sample1CG},{sample2G,sample2CG}}],
PlotLabel->"Fig.13. Original and generated images",
ImageSize->{450,450}];

Fig.13. Original and generated images

Generated 256×256 Original

Generated 128×128 Original

Obviously, the generated high-resolution images are not so clear than these of original ones. However, their 
correlation coefficients between the generated and original image data are very good values. 
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Mathematica function corRelation

A Mathematica function “corRelation” for computing a correlation coefficient is given as follows. The lists “a” 
and “b” have to contain the real numerical values and be the same order one-dimensional array.

corRelation=Compile[{{a,_Real,1},{b,_Real,1}},
Module[{aa={0.},bb={0.},av=0.,bv=0.},
av=Apply[Plus,a]/Length[a]; bv=Apply[Plus,b]/Length[b];
aa=a-av; bb=b-bv; aa.bb/(Sqrt[aa.aa]*Sqrt[bb.bb])]];

A correlation coefficient between the generated and original 128 by 128 images is given by

corRelation[Flatten[sampleH1C],Flatten[sampleH1]]

0.968677

Similarly, a correlation coefficient between the generated and original 256 by 256 images is given by

corRelation[Flatten[sample],Flatten[sampleH2]]

0.955257

Only the 6.25 percent data quantity has yielded over 95 percent recoverability. Thus, the differential equation 
method is a quite effective tool for generating the high-resolution images.

3.7 Three-dimensional color image generation

In this section, we generate two types of three-dimensional color images. One is the shadowed lighting 
three-dimensional image, and the other is the color illusive image. The principle is similar to that of monochrome ones in
chapter  2.  One  difference  between  the  monochrome and  color  images  is  that  a  monochrome three-dimensional  image
generation process should be repetitively applied to all of the color components red, green and blue.

Before to continue the computations, we remove the needless memories and check up them.

Remove["source","sampleH1","sampleH2","sample1G",
"sampleH1C","sample2G","sample2CG"];

Unprotect[In,Out];Clear[In,Out];Protect[In,Out];
Print["Memory: ",Round[N[MemoryInUse[]/1000]],"K Bytes used"];

Memory: 5096K Bytes used

We define a Mathematica function “colorImage3D”. This function requires the function "eigen"2Dvect" and 
"imageNormalize". The former generates the two-dimensional characteristic vectors in each of the color components, and
the  latter  converts  the  two-dimensional  image  data  into  the  values  between  0  and  1.  The  parameters  "color"  and
"rotation"  are  the  color  image  data  and  the  number  of  lighting  angles,  respectively.  An  output  of  this  function  is  a
four-dimensional  array.  The first,  second,  third  and fourth  indices  in  this  output  array refer  to  the  number of  lighting
angles, color components, y-axis pixels and x-axis pixels, respectively. 
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Mathematica function colorImage3D

The parameter “color” and “rotation” of “colorImage3D” are the list containing color image data and a integer 
giving a number of lighting angle subdivisions.

colorImage3D[color_,rotation_]:=
Module[{view,dim,vector,dummy,sol,i,j,k,p},

view=Table[{Cos[2.Pi i/rotation],Sin[2.Pi i/rotation]},
{i,0,rotation-1}];

dim=Dimensions[color];
vector=Table[eigen2DVect[color[[i]]],{i,dim[[1]]}];
dummy=Table[vector[[p,i,j]].view[[k]],

{k,rotation},{p,dim[[1]]},
{i,dim[[2]],1,-1},{j,dim[[3]]}];

Table[(1-imageNormalize[dummy[[i,j]]])*color[[j]],
{i,rotation},{j,dim[[1]]}]];

Using this function, we compute the shadowed lighting color image data.

rotation=8;
color3D=colorImage3D[sampleL,rotation];//Timing85.93 Second, Null <

Figure 14 show a set of the shadowed lighting images. From the left to right images on the upper in Fig. 14 are 
corresponding to the 0, 45, 90 and 135-degree lighting angles, respectively. Similarly, from the left to right images on the 
lower are corresponding to the 180, 225, 270 and 315-degree lighting angles.

color3DG=Table[Show[convertRGB[color3D[[i]]],
PlotLabel->StringForm["`1  ̀deg.",
(i-1) (360/rotation)],AspectRatio->dim[[2]]/dim[[3]],
DisplayFunction->Identity],{i,rotation}];

Show[GraphicsArray[
Table[Table[color3DG[[i+j]],{j,0,3}],{i,1,rotation,4}]],
ImageSize->{400,200},PlotLabel->"Fig.14. 3D color images"];

Fig.14. 3D color images

180 deg. 225 deg. 270 deg. 315 deg.

0 deg. 45 deg. 90 deg. 135 deg.
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After setting a mouse cursor on a following image, twice clicking the left side button of mouse animates the facial 
changes depending on the lighting angles. This is only effective on the Mathematica notebook.

Do[Show[GraphicsArray[{color3DG[[i]]}]],{i,rotation}];

0 deg.

3.8 Illusive color imaging

In this section, we carry out a color illusive imaging. The principle of the method is similar to those of 
monochrome  illusive  imaging  in  chapter  2.  One  difference  between  the  monochrome  and  color  images  is  that  a
monochrome illusive image generation process should be repetitively applied to all of the color components red, green
and blue.

To improve a Mathematica front-end response speed, we remove the needless memories and check up them.

Remove["color3D","color3DG"];
Unprotect[In,Out];Clear[In,Out];Protect[In,Out];
Print["Memory: ",Round[N[MemoryInUse[]/1000]],"K Bytes used"];

Memory: 5138K Bytes used

We define a Mathematica function “illusion3D”. This function is based on a knowledge obtained in the 
monochrome illusive image generation processes, and requires using the functions “eigen2Dvect” and “poissonSOR2D”. 

Mathematica function illusion3D

The parameter “color” and “rotation” of “illusive3D” are the list containing color image data and a integer giving 
a number of lighting angle subdivisions.
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illusion3D[color_,rotation_]:=
Module[{view,dim,vector,dummy,sol,i,j,k,p},

view=Table[{Cos[2.Pi i/rotation],Sin[2.Pi i/rotation]},
{i,0,rotation-1}];

dim=Dimensions[color];
vector=Table[eigen2DVect[color[[i]]],{i,dim[[1]]}];
dummy=Table[vector[[p,i,j]].view[[k]],

{k,rotation},{p,dim[[1]]},
{i,dim[[2]],1,-1},{j,dim[[3]]}];

sol=Table[poissonSOR2D[-dummy[[i,j]],
{dim[[2]],dim[[3]]}],{i,rotation},{j,dim[[1]]}];

Table[imageNormalize[sol[[i,j]]],{i,rotation},{j,dim[[1]]}]];

Using this function, we compute the illusive image data.

illusive=illusion3D[sampleL,rotation];//Timing847.65 Second, Null <
Figure 15 show a set of illusive images. From the left to right images on the upper in Fig. 15 are corresponding to 

the  0,  45,  90  and  135-degree  lighting  angles,  respectively.  Similarly,  from  the  left  to  right  images  on  the  lower  are
corresponding to the 180, 225, 270 and 315-degree lighting angles.

illusiveG=Table[Show[convertRGB[illusive[[i]]],
PlotLabel->StringForm["`1  ̀deg.",(i-1) (360/rotation)],
AspectRatio->dim[[2]]/dim[[3]],DisplayFunction->Identity],
{i,rotation}];

Show[GraphicsArray[
Table[Table[illusiveG[[i+j]],{j,0,3}],{i,1,rotation,4}]],
ImageSize->{400,200},PlotLabel->"Fig.15. Illusive color images"];

Fig.15. Illusive color images

180 deg. 225 deg. 270 deg. 315 deg.

0 deg. 45 deg. 90 deg. 135 deg.

After setting a mouse cursor on a following image, twice clicking the left side button of mouse animates the facial 
changes depending on the lighting angles. This is only effective on the Mathematica notebook.

Do[Show[GraphicsArray[{illusiveG[[i]]}]],{i,rotation}];
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3.9 Summary

This chapter has described about the color image processing techniques based on the linear vector space as well 
as classical field theory.

Color image data are always composed of the three independent color components, i.e. red, green and blue. This 
is  a  clear  distinction  to  the  monochrome  image  data.  The  color  image  characteristic  vectors  have  been  obtained  by
combining the color image components without any spatial derivatives. Even though an original image could be exactly
recovered  from  its  second  spatial  derivatives,  i.e.  source  density,  the  characteristic  vectors  of  monochrome  image
essentially had to be deduced by means of the spatial derivatives. A deduction of the characteristic vectors without any
vector  operations is  an  extremely significant.  The color image characteristic vectors are corresponding to the reflected
light intensity vectors. This means that the characteristic vectors of color image have a firm physical background, so that
it may become a useful tool for inspection, identification and cognition. In this chapter, we have demonstrated as a tool
of nondestructive testing.

In chapter 2, we described the basic principle and practical examples of the field theory of computer graphics. 
This chapter has extended the basic principles of the field theory to the color graphics images. 

The first part has devoted to describe about the nature and application of this color image vector field.

In the second part, we have described the image processing techniques to generate the sketch and painted images. 
Two methodologies have been taken into account for the monochrome image generation. One has utilized a magnitude
distribution of the color characteristic image vectors, and the other has been based on a distribution of the inner products
between the unit directional and color image vectors. Combination of the sketch data of red, green and blue components
has  generated  a  colored  sketch  image.  Each  of  the  sketch  components  has  been  generated  by  means  of  the
two-dimensional  monochrome  image  characteristic  vectors  described  in  chapter  2.  The  color  painted  image  has  been
obtained by combining the painted image data of the red, green and blue components.

In the third part, the high-resolution color images have been generated from a low-resolution color image. Each 
of  the  governing  equations  concerning  with  the  red,  green  and  blue  components  has  been  independently  solved  with
higher resolution,  and then a combination of  their  solutions has led to  the high-resolution color images.  A correlation
analysis  between  the  generated  and  exact  image  data  has  suggested  that  good  high-resolution  color  images  can  be
generated by the method of differential equations.

Finally, we have generated the two types of three-dimensional color images. One is the shadowed lighting color 
image, and the other is the illusive color image. Because of color, both three-dimensional color images have been more
impressive to that of  three-dimensional monochrome images.

à RRRREEEEFFFFEEEERRRREEEENNNNCCCCEEEESSSS

[1]  Stephen  Wolfram,  The  Mathematica  Book,  3rd  ed.  (Wolfram  Media/Cambridge  University  Press,
1996).

[2] J.D.Jackson, "Classical Electrodynamics 3rd Edition," John Wiley & Sons, New York (1998).
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Chapter 4. Wavelet Image Processing

4.1 Introduction

This chapter introduces the applications of the wavelet transform to the image data. As described in the previous 
chapters, we have three types of image data. The first represents the static monochrome image, the second represents the
color image and the third is the three-dimensional shadowed lighting image. The monochrome image data are housed in
the two-dimensional  arrays.  Also,  the monochrome three-dimensional  shadowed lighting  image data are housed in the
two-dimensional arrays. The color image data are housed in the three two-dimensional arrays, which house the red, green
and blue color components. Similarly, the color three-dimensional shadowed lighting image data are housed in the three
two-dimensional arrays. Thus, it looks like to use the two-dimensional wavelet transform for the image data processing.
However,  consideration  of  the  time  depended  images,  i.e.  animation  image  data,  leads  to  use  the  three-dimensional
wavelet  transform.  The  monochrome  animation  image  data  are  essentially  housed  in  the  three-dimensional  arrays.
Further, the color animation image data have to be housed by the three three-dimensional arrays.

The first section of this chapter describes about the discrete orthogonal wavelet transform, which employ the 
Daubechies, Coifman and Baylkin's base functions. Details of the discrete orthogonal wavelet are not described but the

nth dimensional wavelet transform Mathematica code is described.

The second section describes the monochrome image data compression and expansion by the wavelet transform. 
This  section  is  an  introduction  of  the  wavelet  image  processing.  Also,  this  section  demonstrates  that  Mathematically
remarkable image compression rate is possible by the wavelet transform.

The third section concerns with the color image compression and recovery. It is revealed that the compression 
rate and recoverability depend on the order of base function.

The fourth section proposes one of the orthogonal color image decomposition. In chapter 3, we have projected 
the color image components red, green and blue, to the x-, y-, and z-axes in the Cartesian coordinate, respectively. In this
section,  the  color  image data  are  represented  in  the  spherical  coordinate.  The magnitude of  color  image characteristic
vector  corresponds  to  a  radius.  The  attitude  and  longitude  are  represented  in  terms  of  their  directional  co-sinusoidal
components. In continuation to this section, the fifth section describes about the wavelet compression and recovery to the
color image data represented in terms of the spherical coordinate quantities. The sixth section reveals that the color image
data  compression  rate  by  the  wavelet  transform  depends  on  the  way  of  image  data  representations.  Namely,  higher
recoverability can be achieved by the spherical coordinate representation.

The seventh and final sections are concerning with the expansion of a small number of color animation data to a 
large number of ones by the wavelet transform. This demonstrates that a three-dimensional wavelet transform makes it
possible to increase the number of animation data.



4.2 Preparation of Mathematica

à 4.2.1 Mathematica utilities and packages

Before to move on the practical image processing, we have to install the memory conserve utilities and the 
warning  messages  suppressing  command  for  the  similar  variable  name.  In  addition,  the
“LinearAlgebra`MatrixManipulation” and “Graphics`ContourPlot3D” packages have to be installed.

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa utilities utilities utilities utilities  and and and and add-on add-on add-on add-on packages packages packages packages

<<Utilities`MemoryConserve`
$MemoryIncrement=100000;
Off[General::spell1,MemoryConserve::start,MemoryConserve::end];
<< LinearAlgebra`MatrixManipulation ;̀
<<Graphics`ContourPlot3D ;̀

à 4.2.2 Mathematica functions

Here, we define several functions that have been described and used in the previous chapters. The functions 
“rgbBMP”,  “convertRGB”,  “grad2D”,  “curl2D”,  “eigen2DVect”,  “vectorMag2D”,  “laplace2D”,  “poissonSOR2D”,
“imageNormalize” and “hueColor” have been defined in the previous chapters, so that the comments of such functions
are not described. 

However, the functions “vectorMag3D”, “corRelation”, "colorImage3D" “illusion3D” and “momoryUsed” are 
newly defined in this chapter, so that their comments will be described.

Function rgbBMP

Function convertRGB

Function grad2D

Function curl2D

Function eigen2DVect

Function vectorMag2D

Function laplace2D

Function poissonSOR2D

FunctionFunctionFunctionFunction  imageNormalize imageNormalize imageNormalize imageNormalize
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Function hueColor

Function VectorMag3D

Function corRelation

Function colorImage3D

Function illusion3D

Function memoryUsed

à 4.2.3 Mathematica functions for the discrete wavelet transform

In this Mathematica notebook includes the discrete orthogonal base function of “Daubechies 2-20th”, “Coifman 

6-30th” and “Baylkin 6th-18th”. All of the coefficients are included in the Mathematica notebook, but are not explicitly

described in the text. If you desire to see such coefficients, open the Mathematica notebook.

Wavelets base functions

Wavelets transform matrix

This function gives a wavelet transform matrix with order “n” by “n” using a base function “baseType”. The 
parameter  “n”  must  be  the  integer  and  the  power  of  2.  For  example,  a  4  by  4  wavelet  transform  matrix  using  the

Daubechies 2nd order base function is obtained by “waveletMatrix[4,daub4]”.

waveletMatrix[n_,baseType_]:=
Apply[Dot,Flatten[Table[{pPrime[j,n,baseType],

cPrime[j,n,baseType]},{j,Log[2,n]-
Ceiling[Log[2.,Length[baseType[[2]]]]],1,-1}],
1]].p[n].c[n,baseType];
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Wavelets transform function

This function carries out the wavelet and inverse wavelet transforms to a “n”-th dimensional “data” using a 
transform matrix “wMat”. For example, if we wish to carry out a wavelet transform to a three-dimensional 32 by 32 by
32 array “data” using the base functions “daub2”, “daub4” and “daub8”, then a waveletpectrum “wSpect” is obtained by
the following steps.

1) Create the transform matrices by

wMat={waveletMatrix[32,daub2],waveletMatrix[32,daub4],waveletMatrix[32,daub8]};

2) Carry out a wavelet transform by

wSpect=waveletND[data,wMat,3];

If we wish to carry out an inverse wavelet transform to the waveletpectrum “wSpect”, then it is carried out by the 
following steps.

1) Transpose the transform matrices by

wMatTrans={Transpose[waveletMatrix[32,daub2]],

Transpose[waveletMatrix[32,daub4]],Transpose[waveletMatrix[32,daub8]]};

2) Carry out an inverse transform by

recover=waveletND[data,wMatTrans,3];

waveletND @data_, wMat_, n_ D : =
Block @8s, ww<, s = Join @8n<, Table @i, 8i, n - 1<DD;

ww= Transpose @wMat@@1DD .data, s D ;
Do@ww= Transpose @wMat@@i DD .ww, s D, 8i, 2, n <D ; ww D;

A practical example of the wavelet transform is given bellow. Figure 1 shows an example three-dimensional data 
"data3D".

data3D = Table[x^2+2*y^2+3*z^2,{z,-.875,.875,.25},
{y,-.875,.875,.25},{x,-.875,.875,.25}];
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ListContourPlot3D[data3D,PlotLabel->"Fig.1. Example of 3D data",
 MeshRange -> {{-.875,.875}, {-.875,.875}, {-.875,.875}},
    Contours -> {1.5, 3.},Lighting -> False, Axes -> True,
    ContourStyle -> {{RGBColor[0,1,0]},{RGBColor[1,0,0]}},
    ImageSize->{200,200}];

Fig.1. Example of 3D data
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Using the Daubechies 2nd, 4th and 6th order base functions, we construct the wavelet transform matrix "wMat", 

and then we compute a wavelet spectrum "wSpect". Figure 2 shows the wavelet spectrum.

base={daub2,daub4,daub6};
wMat=Table[waveletMatrix[8,base[[i]]],{i,3}];
wSpect=waveletND[data3D,wMat,3];
ListContourPlot3D[wSpect,PlotLabel->"Fig.2.3D wavelet spectrum",
 MeshRange -> {{-1,1}, {-1,1}, {-1,1}},

MeshRange -> {{-1,1}, {-1,1}, {-1,1}},
Contours -> {1.5, 3.},Lighting -> False, Axes -> True,

    ContourStyle -> {{RGBColor[0,1,0]},{RGBColor[1,0,0]}},
    ImageSize->{200,200}];

Fig.2.3D wavelet spectrum
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To recover the original data, we transpose the wavelet transform matrices, and then carry out an inverse wavelet 
transform.  In  addition,  we  compute  the  maximum  absolute  error  between  the  original  "data3D"  and  recovered
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"recover3D"  data.  Because  of  the  numerical  errors,  the  recovered  data  "recover3D"  are  not  exactly  equivalent  to  the
original ones, but the errors are negligible small values. 

Final commands remove the needless memories and check the used memories. Thereby, it is possible to know that 
the Mathematica front-end uses about 1.7-mega bytes memories

wMatTrans=Table[Transpose[wMat[[i]]],{i,3}];
recover3D=waveletND[wSpect,wMatTrans,3];
Max[Abs[data3D-recover3D]]

2.64464 ´ 10-11

Remove["data3D","base","wMat","wSpect",
"wMatTrans","recover3D"];memoryUsed

1735K Bytes used

4.3 Wavelet image compression and recovery

à 4.3.1 Sample images

In this section, we have to input a sample color image. The 24-bitmap image data file "AF038-128.bmp" is read 
in  a  list  "sample  by  the  function  "rgbBMP".  After  that  we  construct  its  monochrome  image  data  by  computing  a
magnitude distribution of the color image characteristic vectors.

sample=rgbBMP["AF038-128.bmp"];
monoSample=vectorMag3D[sample];

After computing a resolution of the input image by the Mathematica command "Dimensions", we construct its 
color and monochrome image data. Figure 3 shows the 128 by 128 resolution color and monochrome images.
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dim=Dimensions[sample];
sampleG=Show[convertRGB[sample],PlotLabel->"Color image",

AspectRatio->dim[[2]]/dim[[3]],DisplayFunction->Identity];
monoSampleG=ListDensityPlot[monoSample,PlotRange->All,

Mesh->False,Frame->False,PlotLabel->"Monochrome image",
AspectRatio->dim[[2]]/dim[[3]],DisplayFunction->Identity];

Show[GraphicsArray[{sampleG,monoSampleG}],
PlotLabel->"Fig.3. Sample images",ImageSize->{300,150}];

Fig.3. Sample images

Color image Monochrome image

à 4.3.2 Principle of wavelet image compression and recovery

In order to show the wavelet image compression and recovery, we apply a two-dimensional wavelet transform to 
the monochrome image shown on the right in Fig. 3.

At first, we construct the wavelet transform matrices employing the Daubechies 2nd and 4th order base functions. 

Second, we carry out a wavelet transform. Figure 4 shows the obtained wavelet spectrum. Surprisingly, major parts of
this wavelet spectrum are zero, where the zero value is painted in black. Only a small number of elements at the bottom
on the left side take the non-zero values. This means that the small number of non-zero values in Fig. 4 could represent
the major monochrome image data in a wavelet spectrum domain.

base={daub2,daub4};
wMat=Table[waveletMatrix[dim[[2]],base[[i]]],{i,2}];
spect=waveletND[monoSample,wMat,2];
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ListDensityPlot[spect,PlotRange->All,
Mesh->False,Frame->False,AspectRatio->dim[[2]]/dim[[3]],
PlotLabel->"Fig.4. Wavelet spectram"];

Fig.4. Wavelet spectram

According to the result shown in Fig. 4, we take only 25 percent wavelet spectrum into account. Namely, the 
monochrome image data is compressed into the 25 percent data. Apply an inverse wavelet transform to this 25 percent
spectrum  recovers  the  monochrome  image  approximately.  Figure  5  shows  a  recovered  image.  It  is  revealed  that  the
approximately recovered image in Fig. 5 is a poor image. This is because the original 128 by 128 resolution image has
been reduced into a 32 by 32 resolution image.

To evaluate a correlation coefficient between the original and recovered image data, we construct an approximate 
128 by 128 resolution wavelet spectrum. The following steps carry this out.

partSpect=TakeMatrix[spect,{1,1},{dim[[2]]/4,dim[[3]]/4}];
wMatPrimeTrans=Table[Transpose[waveletMatrix[dim[[2]]/4,

base[[i]]]],{i,2}];
recoverPrime=waveletND[partSpect,wMatPrimeTrans,2];
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ListDensityPlot[recoverPrime,PlotRange->All,
Mesh->False,Frame->False,AspectRatio->dim[[2]]/dim[[3]],
PlotLabel->"Fig.5.Compressed image",ImageSize->{200,200}];

Fig.5.Compressed image

At first, we construct a 128 by 128 zero-matrix. Second, the 25 percent wavelet spectrum is embedded into this 
zero-matrix. Thus, we have the approximate 128 by 128 wavelet spectrum. Apply an inverse wavelet transform recovers
a 128 by 128 resolution image data. Figure 6 shows an approximately recovered 128 by 128 resolution image.

spectComp=ZeroMatrix[dim[[2]]];
Do[spectComp[[i,j]]=partSpect[[i,j]],{i,dim[[2]]/4},{j,dim[[3]]/4}];
wMatTrans=Table[Transpose[wMat[[i]]],{i,2}];
recover=waveletND[spectComp,wMatTrans,2];

ListDensityPlot[recover,PlotRange->All,
Mesh->False,Frame->False,AspectRatio->dim[[2]]/dim[[3]],
PlotLabel->"Fig.6. Recovered image",ImageSize->{200,200}];

Fig.6. Recovered image

We compute a correlation coefficient between the image data in Fig. 6 and on the right in Fig. 3. Surprisingly, the 
correlation coefficient is about 0.97.

Thus, from a Mathematical viewpoint, the wavelet transform is capable of compressing the image data.
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corRelation[Flatten[recover],Flatten[monoSample]]

0.968937

At the finishing of this section, we remove the used variables and check the used memories.

Remove["base","wMat","spect","partSpect","wMatPrimeTrans",
"recover"];memoryUsed

2574K Bytes used

à 4.3.3 RGB color image compression and recoverability

The purpose of this section is to examine a nature of wavelet image compression as well as recoverability. The 
nature  of  wavelet  transform may be  classified  into  two  major  categories.  One  is  depended on  a  selection  of  the  base

functions, and the other is the order of  the selected base function. In this section, we employ the Coifman's 6th,  12th,

18th, 24th and 30th order base functions. A target image to be compressed is the color sample shown on the left in Fig. 3.

In order to extract the 25 percent major wavelet spectrum, we construct a filter matrix by the following codes.

filter=ZeroMatrix[dim[[2]]];
Do[filter[[i,j]]=1.,{i,dim[[2]]/4},{j,dim[[3]]}];

The color image data are rearranged to a one-dimensional form for a convenience of a correlation coefficient 
computation.  After  selecting  the  base functions,  we  compute  the  correlation  coefficients  and  approximately  recovered
color image data by the following Mathematica codes.

sampleFl=Flatten[sample];
base={coif6,coif12,coif18,coif24,coif30};

rgbR=Table[ZeroMatrix[dim[[2]],dim[[3]]],{Length[base]},
{dim[[1]]}];

corC=Table[
wMat=waveletMatrix[dim[[2]],base[[i]]];
wMatTrans=Transpose[wMat];
pSpect=Table[filter*waveletND[sample[[j]],{wMat,wMat},2],

{j,dim[[1]]}];
rgbR[[i]]=Table[waveletND[pSpect[[j]],{wMatTrans,wMatTrans},2],

{j,dim[[1]]}];
corRelation[Flatten[rgbR[[i]]],sampleFl],
{i,Length[base]}];

The approximately recovered color image data are normalized to the values between 0 and 1, because the wavelet 
compressed color image data do not always take the values between the 0 and 1.

dummy=rgbR;
rgbR=Table[imageNormalize[dummy[[i,j]]],{i,Length[base]},{j,dim[[1]]}];

Figure 7 shows a relationship between the correlation coefficients and the order of base function. Obviously, 
employment of the higher order base functions yields the higher correlation coefficients.

Before to finishing this section, we remove the needless variables and check the used memories. As a result, it is 
found that a relatively large amount of memories are required to keep the approximately recovered color images.
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rgbG=ListPlot[corC,PlotStyle->RGBColor[1,0,0],PlotRange->All,
PlotJoined->True,PlotLabel->"Fig.7.Recoverbility of Coifman",
AxesLabel->{"×6 order","Cor.Coe."},ImageSize->{450,300}];

Remove["corC","wMat","wMatTrans","pSpect","dummy"];
memoryUsed

2 3 4 5
×6 order

0.98575

0.98625

0.9865

0.98675

0.987

0.98725

Cor.Coe. Fig.7.Recoverbility of Coifman

7589K Bytes used

à 4.3.4 Orthogonal image data decomposing and composing

This section proposes a methodology, which converts a color image data into the spherical coordinate components. 

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa function function function function  colorDecode colorDecode colorDecode colorDecode

The magnitude of color image characteristic vector corresponds to a radius. The attitude and longitude are 
represented in terms of their directional co-sinusoidal components. A following function "colorDecomp" decomposes a
color image data "vector3D" into the spherical coordinate components.

Chapter 4 Wavelet Image Processing.nb 63



colorDecomp=Compile[{{vector3D,_Real,3}},
Module[{vec={0.},out={{{0.}}},dim={0},

vn=0.,i=0,j=0,k=0},
dim=Dimensions[vector3D];
out=Table[

vec=Table[vector3D[[k,i,j]],{k,dim[[1]]}];
vn=Sqrt[vec.vec];
If[vn=!=0.,vec={vn,vec[[1]]/vn,vec[[2]]/vn},

vec={0.,0.,0.}];vec,
{i,dim[[2]]},{j,dim[[3]]}];
Table[out[[i,j,k]],{k,dim[[1]]},{i,dim[[2]]},{j,dim[[3]]}]

]];

Apply this function to the sample color image data yields a set of decomposed results as shown in Fig. 8. It is 
revealed that the color sample image data can be decomposed into a set of quite different quantities instead of the red,
green and blue components. One of the merits of this spherical coordinate representation is that the radius component is
corresponding to the magnitude distribution of color image characteristic vectors, and is a monochrome image.

colorD=colorDecomp[sample];

label={"Mag.","Cos(x)","Cos(y)"};
colorDG=Table[ListDensityPlot[colorD[[i]],

PlotRange->All,Mesh->False,Frame->False,
PlotLabel->StringForm["``",label[[i]]],
DisplayFunction->Identity],{i,3}];

Show[GraphicsArray[colorDG],ImageSize->{450,150},
PlotLabel->"Fig.8.Decomposed images"];

Fig.8.Decomposed images

Mag. CosHxL CosHyL

MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaa function function function function  colorDecode colorDecode colorDecode colorDecode

To draw a color image, we have to convert the decomposed components in Fig. 8 into the original RGB 
components.  This  is  carried  out  by  a  following  Mathematica function  "colorComp".  A  parameter  "colorD"  of  this
function are a three dimensional array housing the color image components in term of the spherical coordinate system.
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colorComp=Compile[{{colorD,_Real,3}},
Module[{r={{0.}},g={{0.}},p={{0.}},out={{{0.}}},

i=0,min=0.,max=0.},
r=colorD[[1]] colorD[[2]];
g=colorD[[1]] colorD[[3]];
p=r^2+g^2;
out={r,g,Sqrt[Abs[colorD[[1]]̂ 2-p]]};
Table[min=Min[out[[i]]];

(out[[i]]-min)/Max[out[[i]]-min],{i,3}]
]];

Using this function, we compose the color image red, green and blue components. Figure 9 shows the recovered 
color, red, green and blue components images. Because of the orthogonal decomposition and composition, the original
color image as well as its components is exactly recovered in Fig. 9.

colorC=colorComp[colorD];

label={"Red","Green","Blue"};
colorCG=Table[ListDensityPlot[colorC[[i]],

PlotRange->All,Mesh->False,Frame->False,
PlotLabel->StringForm["``",label[[i]]],
DisplayFunction->Identity],{i,3}];

composedG=Show[convertRGB[colorC],PlotLabel->"Encoded",
AspectRatio->dim[[2]]/dim[[3]],DisplayFunction->Identity];

Show[GraphicsArray[{{composedG,colorCG[[1]]},
{colorCG[[2]],colorCG[[3]]}}],ImageSize->{300,300},
PlotLabel->"Fig.9. Composed and componets images"];

Fig.9. Composed and componets images
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Before to move on a next section, we remove the needless variables, and check the used memories. In addition to 
the memories required to store the approximately recovered color image data, the decomposed color components in the
spherical coordinate require about 1.1 mega bytes memories.

Remove["colorDG","colorC","label","colorCG","composedG"];
memoryUsed

8617K Bytes used

à 4.3.5 Decomposed Image compression 

This section examines a nature of wavelet image compression as well as recoverability to the decomposed color 
image  components  in  the  spherical  coordinate.  Similar  to  that  of  the  red,  green  and  blue  components  image  data

compression, we employ the Coifman's 6th, 12th, 18th, 24th and 30th order base functions for the wavelet transform. A

target image to be compressed is the image data shown in Fig. 8.

The decomposed color image data are rearranged to a one-dimensional form for a convenience of a correlation 
coefficient  computation.  After  that,  we compute  the  correlation  coefficients  and approximately  recovered  color  image
data by the following Mathematica codes.

dSampleFl=Flatten[colorD];
deCompR=Table[ZeroMatrix[dim[[2]],dim[[3]]],

{Length[base]},{dim[[1]]}];
corC=Table[

wMat=waveletMatrix[dim[[2]],base[[i]]];
wMatTrans=Transpose[wMat];
pSpect=Table[filter*waveletND[colorD[[j]],{wMat,wMat},2],

{j,dim[[1]]}];
deCompR[[i]]=Table[waveletND[pSpect[[j]],

{wMatTrans,wMatTrans},2],{j,dim[[1]]}];
corRelation[Flatten[deCompR[[i]]],dSampleFl],
{i,Length[base]}];

Figure 10 shows a relationship between the correlation coefficients and the order of base function. Similar to those 
of the red, green and blue components image data compression, employment of the higher order base functions yields the
higher correlation coefficients.

Finally, we remove the needless variables and check the used memories.
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deCompG=ListPlot[corC,PlotStyle->RGBColor[0,1,0],
PlotRange->All,PlotJoined->True,ImageSize->{450,300},
PlotLabel->"Fig.10.Decomposed recoverbility of Coifman",
AxesLabel->{"×6 order","Cor.Coe."}];

Remove["corC","wMat","wMatTrans","pSpect"];memoryUsed

2 3 4 5
×6 order

0.9943

0.9944

0.9945

0.9946

0.9947

0.9948

0.9949

Cor.Coe. Fig.10.Decomposed recoverbility of Coifman

12981K Bytes used

Figure 11 shows a comparison between the RGB image and the decomposed image data. The red and green lines 
are corresponding to the RGB and decomposed image data, respectively. From a result shown in Fig. 11, it is clarified
that the color image data compression by the wavelet transform greatly depends on the data arrangement. 

Thus, it is preferable to use the decomposed image data in the spherical coordinate in order to attain a high 
compression rate by the discrete orthogonal wavelet transform.

Before to move on the next section, we remove the variables used for the correlation coefficients, and check the 
used memories.
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Show[rgbG,deCompG,
PlotLabel->"Fig.11.Comparison RGB(red) and decoded(green)",
AxesLabel->{"×6 order","Cor.Coe."},ImageSize->{450,300}];
Remove["rgbG","deCompG"];memoryUsed

2 3 4 5
×6 order

0.986

0.988

0.992

0.994

Cor.Coe. Fig.11.Comparison RGBHredL and decodedHgreenL

12982K Bytes used

à 4.3.6 Recovered image comparison

This section shows the approximately recovered color images. We have two types of the recovered images. One is 
recovered  from  the  conventional  red,  green  and  blue  compressed  components.  The  other  is  recovered  from  the
compressed radius, attitude and longitude components.

Figure 12 shows the recovered color images from the 25 percent compressed image data. Mathematically, the right 
side  images  have  higher  recoverability  than  those  of  right  side  ones,  but  our  human  eyes  could  not  find  out  a  big
difference between them. Hence,  a  small  different  recoverability  between them is  no meaning to us,  but  sometimes, it
becomes a significant difference for the image identification and visualizations.

Because of a great memory requirement of a next section, we remove the used variables and check up the used 
memories.

compR=Table[colorComp[deCompR[[i]]],{i,Length[base]}];
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compeG=Table[{
Show[convertRGB[rgbR[[i]]],

PlotLabel->StringForm["RGB ̀ `order",6*i],
AspectRatio->dim[[2]]/dim[[3]],DisplayFunction->Identity],

Show[convertRGB[compR[[i]]],
PlotLabel->StringForm["Decomposed ̀ `oder",6*i],
AspectRatio->dim[[2]]/dim[[3]],DisplayFunction->Identity]},

{i,1,Length[base],2}];

Show[GraphicsArray[compeG],ImageSize->{300,400},
PlotLabel->"Fig.12. Compressed image by Coifman"];

Remove["compR","deCompR","compeG","rgbR","base"];
memoryUsed

Fig.12. Compressed image by Coifman

RGB 30order Decomposed 30oder

RGB 18order Decomposed 18oder

RGB 6order Decomposed 6oder

3097K Bytes used
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4.4 Dynamic image processing

à 4.4.1 Three-dimensional image sample

Previous sections have carried out the two-dimensional wavelet image compressions. In this section, we carry out 
the three-dimensional wavelet image expansions.

At the beginning, we have to set up the sample images. A 64 by 64 resolution color image is employed as a sample 
image. This sample image data is  read in the Mathematica front-end by a following code. After reading in the sample
image data, we compute its resolution.

sample=rgbBMP["AF038-64.bmp"];
dim=Dimensions[sample];

By means of the inner product in vector fields, we wok out the 8 shadowed lighting images. Figure 13 shows the 
shadowed lighting images. After removing the graphics image data, it is revealed that about 3.4 mega bytes are required
to store the 8 shadowed lighting images.

rotation=8;
color3D=colorImage3D[sample,rotation];

color3DG=Table[Show[convertRGB[color3D[[i]]],
PlotLabel->StringForm["``deg.",360*(i-1)/rotation],
AspectRatio->dim[[2]]/dim[[3]],DisplayFunction->Identity],
{i,rotation}];

Show[GraphicsArray[
Table[Table[color3DG[[i+j]],{j,0,3}],{i,1,rotation,4}]],
ImageSize->{400,200},PlotLabel->"Fig.13. 3D color images"];

Remove["color3DG"];memoryUsed

Fig.13. 3D color images

180deg. 225deg. 270deg. 315deg.

0deg. 45deg. 90deg. 135deg.

6432K Bytes used
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à 4.4.2 Three-dimensional wavelet transform

The sample image shown in Fig. 13 consists of the shadowed images having 8 different lighting directions. Each of 
the samples can be represented by the three two-dimensional image data, so that each of the red, green and blue color
component  data  is  represented  in  a  three-dimensional  image  data.  Thereby,  we  apply  a  three-dimensional  wavelet

transform to each of the color component data. The Daubechies 4th, 16th order base functions are employed.

zcolor3D=Table[color3D[[j,i,k,l]],
{i,dim[[1]]},{j,rotation},{k,dim[[2]]},{l,dim[[3]]}];

dimZ=Dimensions[zcolor3D];
base={daub4,daub16,daub16};
wMat=Table[waveletMatrix[dimZ[[i+1]],base[[i]]],{i,Length[base]}];
zSpect=Table[waveletND[zcolor3D[[i]],wMat,3],{i,dim[[1]]}];

After computing the three-dimensional wavelet spectrum, we work out an approximate wavelet spectrum of the 16 
shadowed lighting image data.  An inverse wavelet  transform generates the expanded 16 shadowed lighting image data
from the 8 ones. These processes are applied to each of the red, green and blue components. 

angle=16;
aSpect=Table[0.,{dim[[1]]},{angle},{dim[[2]]},{dim[[3]]}];
Do[aSpect[[i,j]]=zSpect[[i,j]],{i,dim[[1]]},{j,rotation}];
wMat[[1]]=waveletMatrix[angle,base[[1]]];
wMatTrans=Table[Transpose[wMat[[i]]],{i,Length[base]}];
angleInc=Table[waveletND[aSpect[[i]],wMatTrans,3],{i,dim[[1]]}];
incColor3D=Table[imageNormalize[angleInc[[i,j]]],

{j,angle},{i,dim[[1]]}];

The expanded color image data are converted into the color graphics image ones. Figure 14 shows the expanded 
images. Depending on the lighting angles, the 8 shadowed lighting color images in Fig. 13 are successfully expanded to
the 16 ones by the three-dimensional wavelet transform.

incColor3DG=Table[Show[convertRGB[incColor3D[[i]]],
PlotLabel->StringForm["``deg.",Round[360*(i-1.)/angle]],
AspectRatio->dim[[2]]/dim[[3]],
DisplayFunction->Identity],{i,angle}];
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Show[GraphicsArray[
Table[Table[incColor3DG[[i+j]],{j,0,3}],{i,1,angle,4}]],
ImageSize->{400,400},PlotLabel->"Fig.14. Increased 3D color images"];

Fig.14. Increased 3D color images

270deg. 292deg. 315deg. 338deg.

180deg. 202deg. 225deg. 248deg.

90deg. 112deg. 135deg. 158deg.

0deg. 22deg. 45deg. 68deg.

After setting a mouse cursor on a following image, twice clicking the left side button of mouse animates the facial 
changes depending on the lighting angles. This is only effective on the Mathematica notebook.

Do[Show[GraphicsArray[{incColor3DG[[i]]}]],{i,angle}];
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After removing the needless variables, checking the used memories reveals that a relatively large amount of 
memories are used.

Remove["color3D","zcolor3D","zSpect","incColor3D","incColor3DG"];
memoryUsed

9975K Bytes used

à 4.4.3 Illusive image

Similar to those of the previous section, we work out the 8 illusive color images by means of the function 
"illusion3D". Figure 15 shows the 8 illusive color images.

illusion=illusion3D[sample,rotation];
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illusionG=Table[Show[convertRGB[illusion[[i]]],
PlotLabel->StringForm["``deg.",360*(i-1)/rotation],
AspectRatio->dim[[2]]/dim[[3]],DisplayFunction->Identity],
{i,rotation}];

Show[GraphicsArray[
Table[Table[illusionG[[i+j]],{j,0,3}],{i,1,rotation,4}]],
ImageSize->{400,200},PlotLabel->"Fig.15. Original illusive images"];

Fig.15. Original illusive images

180deg. 225deg. 270deg. 315deg.

0deg. 45deg. 90deg. 135deg.

Similar to that of the shadowed color images, we generate the 16 illusive color image data by the three-dimensional 
wavelet transform.

zillusion=Table[illusion[[j,i,k,l]],
{i,dim[[1]]},{j,rotation},{k,dim[[2]]},{l,dim[[3]]}];

wMat[[1]]=waveletMatrix[rotation,base[[1]]];
zSpect=Table[waveletND[zillusion[[i]],wMat,3],{i,dim[[1]]}];
aSpect=Table[0.,{dim[[1]]},{angle},{dim[[2]]},{dim[[3]]}];
Do[aSpect[[i,j]]=zSpect[[i,j]],{i,dim[[1]]},{j,rotation}];
wMat[[1]]=waveletMatrix[angle,base[[1]]];
wMatTrans=Table[Transpose[wMat[[i]]],{i,Length[base]}];
angleInc=Table[waveletND[aSpect[[i]],wMatTrans,3],{i,dim[[1]]}];
incIllusion=Table[imageNormalize[angleInc[[i,j]]],

{j,angle},{i,dim[[1]]}];

After converting the image data into color graphics one, we can get the 16 illusive color images as shown in Fig. 16.

incIllusionG=Table[Show[convertRGB[incIllusion[[i]]],
PlotLabel->StringForm["``deg.",Round[360*(i-1.)/angle]],
AspectRatio->dim[[2]]/dim[[3]],
DisplayFunction->Identity],{i,angle}];
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Show[GraphicsArray[
Table[Table[incIllusionG[[i+j]],{j,0,3}],{i,1,angle,4}]],
ImageSize->{400,400},PlotLabel->"Fig.16. Increased illusive images"];

Fig.16. Increased illusive images

270deg. 292deg. 315deg. 338deg.

180deg. 202deg. 225deg. 248deg.

90deg. 112deg. 135deg. 158deg.

0deg. 22deg. 45deg. 68deg.

Thus, we have succeeded in expanding the three-dimensional color image by means of the wavelet transform.

After setting a mouse cursor on a following image, twice clicking the left side button of mouse animates the facial 
changes depending on the lighting angles. This is only effective on the Mathematica notebook.

Do[Show[GraphicsArray[{incIllusionG[[i]]}]],{i,angle}];
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4.5 Summary

As shown above, this chapter have clarified that the discrete orthogonal wavelet transform is a quite useful tool 
for image data compression as well as expansion.

This chapter has introduced the applications of the wavelet transform to the image data. The first section of this 
chapter  has  described  about  the  discrete  orthogonal  wavelet  transform,  which  employ  the  Daubechies,  Coifman  and
Baylkin's base functions. The second section has described the monochrome image data compression and expansion by
the  wavelet  transform.  This  section  has  been  an  introduction  of  the  wavelet  image  processing.  Also,  this  section  has
demonstrated that  Mathematically  remarkable  image compression  rate  is  possible  by  the  wavelet  transform.  The third
section has concerned with the color image compression and recovery. It has been revealed that the compression rate and
recoverability depend on the order of base function. The fourth section has proposed one of the orthogonal color image
decomposition. In this section, the color image data have been represented in terms of the spherical coordinate quantities.
The magnitude of color image characteristic vector has corresponded to a radius. The attitude and longitude have been
represented in terms of their  directional  co-sinusoidal components. In continuation to this section, the fifth section has
described  about  the  wavelet  compression  and  recovery  to  the  color  image  data  represented  in  terms  of  the  spherical
coordinate quantities. The sixth section has revealed that the color image data compression rate by the wavelet transform
depends  on  the  way  of  image  data  representations.  Namely,  higher  recoverability  could  be  achieved  by  the  spherical
coordinate representation. The seventh and final sections have concerned with the expansion of a small number of color
animation  data  to  a  large  number of  ones  by  the wavelet  transform.  This  has demonstrated that  the three-dimensional
wavelet transform makes it possible to increase the number of animation data.

Thus, we have confirmed that the wavelet transform along with the vector fields provides not only the simple 
image data compression and expansion tool, but also suggests a higher compression rate possibility, i.e., the image data
represented  in  terms  of  the  spherical  coordinate  components  could  be  compressed  with  higher  recoverability  by  the
wavelet transform. 
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Chapter 5. Eigen Pattern Image Processing

5.1 Introduction

In any physical vector fields, we can find the eigen value and vectors. The eigen value represents the distinct 
physical  system  parameter.  For  example,  the  time  constants  of  the  electrical  resistance,  inductance  and  capacitance
circuits  are  the  inverse  of  eigen  value.  In  the  mechanical  mass  and  spring  systems,  we  have  the  eigen  value,  which
corresponds to a natural resonant frequency of the system.

The target of this chapter is to find the parameter representing the distinct image. Since we have regarded the 
image  data  as  the  scalar  or  one  component  of  the  vector  potentials,  then  we  have  found  and  established  the  new
methodologies for the image processing. In physical system, we have found the eigen value and vectors representing the
intrinsic  characteristics  of  the  system.  This  means  that  the  eigen  value  or  vectors  should  be  found  in  the  computer
graphics.

In classical vector fields, the eigen value or its equivalent has been deduced as a result of the continuous field 
governing  equations.  Fundamental  difference  between  the  classical  field  theory  and  computer  graphics  is  that  the
physical field theory has been established in a continuous space but the computer graphics can be established only in a
discretized  space.  In  the  other  words,  the computer  graphics  has been established in  an  artificial  space.  Thereby,  it  is
difficult to find and define the eigen value of a digital image, exactly. Modern discrete mathematics has revealed that the
approximate eigen values could be computed from the discretized system of equations. In such meaning, it is possible to
find  the  image  eigen  values  from  an  image  governing  system of  equations.  Discretization  of  the  Poisson  type  partial
differential equations can derive the image governing system of equations. When we evaluate the eigen values from such
an image governing system of equations, the smaller and larger eigen values may provide the eigen vectors representing
the smoother and spikier lines as well as surfaces, respectively. The investigations about this are significant, but we do
not discuss about these eigen values.

Principal purpose of this chapter is to derive an eigen pattern not the eigen value. In chapter 4, we have derived 
one of the eigen patterns by the discrete orthogonal wavelet transform. A wavelet spectrum is one of the eigen patterns
derived by a simple linear transform using a square wavelet transform matrix. In the present chapter, we generalize this
linear transform to a nonlinear transform using a rectangular transform matrix. A meaning of the term “nonlinear” is that
an  inverse  transform  using  the  rectangular  transform  matrix  never  recover  an  exact  original  data  but  gives  the  best
approximate data. 

In the first section of this chapter, we describe a key idea deriving an eigen pattern. In the second section, we 
describe  to  the  practical  Mathematica codes  deriving  the  eigen  pattern.  Also,  we  examine  the  nature  of  eigen pattern
employing  several  one-dimensional  image  examples,  which  are  the  time  domain  sinusoidal  waves.  The  third  section
derives an eigen pattern of the monochrome images, where we are demonstrated the angle and resolution independencies
of the image eigen pattern. In addition to this section, the fourth section derives the eigen pattern of color image.

As a result, it is revealed that the image eigen pattern makes it possible to generate any angled and resolution 
images.



5.2 Preparation of Mathematica

à 5.2.1 Mathematica utilities and packages

Before to move on the practical image processing, we have to install the memory conserve utilities and the 
warning messages suppressing. In addition Mathematica utilities，  the “ LinearAlgebra‘MatrixManipulation” package
has to be installed..

<<Utilities`MemoryConserve`
$MemoryIncrement=100000;
Off[General::spell1,MemoryConserve::start,MemoryConserve::end];
<< LinearAlgebra`MatrixManipulation ;̀

à 5.2.2 Mathematica functions

Here, we define several functions that are described and used in the previous chapters. The functions “rgbBMP”, 
“convertRGB”,  “vectorMag3D”,  “corRelation” and “memoryUsed“ have been defined in the previous chapters,  so that
the comments of such functions are not described.

Function rgbBMP

Function convertRGB

Function vectorMag3D

Function corRelation

Function memoryUsed

Function window

Function convert2D

à 5.2.3 Mathematica functions for eigen pattern generation

Principle

Let us consider a vector given by

x={0,1,2,3,3,3,2,1,0};

This vector “x” is composed of the two 0, two 1, two 2 and three 3 elements. Our purpose is to extract the 
number of the elements taking the same absolute value not taking into account the zero elements. In order to achieve this,
we set a resolution to m=3 because we have to count the three kinds of numerical values. After that, we normalize the
vector “x” by
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m= 3;
xn = m* x � Max@Abs@xDD;

In order to extract the three kinds of numerical values from the vector 9th order vector “x”, we construct a 3 by 9 

rectangular transform matrix “c” by

n=9;
c=Table[

If[Sign[xn[[j]]] xn[[j]]==i,p=1./x[[j]],p=0];p,
{i,m},{j,n}];

This matrix “c” can be rewritten in matrix form by

c//MatrixFormikjjjjjj 0 1. 0 0 0 0 0 1. 0
0 0 0.5 0 0 0 0.5 0 0

0 0 0 0.333333 0.333333 0.333333 0 0 0

y{zzzzzz
Using this matrix transform “c”, we can extract the number of non-zero elements from the vector “x” by 

b=c.x82., 2., 3. <
The first, second and third elements in a vector “b” are corresponding to the number of the elements taking the 

numeric values 1, 2 and 3, respectively.

Thus, we have succeeded in extracting the number of non-zero elements from the vector “x”. Here, we define the 
vector “b” as an eigen pattern vector. In order to recover the original vector “x” from the eigen pattern vector “b”, we
construct an inverse matrix by means of a least norm solution sense for an ill posed linear system.

c.Transpose[c]//MatrixFormikjjjjjj 2. 0. 0.

0. 0.5 0.
0. 0. 0.333333

y{zzzzzz
Since all of the elements excepting the diagonal elements are zero, then the row vectors of the transform matrix 

“c” are the independent orthogonal vectors. Thereby, similar to the least norm method, an inverse transform matrix “d” is 
formally obtained by

d=Transpose[c].Inverse[c.Transpose[c]];
%//MatrixFormi

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

0. 0. 0.

0.5 0. 0.

0. 1. 0.
0. 0. 1.

0. 0. 1.
0. 0. 1.

0. 1. 0.

0.5 0. 0.
0. 0. 0.

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
Using this inverse transform matrix “d”, we can recover the original vector “x” by 
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d .b80., 1., 2., 3., 3., 3., 2., 1., 0. <
Thus, the original vector “x” is successfully obtained by means of the inverse transform matrix “d”. In this case, 

the target vector “x” has a 3 level resolution and we have set the 3 level resolution. This leads to a successful recovery
result. However, it is difficult to set up the resolution in accordance with exact one. In such case, we confront to the zero
row vector of the transform matrix, even though these vectors are the independent orthogonal ones. In such a case, it is
difficult to derive an exact inverse transform matrix “d”.

Function eigenMatrix

This function “eigenMatrix” is derived from an input vector “base”. The resulting transform matrix becomes a 

rectangular matrix with the “resolution”th  rows and length of the vector “base”th columns.

eigenMatrix = Compile @88base, _Real, 1 <, 8resolution, _Integer <<,
Module @8p = 0., dataPrime = 80<,

n = Length @base D, i = 0, j = 0<,
dataPrime = Round@resolution * base � Max@Abs@base DDD;

Table @
If @Sign @base @@j DDD *dataPrime @@j DD == i,

p = 1. � base @@j DD, p = 0. D; p,8i, resolution <, 8j, n <DDD;

Function eigenPattern

This function “eigenPattern” derives an eigen pattern directly from an input vector “base”. This functional type 
routine looses a structured process for the eigen pattern extraction, but it is extremely useful routine to handle a large size
base function.

eigenPattern =

Compile @88base, _Real, 1 <, 8resolution, _Integer <<,
Module @8dummy= Abs@base D, out = 80<, i = 0<,
out = Round@resolution *dummy� Max@dummyDD;
Table @Count @out, i D, 8i, resolution <DDD;

Function inverseEigenMatrix

The inverse transform matrix “inverseEigenMatrix” is based on the fact that each of the row vectors in the 
transform  matrix  “eigenMat”  is  an  orthogonal  vector.  The  output  matrix  of  the  Mathematica  function
“inverseEigenMatrix” has a transposed form of the transform matrix “eigenMat”. 

inverseEigenMatrix = Compile @88eigenMat, _Real, 2 <<,
Module @8v = 80. <, d = 880. <<, dim = 80<<,
dim = Dimensions @eigenMat D;
v = Table @eigenMat @@i DD .eigenMat @@i DD, 8i, dim @@1DD<D;
d = ZeroMatrix @dim@@1DDD;
Do@If @v@@i DD =!= 0., d @@i, i DD = 1. � v@@i DDD, 8i, dim @@1DD<D;
Transpose @eigenMat D . dDD;
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Function inverseEigenPattern

This “inverseEigenPattern” routine recovers an original image directly from an eigen pattern along with a base 
function  “base”.  Because  of  the  different  numerical  processes,  this  function  gives  a  recovered  vector  with  a  small
difference compared with those of the function “inverse EigenMatrix”.

inverseEigenPattern =

Compile @88eigen, _Real, 1 <, 8base, _Real, 1 <, 8resolution, _Integer <<,
Module @8out = 880. <<, d = 80. <<,
d = 1. *Round@resolution * base D � resolution;
out = Transpose @Table @d, 8resolution <DD;
out .eigen �Apply @Plus, eigen DDD;

5.3 The nature of eigen patterns

à 5.3.1 One-dimensional image

Sample images

Let us consider the four one-dimensional images in time domain having the different frequencies, time phase and 
waveforms.

resolution=100;
sample1D={Table[Sin[2Pi i/resolution],{i,0,resolution,0.1}],

Table[Sin[6Pi i/resolution],{i,0,resolution,0.1}],
Table[Abs[Sin[2Pi i/resolution]],{i,0,resolution,0.1}],
Table[Cos[2Pi i/resolution],{i,0,resolution,0.1}]};

Figure 1 shows the one-dimensional sample images.

label={"Fig.1(a)","Fig.1(b)","Fig.1(c)","Fig.1(d)"};
sample1DG=Table[ListPlot[sample1D[[i+j]],

PlotRange->All,PlotJoined->True,AxesLabel->{"time","Amp."},
PlotStyle->RGBColor[i,0,j/4],
PlotLabel->StringForm["`1`",label[[i+j]]],
DisplayFunction->Identity],{j,1,4,2},{i,0,1}];
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Show[GraphicsArray[sample1DG],ImageSize->{400,250}];
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Eigen patterns

Let us compute the eigen pattern transform matrices by

eigenMat=Table[eigenMatrix[sample1D[[i]],resolution],{i,4}];

then we evaluate the eigen patterns, which are shown in Fig.2.

eigenPatternM=Table[eigenMat[[i]].sample1D[[i]],{i,4}];
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label={"Fig.2(a)","Fig.2(b)","Fig.2(c)","Fig.2(d)"};
eigenM1DG=Table[ListPlot[eigenPatternM[[i+j]],

PlotRange->All,PlotJoined->True,
AxesLabel->{"Reso.","Amp."},
PlotLabel->StringForm["`1`",label[[i+j]]],
DisplayFunction->Identity],{j,1,4,2},{i,0,1}];

Show[GraphicsArray[eigenM1DG],ImageSize->{400,250}];
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Comparison the original one-dimensional images in Fig.1 and their eigen patterns reveals that all of the eigen 
patterns are the same even though their frequencies, time phase and waveforms are different. To check this, we compute
a correlation coefficient between them.

Table[
corRelation[eigenPatternM[[1]],eigenPatternM[[i]]],

{i,2,4,1}]81., 1., 0.999956 <
Thus, our method has extracted the unique eigen pattern that has a common nature of the sinusoidal waveform.

Inverse transform

The recovering to the original time domain one-dimensional images from the eigen pattern depends on an inverse 
transform matrix. Because of the same eigen pattern, the time domain image is determined by which transform matrix to
be  used for  constructing  the  inverse  transform matrix.  In  this  textbook,  we recover  the sinusoidal  waveform from the
eigen pattern of the co-sinusoidal waveform shown in Fig.1 (d).

At first, we construct the inverse transform matrix based on the transform matrix of the sinusoidal waveform in 
Fig. 1(a).

inverseMat=inverseEigenMatrix[eigenMat[[1]]];

Second, we recover the sinusoidal waveform from the eigen pattern of co-sinusoidal waveform in Fig 2(d). Figure 
3 shows a recovered sinusoidal waveform.
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sinR=inverseMat.eigenPatternM[[4]];
sinRG=ListPlot[sinR,PlotRange->All,PlotJoined->True,

PlotStyle->RGBColor[1,0,0],AxesLabel->{"time","Amp."},
PlotLabel->"Fig.3. Recovered"];
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Amp. Fig.3. Recovered

To check up recoverability, we compute a maximum absolute difference between the original and recovered 
one-dimensional image data.

Max[Abs[sample1D[[1]]-sinR]]

0.0218712

As you can see, about 2 percent error has been occurred by the finite resolution=100 limit. Finally, we remove the 
needless memories and check the used memories. Thereby, it  is  possible to know that the Mathematica front-end uses
about 1.7 mega bytes memories.

Remove["sample1D","sample1DG","label","eigenMat","eigenPatternM",
"eigenM1DG","inverseMat","sinR","sinRG"];

memoryUsed

1706K Bytes used

à 5.3.2 Eigen pattern of a monochrome image

Sample images

This section extracts the eigen patterns of the monochrome images. At first, we have to read in a sample image data 
by

sample=rgbBMP["BF001.bmp"];

After computing an array size and three-dimensional vector magnitude of the sample image, Fig. 4 shows the 
original monochrome sample image.
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dim=Dimensions[sample];
monoSample=vectorMag3D[sample];
ListDensityPlot[monoSample,PlotRange->All,Mesh->False,Frame->False,

PlotLabel->"Fig.4. Original monochrome sample"];

Fig.4. Original monochrome sample

In order to remove an effect of background in Fig. 4, we apply a round shape window to the sample image. 

At first, a window function, we work out a 128 by 128 pixels list “win128” having a window's radius 50.

win128=window[128,128,50];

Convolution between the window and sample image data yields a window operated image. Further, we work out 
the other sample images based on the original  sample in Fig. 4.  Figure 5 shows the monochrome sample images. The
differences among them are the angle and resolutions.

monoSampleW=win128*monoSample;
monoSampleWD={monoSampleW,Transpose[monoSampleW],

Table[monoSampleW[[dim[[2]]-i+1,j]],{i,1,dim[[2]],2},{j,dim[[3]]}],
Table[monoSampleW[[i,dim[[3]]-j+1]],{i,dim[[2]]},{j,1,dim[[3]],2}]};

label={"(a)","(b)","(c)","(d)"};
mSamplewDG=Table[ListDensityPlot[monoSampleWD[[i]],PlotRange->All,

Mesh->False,Frame->False,AspectRatio->dim[[2]]/dim[[3]],
PlotLabel->StringForm["`1`",label[[i]]],
DisplayFunction->Identity],{i,4}];
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Show[GraphicsArray[{{mSamplewDG[[1]],mSamplewDG[[2]]},
{mSamplewDG[[3]],mSamplewDG[[4]]}}],
PlotLabel->"Fig.5. Monochrome images",
ImageSize->{400,400}];

Fig.5. Monochrome images

HcL HdL

HaL HbL

Eigen patterns

In order to extract the eigen patterns of the images in Fig. 5, we set the resolutions of the x- and y-axes to the 
values of 16 and 16, respectively. After rearranging the sample image data into one-dimensional form, we compute their
eigen patterns. Consequently obtained eigen patterns take a one-dimensional form, so that we rearrange the eigen patterns
into a two-dimensional form. Figure 6 shows the eigen patterns of the monochrome image samples in Fig. 5.

xReso=16;
yReso=16;
resolution=xReso*yReso;
eigen2D=Table[eigenPattern[Flatten[monoSampleWD[[i]]],

resolution],{i,4}];

eigen2DG=Table[ListPlot3D[convert2D[eigen2D[[i]],xReso,yReso],
PlotRange->All,Mesh->False,Boxed->False,
PlotLabel->StringForm["`1`",label[[i]]],
DisplayFunction->Identity],{i,4}];
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Show[GraphicsArray[{{eigen2DG[[1]],eigen2DG[[2]]},{eigen2DG[[3]],
eigen2DG[[4]]}}],PlotLabel->"Fig.6. Eigen patterns",
ImageSize->{400,400}];

Fig.6. Eigen patterns
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Even though the sample images in Fig. 5 are the different angled and resolutions, their eigen patterns are similar 
ones.  The  sample  images  having  the  same resolution  take  the  same eigen  pattern  even  if  they  are  angled.  The  lower
resolution sample images take the eigen patterns having smaller maximum amplitude.

The correlation coefficient computations between them suggest that all of the sample images in Fig. 5 are the same 
ones.

Thus, the meaning of the eigen pattern may be understood by every one. Before to continue the next section, we 
remove the needless variables and check the memories used.

Table[corRelation[eigen2D[[1]],eigen2D[[i]]],{i,2,4,1}]81., 0.998162, 0.998309 <
Remove["monoSample","monoSampleW","mSamplewDG","eigen2DG"];
memoryUsed

3414K Bytes used
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Inverse transform

In this section, we generate or recover the monochrome images from the monochrome image eigen patterns in 
Fig.6. Similar to the one-dimensional image recovery, the recovered images are depended on the base image data. The
base image data work as a guideline for which type image will be recovered from the same eigen pattern. We select the
data representing a sample image of Fig. 5(a) as the base image data, after that we recover the monochrome images from
the eigen patterns in Fig. 6(b)-(d). Figure 7 shows the recovered monochrome images formatted by the based image of
Fig. 5(a). As you can see, we have just recovered the same images to the windowed one in Fig. 5(a). 

recover2D=Table[inverseEigenPattern[eigen2D[[i]],
Flatten[monoSampleWD[[1]]],resolution],{i,2,4,1}];

recover2DG=Table[ListDensityPlot[
convert2D[recover2D[[i]],dim[[2]],dim[[3]]],
PlotRange->All,Mesh->False,Frame->False,
PlotLabel->StringForm["`1`",label[[i+1]]],
DisplayFunction->Identity],{i,3}];

Show[GraphicsArray[recover2DG],PlotLabel->"Fig.7. Recovered images",
ImageSize->{450,150}];

Fig.7. Recovered images
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Similar to that of the one-dimensional images, the correlation coefficient computations between the images in Fig. 
5(a)  and in  Fig.  7 suggest  that  all  of  the sample images in Fig.  5 are the same ones.  Finally,  we remove the needless
variables and check the used memories.

Table[corRelation[Flatten[monoSampleWD[[1]]],recover2D[[i]]],{i,3}]80.999997, 0.999997, 0.999997 <
Remove["monoSampleWD","recover2D","recover2DG","eigen2D"];
memoryUsed

2238K Bytes used

à 5.3.3 Eigen pattern of a color image

Sample images

The sample data read in the Mathematica front-end are converted into the color image data format. After that, we 
have a color sample image as shown in Fig. 8.
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Show[convertRGB[sample],AspectRatio->dim[[2]]/dim[[3]],
PlotLabel->"Fig.8. Original color sample"];

Fig.8. Original color sample

To reduce a background effect of the sample image, we employ a simple round shape of window. After window 
operation, we work out the angled and low resolution color image data. Figure 9 shows the color image samples.

sampleW=Table[win128*sample[[i]],{i,dim[[1]]}];
sampleWD={sampleW,Table[Transpose[sampleW[[i]]],{i,dim[[1]]}],

Table[sampleW[[k,dim[[2]]-i+1,j]],
{k,dim[[1]]},{i,1,dim[[2]],2},{j,dim[[3]]}],

Table[sampleW[[k,i,dim[[3]]-j+1]],
{k,dim[[1]]},{i,dim[[2]]},{j,1,dim[[3]],2}]};

samplewDG=Table[Show[convertRGB[sampleWD[[i]]],
AspectRatio->dim[[2]]/dim[[3]],
PlotLabel->StringForm["`1`",label[[i]]],
DisplayFunction->Identity],{i,4}];
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Show[GraphicsArray[{{samplewDG[[1]],samplewDG[[2]]},{samplewDG[[3]],
samplewDG[[4]]}}],PlotLabel->"Fig.9. Color images",
ImageSize->{400,400}];

Fig.9. Color images
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We remove the needless variables, because the computations of color image eigen pattern require an enormous 
memories.  Checking  the  used  memories  reveals  that  our  Mathematica front-end  is  now  using  about  2.5  mega  bytes
memories. Even though a relatively small memory is used, next section may require a virtual memory use.

Remove["sample","sampleW","samplewDG"];
memoryUsed

2462K Bytes used

Eigen patterns

We compute the color image eigen patterns. The red, green and blue color components are not independently 
computed  but  simultaneously  computed.  This  leads  to  a  enormous  memory.  Figure  10  shows  the  color  image  eigen
patterns. Surprisingly, all of the color images in Fig. 9 take the similar eigen patterns, even if their images are the angled
and low-resolution ones.

eigen3D=Table[eigenPattern[Flatten[sampleWD[[i]]],
resolution],{i,4}];
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eigen3DG=Table[ListPlot3D[convert2D[eigen3D[[i]],xReso,yReso],
PlotRange->All,Mesh->False,Boxed->False,
PlotLabel->StringForm["`1`",label[[i]]],
DisplayFunction->Identity],{i,4}];

Show[GraphicsArray[{{eigen3DG[[1]],eigen3DG[[2]]},{eigen3DG[[3]],
eigen3DG[[4]]}}],PlotLabel->"Fig.10. Eigen patterns",
ImageSize->{400,400}];

Fig.10. Eigen patterns
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Similar to that of monochrome images, the sample images having the same resolution take the same eigen pattern 
even if they are angled. The lower resolution sample images take the eigen patterns having smaller maximum amplitude.
However, computation of the correlation coefficients between them reveals that all of the sample images in Fig. 9 are the
same ones.

Before to move on the next computations, we remove the needless variables and check the used memories.

Table[corRelation[eigen3D[[1]],eigen3D[[i]]],{i,2,4,1}]81., 0.999644, 0.999782 <
Remove["eigen3DG","win128"];
memoryUsed

2462K Bytes used

Chapter 5 Eigen Pattern Image Processing.nb 92



Inverse transform

We generate or recover the color images from the color image eigen patterns in Fig.10. Similar to the 
one-dimensional  and  monochrome  image  recovery,  the  recovered  images  are  depended  on  the  base  image  data.  Also
described  in  the  monochrome  image  recovery  from their  eigen  patterns,  the  base  image  data  work  as  a  guideline  for
which type image will be recovered from the same eigen pattern. We select the data representing a sample image of Fig.
9(a) as the base image data. And then we recover the color images from the eigen patterns in Fig. 10(b)-(d). Figure 11
shows the recovered color images formatted by the base image in Fig. 9(a). 

recover3D=Table[inverseEigenPattern[eigen3D[[i]],
Flatten[sampleWD[[1]]],resolution],{i,2,4,1}];

k=dim[[2]]*dim[[3]];
recoverC=Table[Take[recover3D[[i]],{k*(j-1)+1,k*j}],

{i,3},{j,dim[[1]]}];
color2D=Table[convert2D[recoverC[[i,j]],dim[[2]],dim[[3]]],

{i,3},{j,dim[[1]]}];

recover3DG=Table[Show[convertRGB[color2D[[i]]],
PlotLabel->StringForm["`1`",label[[i+1]]],
AspectRatio->dim[[2]]/dim[[3]],
DisplayFunction->Identity],{i,3}];

Show[GraphicsArray[recover3DG],PlotLabel->"Fig.11. Recovered images",
ImageSize->{450,150}];

Fig.11. Recovered images
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Computation of the correlation coefficients between the images in Fig. 9(a) and in Fig. 11 suggests that all of the 
sample images in Fig. 9 are the same ones. Finally, we remove the needless variables and check the used memories.

Table[corRelation[Flatten[sampleWD[[1]]],recover3D[[i]]],{i,3}]80.999998, 0.999998, 0.999998 <
memoryUsed

4028K Bytes used
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5.4 Summary

In this chapter, we have discussed about the image eigen pattern not the eigen values. Derivation of the eigen 
patterns  has  been based  on  the  nonlinear  transformation  employing  a  rectangular  transform matrix.  Depending on  the
image as well as resolution, even if the transform matrix is a rectangular, we have successfully recovered the images from
their eigen patterns. The wavelet transform has extracted one of the eigen patterns. The wavelet spectrum of an image has
extracted the characteristics of the image but not extracted the common characteristics of among the images. On the other
side,  the method described in  this chapter  has been able to extract  the common characteristics among the images. We
have defined the eigen pattern representing the common image characteristics. According to this definition, it has been
demonstrated  that  any  angled  and  low-resolution  images  have  the  same  eigen  pattern  as  long  as  the  angled  and
low-resolution images visualize the same object. In the other words, when keeping the distinct eigen pattern of an image,
we can identify the image from the others. This means that the image eigen pattern defined above may have an enormous
applications for the image identification, cognition and visualization 

In the first section of this chapter, we have described a key idea deriving an eigen pattern. In the second section, 
we have described to the practical Mathematica codes deriving the eigen pattern. Also, we have examined the nature of
eigen  pattern  employing  several  one-dimensional  image  examples,  which  are  the  time  domain  sinusoidal  waves.  The
third  section  has  derived  an  eigen  pattern  of  the  monochrome  images.  This  has  verified  the  angle  and  resolution
independencies of the image eigen pattern. In addition to this section, the fourth section has derived the eigen pattern of
color images, and recovered the original images from their eigen patterns.

à RRRREEEEFFFFEEEERRRREEEENNNNCCCCEEEESSSS

[1]  Stephen  Wolfram,  The  Mathematica  Book,  3rd  ed.  (Wolfram  Media/Cambridge  University  Press,
1996).

[2] J.D.Jackson, "Classical Electrodynamics 3rd Edition," John Wiley & Sons, New York (1998).
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Chapter 6. Image Identification in Real 
Domain

6.1 Introduction

In the previous chapters, we described to the basic tools, sketch generation, three-dimensional angled lighting 
image generation, image governing equation, illusive image generation, wavelet image processing and eigen pattern of
the computer graphics images based on the classical field theory. The image identification is one of the most important
applications of  the computer graphics, because it leads to work out the artificial human eyes. When we can realize the
capability  of  human  eyes  information  processing  by  computers,  the  most  of  the  works  requiring  the  information
processing of the human eyes can be replaced by the computers equipped CCD. As is well known, our human society is
composed of the cooperated works to maintain the social system, consuming products and peacekeeping. Many of them
are relayed on the information processing ability of human eyes. Thus, one of the final targets of this book is aimed to
construct a frame part of the artificial human eyes.

In this chapter, we try to identify the particular images in a large number of database images by means of the 
three different approaches. The first is a conventional correlation analysis. The other approaches are based on the inverse
analysis  methodologies.  The  inverse  analysis  is  essentially  reduced  into  solving  for  the  ill  posed  linear  system  of
equations.  An  inverse  solution  method  yields  a  solution  vector.  In  this  solution  vector,  it  is  assumed  that  the  most
dominant  or  positive  maximum element  in  the solution vector  identifies  a  particular  image.   Also,  a  weighted sum of
entire images generates a synthesized image, while the weights are the elements of solution vector. We employ the two
inverse solution methodologies. One is a conventional least squares and the other is an iterative method so called vector
generalized  sampled  pattern  matching  (vector  GSPM  in  short).  A  difference  between  them  is  that  the  former  always
requires an inverse matrix but latter never require the inverse matrix.  This means that the least squares can be applied
only the limited cases, where a least squares projective operator is successfully evaluated, but the vector GSPM can be
universally applicable to any types of ill posed system matrix. 

The image identifications are carried out in the four different domains. The first is a real domain, the second is a 
Fourier  spectrum  domain,  the  third  is  a  wavelet  spectrum  domain,  and  the  fourth  is  an  eigen  pattern  domain.  In  the
Fourier spectrum domain, we carry out the image identifications using the absolute values of Fourier spectra in order to
remove the spatial phase differences among the test and database images.

The solutions of ill posed system of equations are generally depending on a system structure and not uniquely 
evaluated. In the other words, a typical ill posed system of equations is that a number of equations is less or larger than
those  of  the  unknowns.  This  means  that  the  former  and  latter  have  the  infinitely  large  number  of  solutions  and  no
solution exactly satisfying the entire equations, respectively. In most of the image identification problems, the number of
equations  and  unknowns  are  corresponding  to  the  number  of  equations  and  the  database  images.  Thereby,  the  image
identification  problem  is  reduced  into  solving  for  an  ill  posed  problem,  which  is  composed  of  the  larger  number  of
equations  than  those  of  the  unknowns.  In  such  an  ill  posed  system,  it  is  difficult  to  evaluate  the  solution  exactly
satisfying  the  all  equations.  Thus,  least  square  is  one  of  the  well-established  methodologies.  Even  though,  the  least
squares are well-established methodology, it requires, in essence, computing an inverse matrix. Because of too ill posed
system matrix, we sometimes confront a singular matrix. In order to overcome this difficulty, we introduce an iterative
solution technique so called "vector GSPM". This iterative solution strategy is described in detail in this chapter.



6.2 Preparation of Mathematica

à 6.2.1 Mathematica utilities and packages

Before to move on the practical computations, we have to install the memory conserve utilities and the warning 
messages suppressing.  In  addition  Mathematica utilities，  the “ LinearAlgebra‘MatrixManipulation”  package has  to
be installed [1].

<<Utilities`MemoryConserve`
$MemoryIncrement=100000;
Off[General::spell1,MemoryConserve::start,MemoryConserve::end];
<< LinearAlgebra`MatrixManipulation ;̀

à 6.2.2 Mathematica functions

Here, we define several functions that are described and used in the previous chapters. The functions 
“convertRGB”,  “corRelation”,  "imageNormalize",  “memoryUsed“,  "wavelet  base  functions",  "waveletMatrix",
waveletND" and "eigenPattern" have been defined in the previous chapters, so that the comments of such functions are
not described.

Function convertRGB

Function window

Function corRelation

Function imageNormalize

Function memoryUsed

Wavelet base functions

Function waveletMatrix

Function waveletND

Function eigenPattern

96 Chapter 6 Image Identifications.nb



6.3 Graphics image system of equations

à 6.3.1 Input vector

Let us consider a test color image  Iń n with n by n resolution:

Iń n e fr Hxi, yjL, fgHxi, yjL, fbHxi, yjL
i=1,2,.,n, j=1,2,.,n (1)

where the functions fr , fg, fb  refer to the red, green and blue components;  xi,  yj  denote the on x-axis and  on y-axis
locations of  a pixel, respectively.

Arranging the pixels of image Iń n into a column-wise form gives an input vector Y with -th order as

Y = @ fr Hx1, y1L, fr Hx2, y2L, . , fr Hxn, y1L, fr Hx1, y2L, fr Hx2, y2L, . ,

fr Hxn, y2L, . , fr Hxn-1, ynL, fr Hxn, ynL,
         fgHx1, y1L, fgHx2, y2L, . , fgHxn, y1L, fgHx1, y2L, fgHx2, y2L, . ,

         fgHxn, y2L, . , fgHxn-1, ynL, fgHxn, ynL,
         fbHx1, y1L, fbHx2, y2L, . , fbHxn, y1L, fbHx1, y2L, fbHx2, y2L, . ,

         fbHxn, y2L, . , fgHxn-1, ynL, fgHxn, ynLDT (2)

à 6.3.2 . System matrix

Let us assume the p-th  m by m database images:

CHkL
ḿ m e gHkL

r Hxi, yjL, gHkL
gHxi, yjL, gHkL

bHxi, yjL
i=1,2,.,m, j=1,2,.,m, k=1,2,.,p, (3)

where the functions gHkL
r , g

HkL
g, gHkL

b refer to the red, green and blue components of the  database image, respectively.

By means of the wavelet transform, the database images with m by m resolution are reduced into the images with 
n by n resolution as same as the test image  one. Denoting the database images with n by n resolution by

CHkL
n´n e gHkL

r Hxi, yjL, gHkL
gHxi, yjL, gHkL

bHxi, yjL
i=1,2,.,n, j=1,2,.,n, k=1,2,.,p, (3)

 k-th vector of a system matrix is given by

dHkL = @gr Hx1, y1L, gr Hx2, y2L, . , gr Hxn, y1L, gr Hx1, y2L, gr Hx2, y2L, . ,

gr Hxn, y2L, . , gr Hxn-1, ynL, gr Hxn, ynL,
         ggHx1, y1L, ggHx2, y2L, . , ggHxn, y1L, ggHx1, y2L, ggHx2, y2L, . ,

         ggHxn, y2L, . , ggHxn-1, ynL, ggHxn, ynL,
         gbHx1, y1L, gbHx2, y2L, . , gbHxn, y1L, gbHx1, y2L, gbHx2, y2L, . ,

         gbHxn, y2L, . , ggHxn-1, ynL, ggHxn, ynLDT (4)

Thus, a system matrix with 3×n×n -th rows and p-th columns is given by

D = @dH1L, dH2L, . , dHpLD. (5)
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à 6.3.3 System of equations

Denoting a solution vector X with order p, a system of graphics image equations is formally written by

Y=DX. (6)

à 6.3.4 Least squares

In most case, the number of equations  is much greater than those of unknowns p, so that it is possible to apply a 
conventional least squares mean to Eq. (6) [2]:

X = @DT DD-1 DT Y (7)

By considering the input vector Y in Eq. (6) and the column vector d in Eq. (5), it is revealed that the elements in 
the  solution  vector  X  are  the  weights   wi(i=1,2,  .  ,p)  to  the  database  images.  This  means  a  sythersized  image   S is
composed of

S=Úi=1
p wi  Ci, (8)

where Ci is the database image.

When w1 = 1and the other weights are zero in Eq.(8), then it is obvious that the test image is the same to the first 
database image .  In  the  other  words,  the test  image is  identified  as  the first  database image.  A Mathematica function
"leastSQ" gives a least squares solution.

Mathematica function leastSQ

This function "leastSQ" gives a least squares solution of the ill posed system. In order to use this function, it is 
essental that a number of equations is larger than those of unknows, and a product between the transpose of system and
original system matrices should be a positive definite square matrix. The parameters "systemMat" and "vector" are the
system matrix and input vector, respectively.

leastSQ = Compile @88systemMat, _Real, 2 <, 8vector, _Real, 1 <<,
Module @8tMat = 880. <<, matP = 880. <<<,
tMat = Transpose @systemMat D;
matP = Inverse @tMat .systemMat D;
matP. tMat .vector DD;

à 6.3.5 Vector generalized sampled pattern matching method

The product between the transpose of system DT and original system D matrices sometimes not becomes to be a 
positive  definite  square  matrix.  In  such  a  case,  it  is  difficult  to  apply  the  least  squares  to  Eq.  (6).  To  overcome this
difficulity, we describe here an iterative solution method called "vector GSPM".

Normalized system of equations

Eq. (6) can be rewritten by

Y=Úi=1
p  xi  di ,

X = @x1, x2, .H, xLpDT. (9)
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Further modification to Eq. (9) becomes

Y��������ÈYÈ = ã
i=1

p

 
ÈdiÈ��������ÈYÈ  di��������ÈdiÈ , or Y '=D'X' (10)

Eq. (3) means that the normalized input vector Y' is always given by a linear combination of the weighted 
solutions  with normalized column vectors d1������������Èd1È , d2�����������Èd2È ,., dp������������ÈdpÈ .
Objective function

Eq. (2) means that the input vector Y is always given by means of a linear combination of the column vector Ci 

(i=1,2,.,m). Therefore, when an angle between the input vectors of Y and of CX(k) given in terms of the k-th iterative 

solution X(k) is defined by

hHXHkLL =
Y�������ÈYÈ  DX HkL

����������������ÈDX HkLÈ
=

Y�������ÈYÈ  ÈYÈ�������ÈYÈ  DX HkL
����������������ÈDX HkLÈ =

Y�������ÈYÈ â
i=1

p
 xi

HkL Èdi Èdi���������������ÈYÈÈdi È������������������������������������Éâ
i=1

p
 xi

HkL Èdi Èdi���������������ÈYÈÈdi È É
=Y '

D' X ' HkL��������������������ÈD'  X ' HkLÈ , (11)

then

hHXHkLL ® 1, (12)

means that the solution vector X'HkL satisfies the Eq. (10), i.e.,

Y' = D' X'HkL. (13)

When an initial solution vector X' (0) is given by

X 'H0L = D'T Y ', (14)

then the first deviation to the normalized input vector Y ' becomes 

DY'H1L=Y'-
D' X 'H0L������������������ÈD' X 'H0LÈ , (15)

By means of Eqs.(13) and (14), the k-th iterative solution vector X'HkL is given by

X'HkL = X'Hk-1L + D'TDY' Hk-1L
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=X' Hk-1L + D'T[Y '-
D' X 'Hk-1L

����������������������ÈD' X 'Hk-1LÈ ]
= D'T Y' +AI p -

D' X 'Hk-1L
����������������������ÈD' X 'Hk-1LÈ E X'

Hk-1L
(16)

Convergence condition

Convergence of the iterative scheme Eq. (16) should be examined by considering a state transition matrix S from 

the solution vectors X(k-1) to X(k) in Eq. (16): 

T = Ip -
D' X 'Hk-1L

����������������������ÈD' X 'Hk-1LÈ . (17)

When the maximum eigen value of T is less than 1, then the solution is always converged to an exact solution vector.
However, the state transition matrix T in Eq. (10) is not a constant but function of the solution vector . This means that

the convergence depends on the solution vector X(k). As is well known the eigen values of a unit square matrix are the

multiple roots of 1. The convergence condition of our problem is described byÈI p È ³ ÈT È,ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Ip

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ³ Ip -
D' X 'Hk-1L

����������������������ÈD' X 'Hk-1LÈ
or

ÈD' X'Hk-1L ÈÈ Ip È ³ È D'  X' Hk-1L ÈÈ I p - D'T  D' È . (18)

In Eq . H18L, all of the diagonal elements in the matrixD'T D' are 1, and the other off-diagonal elements of this 
matrix  are always less than 1.  Thereby, the convergence condition  is  always held.  This  means that  Eq. (16)  gives an
absolutely stable iterative solution. A following Mathematica function "vectorGSPM" gives this iterative solution [3,4].

Mathematica function vectorGSPM

The parameters of this functions are as follows:

systemMatrix: arbitraly rectangular n by m system matrix,

inputVector: input vector with order n,

iteration: maximum number of iterations, 

if this is zero or negative integer, the maximum number of iterations is set to m.

The output of this function is given in terms of one-dimensional array, which is composed of two parts. The first 
header part is the solution vector and remaining last part is the pattern matching figures.
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vectorGSPM=
Compile[{{systemMatrix,_Real,2},{inputVector,_Real,1},

{iteration,_Integer}},
Module[{m=Length[systemMatrix[[1]]],defaultIteration=10 m,

innerProduct=N[{}],outputVector={0.},dummy={0.},
systemMatrixPrime={{0.}},normalizedInput={0.},
transposedSystemPrime={{0.}},columnNorm={0.}},

normalizedInput=
inputVector/Sqrt[inputVector.inputVector];

transposedSystemPrime=Transpose[systemMatrix];
columnNorm=Table[Sqrt[transposedSystemPrime[[i]].

transposedSystemPrime[[i]]],{i,m}];
If[iteration>0, defaultIteration=iteration];
transposedSystemPrime=

Table[transposedSystemPrime[[i]]/columnNorm[[i]],{i,m}];
systemMatrixPrime=Transpose[transposedSystemPrime];
outputVector=transposedSystemPrime.normalizedInput;

Do[dummy=((dummy=systemMatrixPrime.outputVector)/
Sqrt[dummy.dummy]);

innerProduct=Join[innerProduct,{normalizedInput.dummy}];
outputVector=outputVector+transposedSystemPrime.

(normalizedInput-dummy),
{defaultIteration}];

dummy=systemMatrixPrime.outputVector;

If[Abs[Max[dummy]-Min[dummy]]<2.22044604925031308 10^-16,
Print["Solution has no pattern !"]];

Join[(Sqrt[inputVector.inputVector]/Sqrt[dummy.dummy])*
outputVector/columnNorm,innerProduct]

]];

6.4 Modeling

à 6.4.1 Test image

We read in the test image data from a data file "testRGB10.m".

test=<<"imageTST10.m";//Timing86.16 Second, Null <
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After checking a size of read image data “testRGB10.m”, Fig 1 shows the test images, which are identified from 
the 63 database images in Fig. 2 below.

dimT=Dimensions[test];
testG=Table[Show[convertRGB[test[[i]]],

AspectRatio->dimT[[3]]/dimT[[4]],
PlotLabel->StringForm["T`1`",i],
DisplayFunction->Identity],{i,dimT[[1]]}];

Show[GraphicsArray[Table[Table[testG[[i+j]],{j,0,4}],{i,1,dimT[[1]]-4,5}]],
PlotLabel->"Fig.1. Test images",
ImageSize->{85*5,90*2}];

Fig.1. Test images

T6 T7 T8 T9 T10

T1 T2 T3 T4 T5

à 6.4.2 Database images

Original database image

In this section, we read in the database images. Each of the database images is composed of the 128 by 128 
pixels, and is not a distinct image but overlapped images.

dataBase = << "imageDB63.m"; �� Timing8126.71 Second, Null <
dimDB=Dimensions[dataBase]863, 3, 128, 128 <

Resolution adjustment of the database image

The reolution of the test images in Fig.1 is 64 by 64 pixels, so that the resolution of the database is higher than 
those of test ones. In order to set up the same resolution database images to the test ones, we construct the low-resolution
database images by a simple 2 by 2 pixels averaging.

dbColor= Table[0.25*(dataBase[[i,j,k,l]]+dataBase[[i,j,k+1,l]]+
dataBase[[i,j,k,l+1]]+dataBase[[i,j,k+1,l+1]]),
{i,dimDB[[1]]},{j,dimDB[[2]]},{k,1,dimDB[[3]],2},{l,1,dimDB[[4]],2}];
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We compute the image data of the modified database.

dbColorG = Table[Show[convertRGB[dbColor[[i]]], 
AspectRatio->Automatic,DisplayFunction->Identity, 
PlotLabel->StringForm["DB`1`",i]],{i,dimDB[[1]]}]; 

Figure 2 shows the modified 63 database images. Our problem is to find an each of the test images in Fig. 1 from 
these database images.
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Show@GraphicsArray @Table @Table @dbColorG @@i + j DD, 8j, 0, 6 <D,8i, 1, dimDB @@1DD - 6, 7 <DD, ImageSize -> 864 *7, 64 *8<,
PlotLabel -> "Fig.2. Modified database images" D;

memoryUsed

Fig.2. Modified database images
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14682K Bytes used
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6.5 Image identification in real domain

In this section, we search for the image containing the same as those of test from the database images in Fig. 2. 
At  first,  we  compute  the  correlation  coefficients  between  the  test  and  database  images.  The  maximum  correlation
coefficient reveals the identified image. Second and third approaches are the inverse solution strategies. This means that
we set up the image system of equations, and then we solve them by the least squares and vector GSPM means. Both
approaches provide the solution vectors. Taking the maximum element in the solution vector gives an identified image.
Further, combination of the solution vector and database images generates the synthesized images. 

à 6.5.1 Correlation analysys

Data arrangement

In order to compute the correlation coefficients between the test and database images, we rearrange the image 
data in column-wise form.

baseMat=Table[Flatten[dbColor[[i]]],{i,dimDB[[1]]}];
testV=Table[Flatten[test[[i]]],{i,dimT[[1]]}];

Correlation coefficients

Compute the correlation coefficients between the test and database image data.

corCoe=Table[corRelation[baseMat[[i]],testV[[j]]],
{j,dimT[[1]]},{i,dimDB[[1]]}];

Taking the maximum correlation coefficient to each of the test images gives the identified images by the 
correlation analysis.

identified=Table[Position[corCoe[[i]],Max[corCoe[[i]]]],
{i,dimT[[1]]}]//Flatten855, 57, 59, 61, 63, 10, 63, 14, 16, 18 <

Figure 3 shows the identified images along with test ones. As you can see, the fairly good results have obtained. 
Only one test image “T7” was not exactly identified.
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Show[GraphicsArray[
Table[{testG[[i]],dbColorG[[identified[[i]]]],

testG[[i+1]],dbColorG[[identified[[i+1]]]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.3. Test(T) and identified(DB) images",
ImageSize->{4*100,5*100}];

Remove["corCoe","identified"];memoryUsed

Fig.3. TestHTL and identifiedHDBL images
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à 6.5.2 Least squares

System matrix

We construct a system matrix by transposing the “baseMat” used for the correlation analysis.

systemMat=Transpose[baseMat];

Least squares solution

Compute the least squares solutions.

solution=Table[leastSQ[systemMat,testV[[i]]],{i,dimT[[1]]}];//Timing8149.07 Second, Null <
Compute the image data of the least squares solutions.

solutionG=Table[ListPlot[solution[[i]],
PlotRange->All,PlotJoined->True,
PlotLabel->StringForm["LS`1 "̀,i],
DisplayFunction->Identity],{i,dimT[[1]]}];

Figure 4 shows the solution vectors. Obviously, the test images “T1”-“T5” were exactly identified, but remaining 
test images “T6”-”T10” were doubtful results. This means that it is difficult to represent the test images “T6-T10” by the
simple linear combination of the database images in Fig. 2.
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Show[GraphicsArray[
Table[{solutionG[[i]],solutionG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],ImageSize->{400,500},
PlotLabel->"Fig.4. Least squares solutions"];

Fig.4. Least squares solutions
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Image identification

Taking the maximum elements in the solution vectors, we can obtain the identified images by least squares.

identified=Table[Position[solution[[i]],Max[solution[[i]]]],
{i,dimT[[1]]}]//Flatten855, 57, 59, 61, 63, 18, 63, 14, 16, 55 <
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Figure 5 shows the identified images by means of the least squares. Even though, the test images “T6-T10” were 
not represented by the linear combination of the database images, over 70% is successfully identified.

Show[GraphicsArray[
Table[{testG[[i]],dbColorG[[identified[[i]]]],

testG[[i+1]],dbColorG[[identified[[i+1]]]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.5. Test(T) and identified(DB) images",
ImageSize->{4*100,5*100}];

memoryUsed

Fig.5. TestHTL and identifiedHDBL images
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Image synthesize

By means of Eq. (8), we synthesize the image satisfying the image system of equations in a least square sense.

comLS=Table[Sum[solution[[i,j]]*dbColor[[j]],
{j,dimDB[[1]]}],{i,dimT[[1]]}];

comLSN=Table[imageNormalize[comLS[[i,j]]],{i,dimT[[1]]},{j,dimT[[2]]}];

comLSG=Table[Show[convertRGB[comLSN[[i]]],
AspectRatio->Automatic,DisplayFunction->Identity,
PlotLabel->StringForm["LS`1 "̀,i]],{i,dimT[[1]]}];

Figure 6 shows the synthesized images along with the input test images. In accordance with the solution vectors 
shown in Fig. 4, the images “T1-T5” were well synthesized but the others were poor results.
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Show[GraphicsArray[
Table[{testG[[i]],comLSG[[i]],testG[[i+1]],comLSG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.6. Test(T) and sythesized(LS) images",
ImageSize->{4*100,5*100}];

Remove["solution","solutionG","identified","comLS","comLSN","comLSG"];
memoryUsed

Fig.6. TestHTL and sythesizedHLSL images
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à 6.5.3 Vector GSPM

Vector GSPM solutions

The image system of equations has a larger number of equations than those of unknowns so that it is an ill posed 
system.  In  the other  words,  there  are no  solutions  satisfying  all  of  the equations,  simultaneously.  This  means that  the
solution vector of the image system of equation depends on the solution strategy. To clarify the differences between the
solution methods, we employ the vector GSPM method, which has promising results to the physical ill posed system of
equations[3,4]. 

solution=Table[vectorGSPM[systemMat,testV[[i]],500],{i,dimT[[1]]}];//Timing8652.24 Second, Null <
After a relatively long computation time, we classify the solutions into the solution and pattern matching figure 

parts.

sol = Table @Take@solution @@i DD, dimDB @@1DDD, 8i, dimT @@1DD<D;
matF = Table @Take@solution @@i DD, -500D, 8i, dimT @@1DD<D;

Figure 7 shows the convergence processes to the test images. As described in Eq. (18), any solution vectors by 
the  vector  GSPM  method  have  been  converged  to  the  fixed  vectors.  The  pattern-matching  figure  “Ganma”  in  Fig.  7
corresponds to the value of objective function of Eq. (12), so that the value near to 1 means a goodness of the solutions.

convG=Table[ListPlot[matF[[i]],
PlotRange->All,PlotJoined->True,AxesLabel->{"Itas.","Ganma"},
PlotLabel->StringForm["SPM`1`",i],DisplayFunction->Identity],
{i,dimT[[1]]}];
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Show[GraphicsArray[
Table[{convG[[i]],convG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],ImageSize->{400,500},
PlotLabel->"Fig.7. Convergence processes"];

Fig.7. Convergence processes
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Figure 8 shows the solution vectors by the vector GSPM method. Similar to these of least squares, the test images 
“T1-T5” were successfully identified but the other images were not represented by the linear combination of the database
images in Fig. 2.

solutionG=Table[ListPlot[sol[[i]],
PlotRange->All,PlotJoined->True,
PlotLabel->StringForm["SPM`1`",i],DisplayFunction->Identity],
{i,dimT[[1]]}];
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Show[GraphicsArray[
Table[{solutionG[[i]],solutionG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],ImageSize->{400,500},
PlotLabel->"Fig.8. Vector GSPM solutions"];

Fig.8. Vector GSPM solutions
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Image identification

Taking the maximum elements in the solution vectors in Fig. 8 gives the identified images by the iterative means. 
Figure 9 shows the identified images. The seven test images were exactly identified.

identified=Table[Position[sol[[i]],Max[sol[[i]]]],
{i,dimT[[1]]}]//Flatten855, 57, 59, 61, 63, 18, 63, 14, 16, 55 <
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Show[GraphicsArray[
Table[{testG[[i]],dbColorG[[identified[[i]]]],

testG[[i+1]],dbColorG[[identified[[i+1]]]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.9. Test(T) and identified(DB) images",
ImageSize->{4*100,5*100}];

memoryUsed

Fig.9. TestHTL and identifiedHDBL images
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Image synthesize

Similar to those of the least squares, it is possible to synthesize the images, which suggest the solvability of the ill 
posed  system  of  equations.  When  we  can  synthesize  a  clear  image,  it  means  that  the  system  could  be  solved  with
satisfactory accuracy.

comLS=Table[Sum[sol[[i,j]]*dbColor[[j]],
{j,dimDB[[1]]}],{i,dimT[[1]]}];

comLSN=Table[imageNormalize[comLS[[i,j]]],{i,dimT[[1]]},{j,dimT[[2]]}];

comLSG=Table[Show[convertRGB[comLSN[[i]]],
AspectRatio->Automatic,DisplayFunction->Identity,
PlotLabel->StringForm["SPM`1`",i]],{i,dimT[[1]]}];

Figure 10 shows the synthesized images by means of the iterative solutions. As expected from the solution 
vectors in Fig. 8, the test images “T1-T5” were clearly synthesized similar to the test images in Fig. 1.
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Show[GraphicsArray[
Table[{testG[[i]],comLSG[[i]],testG[[i+1]],comLSG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.10. Test(T) and sythesized(GSPM) images",
ImageSize->{4*100,5*100}];

Remove["systemMat","solution","solutionG",
"identified","comLS","comLSN","comLSG"];memoryUsed

Fig.10. TestHTL and sythesizedHGSPML images
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6.6 Image identification in Fourier spectrum domain

In the previous section, we carried out the image identifications by means of the correlation as well as inverse 
approaches  in  the  real  domain.  The  correlation  analysis  provided  a  fairly  good  result  but  the  others  did  not  so  good
results. One of the reasons why the inverse approaches could not provide the good results is that the target position in
each of  the database images is  not  always coincided with  those of  the test  images.  On of  the methods to  remove this
difficulty is to employ the Fourier transform. The image data are represented in terms of the complex spatial frequencies.
A  combination  of  the  real  and  imaginary  parts  having  the  same  spatial  frequency  represents  a  position  of  the  image
having such the spatial frequency. In the other words, when we take the absolute values of the complex frequencies, it is
possible to remove the spatial phase difference.

Thus, we have to try the image identification in the Fourier spectrum or spatial frequency domain.

à 6.6.1 Correlation analysys

Fourier transform

At first, we compute the Fourier spectra of the test and database images.

baseMat=Table[Flatten[Table[TakeMatrix[
Abs[Fourier[dataBase[[i,j]]]],{1,1},{dimDB[[3]]/4,dimDB[[4]]/4}],
{j,dimDB[[2]]}]],{i,dimDB[[1]]}];

testV=Table[Flatten[Table[TakeMatrix[
Abs[Fourier[test[[i,j]]]],{1,1},{dimT[[3]]/2,dimT[[4]]/2}],
{j,dimT[[2]]}]],{i,dimT[[1]]}];

Correlation coefficients

Compute the correlation coefficients between the test and database image data.

corCoe=Table[corRelation[baseMat[[i]],testV[[j]]],
{j,dimT[[1]]},{i,dimDB[[1]]}];

Taking the maximum correlation coefficient to each of the test images gives the identified images by the 
correlation analysis.

identified=Table[Position[corCoe[[i]],Max[corCoe[[i]]]],
{i,dimT[[1]]}]//Flatten855, 57, 59, 61, 63, 19, 12, 14, 25, 18 <

Figure 11 shows the identified images along with test ones. In the Fourier spectrum domain, the correlation 
analysis gives an improved result even though somewhat spatial phase differences are observed.
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Show[GraphicsArray[
Table[{testG[[i]],dbColorG[[identified[[i]]]],

testG[[i+1]],dbColorG[[identified[[i+1]]]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.11. Test(T) and identified(DB) images",
ImageSize->{4*100,5*100}];

Remove["corCoe","identified"];memoryUsed

Fig.11. TestHTL and identifiedHDBL images
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à 6.6.2 Least squares

System matrix

Transposing the “baseMat” used for the correlation analysis yields a system matrix.

systemMat=Transpose[baseMat];

Least squares solution

Compute the least squares solutions.

solution=Table[leastSQ[systemMat,testV[[i]]],
{i,dimT[[1]]}];//Timing841.3 Second, Null <

Compute the image data of the least squares solutions.

solutionG=Table[ListPlot[solution[[i]],
PlotRange->All,PlotJoined->True,
PlotLabel->StringForm["LS`1 "̀,i],
DisplayFunction->Identity],{i,dimT[[1]]}];

Figure 12 shows the solution vectors. Obviously, the test images “T1”-“T5” were exactly identified, but 
remaining test images “T6”-”T10” were doubtful results. This means that the it  is difficult to represent the test images
“T6-T10” by the simple linear combination of the database images in Fig. 2, even if the Fourier spectrum domain.
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Show[GraphicsArray[
Table[{solutionG[[i]],solutionG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],ImageSize->{400,500},
PlotLabel->"Fig.12. Least squares solutions"];

Fig.12. Least squares solutions
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Image identification

Taking the maximum elements in the solution vectors, we can obtain the identified images by least squares.

identified=Table[Position[solution[[i]],Max[solution[[i]]]],
{i,dimT[[1]]}]//Flatten855, 57, 59, 61, 63, 10, 12, 14, 25, 18 <
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Figure 13 shows the identified images by means of the least squares. Surprisingly, all of the test images were 
successfully identified. Further, the identified images are better than that of the correlation analysis.

Show[GraphicsArray[
Table[{testG[[i]],dbColorG[[identified[[i]]]],

testG[[i+1]],dbColorG[[identified[[i+1]]]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.13. Test(T) and identified(DB) images",
ImageSize->{4*100,5*100}];

memoryUsed

Fig.13. TestHTL and identifiedHDBL images
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Image synthesize

By means of Eq. (8), we synthesize the image satisfying the image system of equations in a least square sense.

comLS=Table[Sum[solution[[i,j]]*dbColor[[j]],
{j,dimDB[[1]]}],{i,dimT[[1]]}];

comLSN=Table[imageNormalize[comLS[[i,j]]],{i,dimT[[1]]},{j,dimT[[2]]}];

comLSG=Table[Show[convertRGB[comLSN[[i]]],
AspectRatio->Automatic,DisplayFunction->Identity,
PlotLabel->StringForm["LS`1 "̀,i]],{i,dimT[[1]]}];

Figure 14 shows the synthesized images along with the input test images. In accordance with the solution vectors 
shown in Fig. 12, the images “T1-T5” were well synthesized also the others were improved comparing with that of the
real domain.
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Show[GraphicsArray[
Table[{testG[[i]],comLSG[[i]],testG[[i+1]],comLSG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.14. Test(T) and sythesized(LS) images",
ImageSize->{4*100,5*100}];

Remove["solution","solutionG","identified","comLS",
"comLSN","comLSG"];

memoryUsed

Fig.14. TestHTL and sythesizedHLSL images
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à 6.6.3 Vector GSPM

Vector GSPM solution

To clarify the differences between the solution methods of the ill posed system, we employ the vector GSPM 
method, which has a similar result that of the least squares in the real domain.

solution=Table[vectorGSPM[systemMat,testV[[i]],500],{i,dimT[[1]]}];//Timing8117.16 Second, Null <
The pattern matching figures of the iterative solutions are as follows. These figures suggest that all of the 

solutions have been obtained over 99% pattern matching accuracy.

Table @Take@solution @@i DD, -1D, 8i, dimT @@1DD<D �� Flatten80.999335, 0.999449, 0.999252, 0.99946, 0.999164, 0.999426, 0.999229,

0.999288, 0.999294, 0.999106 <
Figure 15 shows the solution vectors by the vector GSPM method. Similar to these of least squares, the test 

images “T1-T5” were successfully identified but the other images were not yet represented by the linear combination of
the database images in Fig. 2.

sol = Table @Take@solution @@i DD, dimDB @@1DDD, 8i, dimT @@1DD<D;

solutionG=Table[ListPlot[sol[[i]],
PlotRange->All,PlotJoined->True,
PlotLabel->StringForm["SPM`1`",i],
DisplayFunction->Identity],
{i,dimT[[1]]}];
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Show[GraphicsArray[
Table[{solutionG[[i]],solutionG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],ImageSize->{400,500},
PlotLabel->"Fig.15. Vector GSPM solutions"];

Fig.15. Vector GSPM solutions
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Image identification

Taking the maximum elements in the solution vectors in Fig. 16 gives the identified images by the iterative 
means. Figure 17 shows the identified images. All of the test images have been perfectly identified.

identified=Table[Position[sol[[i]],Max[sol[[i]]]],
{i,dimT[[1]]}]//Flatten855, 57, 59, 61, 63, 10, 12, 14, 16, 18 <
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Show[GraphicsArray[
Table[{testG[[i]],dbColorG[[identified[[i]]]],

testG[[i+1]],dbColorG[[identified[[i+1]]]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.16. Test(T) and identified(DB) images",
ImageSize->{4*100,5*100}];

memoryUsed

Fig.16. TestHTL and identifiedHDBL images
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Image synthesize

Similar to those of the least squares, it is possible to synthesize the images, which suggest the solvability of the ill 
posed system of equations. When we can synthesize a clear image, it means that the system could be solved, vice versa.
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comLS=Table[Sum[sol[[i,j]]*dbColor[[j]],
{j,dimDB[[1]]}],{i,dimT[[1]]}];

comLSN=Table[imageNormalize[comLS[[i,j]]],{i,dimT[[1]]},{j,dimT[[2]]}];

comLSG=Table[Show[convertRGB[comLSN[[i]]],
AspectRatio->Automatic,DisplayFunction->Identity,
PlotLabel->StringForm["SPM`1`",i]],{i,dimT[[1]]}];

Figure 17 shows the synthesized images by means of the iterative solutions. As expected from the solution 
vectors in Fig. 15, all of the test images were not clearly synthesized.
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Show[GraphicsArray[
Table[{testG[[i]],comLSG[[i]],testG[[i+1]],comLSG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.17. Test(T) and sythesized(GSPM) images",
ImageSize->{4*100,5*100}];

Remove["systemMat","solution","solutionG","identified",
"comLS","comLSN","comLSG"];

memoryUsed
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T9 SPM9 T10 SPM10

T7 SPM7 T8 SPM8

T5 SPM5 T6 SPM6

T3 SPM3 T4 SPM4

T1 SPM1 T2 SPM2

19848K Bytes used

Chapter 6 Image Identifications.nb 129



6.7 Image identification in wavelet spectrum domain

à 6.7.1 Correlation analysis

In the previous section, we carried out the image identifications in the real and spatial frequency domains. As a 
result,  it ha been clarified that the usefulness of the methodologies depends greatly on the domain. Namely, in the real
domain, the correlation analysis was superior methodology than the inverse approaches. But in the frequency domain, the
inverse approaches are far superior to the correlation analysis. The difference between the real and frequency domains is
that one is a practical real domain and the other is a completely abstract domain. In addition to these domains, we have a
neutral domain between the real and frequency domain. This is a wavelet spectrum domain, which holds both of the real
and  frequency  domain  information.  Wavelet  transform  is  one  of  the  linear  transforms  and  is  one  of  the  data  sorting
methodologies.  Depending on  the  wavelet  base  functions,  wavelet  spectrum holds  the  nature  of  Fourier  spectrum and
also includes the real domain information.

Thus, the image identification in the wavelet spectrum domain is significant research theme.

Wavelet transform

Employing the Daubechies 8th order base functions, we compute the wavelet transform matrices. After that, we 
compute the wavelet spectra of the test as well as database images.

wMat={waveletMatrix[dimDB[[3]],daub8],
waveletMatrix[dimDB[[4]],daub8]};

baseMat=Table[Flatten[Table[TakeMatrix[
waveletND[dataBase[[i,j]],wMat,2],{1,1},{dimT[[3]],dimT[[4]]}],
{j,dimDB[[2]]}]],{i,dimDB[[1]]}];

wMat={waveletMatrix[dimT[[3]],daub8],
waveletMatrix[dimT[[3]],daub8]};

testV=Table[Flatten[Table[waveletND[test[[i,j]],wMat,2],
{j,dimDB[[2]]}]],{i,dimT[[1]]}];

Correlation coefficients

Compute the correlation coefficients between the test and database wavelet spectra.

corCoe=Table[corRelation[baseMat[[i]],testV[[j]]],
{j,dimT[[1]]},{i,dimDB[[1]]}];

Taking the highest correlation coefficient to each of the test images gives the identified images by the correlation 
analysis.

identified=Table[Position[corCoe[[i]],Max[corCoe[[i]]]],
{i,dimT[[1]]}]//Flatten855, 57, 59, 61, 63, 10, 63, 14, 16, 18 <
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Figure 18 shows the identified images along with test ones. In the wavelet spectrum domain, the correlation 
analysis gives the same result in the real domain, i.e., only one test image has not been identified exactly.

Show[GraphicsArray[
Table[{testG[[i]],dbColorG[[identified[[i]]]],

testG[[i+1]],dbColorG[[identified[[i+1]]]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.18. Test(T) and identified(DB) images",
ImageSize->{4*100,5*100}];

Remove["corCoe","identified"];memoryUsed

Fig.18. TestHTL and identifiedHDBL images
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à 6.7.2 Least squares

System matrix

Transposing the “baseMat” used for the correlation analysis yields a system matrix.

systemMat=Transpose[baseMat];

Least squares solution

Compute the least squares solutions.

solution=Table[leastSQ[systemMat,testV[[i]]],
{i,dimT[[1]]}];//Timing8152.85 Second, Null <

Compute the image data of the least squares solutions.

solutionG=Table[ListPlot[solution[[i]],
PlotRange->All,PlotJoined->True,
PlotLabel->StringForm["LS`1 "̀,i],DisplayFunction->Identity],
{i,dimT[[1]]}];

Figure 19 shows the least squares solution vectors. Similar to the results of previous least squares, the test images 
“T1”-“T5” were exactly identified, but remaining test images “T6”-”T10” were doubtful results.
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Show[GraphicsArray[
Table[{solutionG[[i]],solutionG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],ImageSize->{400,500},
PlotLabel->"Fig.19. Least squares solutions"];

Fig.19. Least squares solutions
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Image identification

Taking the maximum elements in the solution vectors, we can obtain the identified images by least squares.

identified=Table[Position[solution[[i]],Max[solution[[i]]]],
{i,dimT[[1]]}]//Flatten855, 57, 59, 61, 63, 18, 63, 14, 16, 55 <
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Figure 20 shows the identified images by means of the least squares. The seven images were successfully 
identified but remaining four images were not identified by the least squares. This result is just same as those of the real
domain. Thereby, the nature of wavelet spectrum domain is similar to those of real domain.

Show[GraphicsArray[
Table[{testG[[i]],dbColorG[[identified[[i]]]],

testG[[i+1]],dbColorG[[identified[[i+1]]]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.20. Test(T) and identified(DB) images",
ImageSize->{4*100,5*100}];

memoryUsed
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Image synthesize

By means of Eq. (8), we synthesize the image satisfying the image system of equations in a least square sense.

comLS=Table[Sum[solution[[i,j]]*dbColor[[j]],
{j,dimDB[[1]]}],{i,dimT[[1]]}];

comLSN=Table[imageNormalize[comLS[[i,j]]],{i,dimT[[1]]},{j,dimT[[2]]}];

comLSG=Table[Show[convertRGB[comLSN[[i]]],
AspectRatio->Automatic,DisplayFunction->Identity,
PlotLabel->StringForm["LS`1 "̀,i]],{i,dimT[[1]]}];

Figure 21 shows the synthesized images along with the input test images. In accordance with the solution vectors 
shown in Figs. 19 and 4, the images “T1-T5” were well synthesized but the others were still poor results. This result is
also similar to those of the real domain.
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Show[GraphicsArray[
Table[{testG[[i]],comLSG[[i]],testG[[i+1]],comLSG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.21. Test(T) and sythesized(LS) images",
ImageSize->{4*100,5*100}];

Remove["solution","solutionG","identified","comLS","comLSN","comLSG"];
memoryUsed

Fig.21. TestHTL and sythesizedHLSL images
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à 6.7.3 Vector GSPM

Vector GSPM solution

Compute the solution vectors by the vector GSPM solutions.

solution=Table[vectorGSPM[systemMat,testV[[i]],500],{i,dimT[[1]]}];//Timing8645.71 Second, Null <
The pattern matching figures of the iterative solutions are as follows.

Table @Take@solution @@i DD, -1D, 8i, dimT @@1DD<D �� Flatten80.996572, 0.993255, 0.992069, 0.995135, 0.993046, 0.992186,

0.98957, 0.963951, 0.978248, 0.989402 <
Compute the image data of the vector GSP solutions.

sol = Table @Take@solution @@i DD, dimDB @@1DDD, 8i, dimT @@1DD<D;
solutionG = Table @ListPlot @sol @@i DD,

PlotRange -> All, PlotJoined -> True,
PlotLabel -> StringForm @"SPM`1 "̀, i D,
DisplayFunction -> Identity D,8i, dimT @@1DD<D;

Figure 22 shows the solution vectors by the vector GSPM method. Similar to these of least squares, the test 
images “T1-T5” were successfully identified but the other images were not yet represented by the linear combination of
the database images in Fig. 2.
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Show[GraphicsArray[
Table[{solutionG[[i]],solutionG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],ImageSize->{400,500},
PlotLabel->"Fig.22. Vector GSPM solutions"];

Fig.22. Vector GSPM solutions
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Image identification

Taking the maximum elements in the solution vectors in Fig. 22 gives the identified images by the iterative 
means. Figure 23 shows the identified images. The result is just same as those of the real domain. Three test images were
not exactly identified and the vector GSPM method successfully identified remaining seven images.

Here we describe the reason why the nature of wavelet spectrum and real domains are the same. The reason of 
this is very simple, we have not take the particular wavelet spectrum including the mother wavelet into account but all of
the wavelet spectrum have been used to  the image identification. In order to emphasis the nature of  wavelet spectrum
domain, we have to take the particular wavelet spectrum into account. However, we did not carry out this because we did
not  establish  a  firm  methodology  which  wavelet  spectrum  should  be  taken  in  to  account  the  image  identifications.
Further,  the  nature  of  wavelet  spectrum  is  greatly  depending  on  the  employed  base  functions.  But,  we  did  not  have
enough knowledge which base function should be employed. When we employ the wavelet base function and take the
wavelet spectrum into account for the case by case, we may be possible to get the good result for the inverse approaches.
But this has no general meaning. Thus, we talked all of the wavelet spectra into account for the image identification. As a
result, it has been clarified that a simple sorting of the image data does not change the results.

identified=Table[Position[sol[[i]],Max[sol[[i]]]],
{i,dimT[[1]]}]//Flatten855, 57, 59, 61, 63, 18, 63, 14, 16, 55 <
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Show[GraphicsArray[
Table[{testG[[i]],dbColorG[[identified[[i]]]],

testG[[i+1]],dbColorG[[identified[[i+1]]]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.23. Test(T) and identified(DB) images",
ImageSize->{4*100,5*100}];

memoryUsed

Fig.23. TestHTL and identifiedHDBL images

T9 DB16 T10 DB55

T7 DB63 T8 DB14

T5 DB63 T6 DB18

T3 DB59 T4 DB61

T1 DB55 T2 DB57

34664K Bytes used

Image synthesize

Similar to those of the least squares, it is possible to synthesize the images, which suggest the solvability of the ill 
posed system of equations.
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comLS=Table[Sum[sol[[i,j]]*dbColor[[j]],
{j,dimDB[[1]]}],{i,dimT[[1]]}];

comLSN=Table[imageNormalize[comLS[[i,j]]],{i,dimT[[1]]},{j,dimT[[2]]}];

comLSG=Table[Show[convertRGB[comLSN[[i]]],
AspectRatio->Automatic,DisplayFunction->Identity,
PlotLabel->StringForm["SPM`1`",i]],{i,dimT[[1]]}];

Figure 24 shows the synthesized images by means of the iterative solutions. As expected from the solution 
vectors in Figs. 22 and 8, only the test images “T1-T5” were clearly synthesized similar to the test images in Fig. 1.
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Show[GraphicsArray[
Table[{testG[[i]],comLSG[[i]],testG[[i+1]],comLSG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.24. Test(T) and sythesize(GSPM) images",
ImageSize->{4*100,5*100}];

Remove["wMat","systemMat","solution","solutionG","identified",
"comLS","comLSN","comLSG"];

memoryUsed

Fig.24. TestHTL and sythesizeHGSPML images
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6.8 Image identification in eigen pattern domain

In chapter 5, we have defined the eigen pattern of the image. The eigen pattern can be derived by means of a 
nonlinear  transformation.  Any  linear  transformations  utilize  the  square  transform  matrices  such  as  the  Fourier  and
wavelet transforms, and are capable of recovering the original data exactly. But our eigen pattern is derived by means of
the rectangular transform matrices, so that an inverse transform of the eigen pattern approximately recovers the original
data. As shown in chapter 5, even though the nonlinear transform, the eigen pattern represents a distinct characteristic of
the target image not depending on the image resolution and position.

Thus, in this section, we carry out the image identifications in the eigen pattern domain.

à 6.8.1 Image eigen pattern

The eigen pattern can be derived by means of the rectangular transform matrices. This makes it possible to derive 
the same resolution eigen pattern from the different resolution images.

Consideration of 8-bits resolution in each of the red, green and blue color components leads to set the 256 
resolution  of  the  color  image.  Further,  the  test  images  in  Fig.  2  were  windowed  in  order  to  reduce  the  effects  of
background of image. Thereby, we apply a window operation to the 256 by 256 resolution database images.

resolution=256;
win128=window[128,128,64-8];
dbW=Table[win128*dataBase[[i,j]],{i,dimDB[[1]]},{j,dimDB[[2]]}];

à 6.8.2 Correlation analysys

Data arrangement

In order to implement the correlation analysis in the eigen pattern domain, we compute the eigen patterns of the 
windowed test and 256 by 256 resolution database images.

baseMat=Table[eigenPattern[Flatten[dbW[[i]]],resolution],
{i,dimDB[[1]]}];

win64=window[64,64,32-4];
testW=Table[win64*test[[i,j]],{i,dimT[[1]]},{j,dimT[[2]]}];
testV=Table[eigenPattern[Flatten[testW[[i]]],resolution],

{i,dimT[[1]]}];

Correlation coefficients

We compute the correlation coefficients between the eigen patterns of test and database images.

corCoe=Table[corRelation[baseMat[[i]],testV[[j]]],
{j,dimT[[1]]},{i,dimDB[[1]]}];
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Taking the maximum correlation coefficient to each of the test images, we can obtain the identified database 
image corresponding to the tested one.

identified=Table[Position[corCoe[[i]],Max[corCoe[[i]]]],
{i,dimT[[1]]}]//Flatten855, 57, 59, 61, 59, 13, 11, 6, 16, 18 <

Figure 25 shows the identified images together with tested ones. Only the six test images were correctly 
identified. This result suggests that the correlation analysis is only effective methodology in the real domain. In the other
words,  the  correlation  analysis  is  useful  methodology  to  identify  the  images  taking  into  account  the  resolution  and
position of the test images.
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Show[GraphicsArray[
Table[{testG[[i]],dbColorG[[identified[[i]]]],

testG[[i+1]],dbColorG[[identified[[i+1]]]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.25. Test(T) and identified(DB) images",
ImageSize->{4*100,5*100}];

Remove["corCoe","identified","win128","win64","dbW"];
memoryUsed

Fig.25. TestHTL and identifiedHDBL images
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à 6.8.2 Least squares

System matrix

Transpose of the “baseMat” used for correlation analysis yields a system matrix.

systemMat=Transpose[baseMat];

Inverse check

In order to get the least squares solution, a product between the transpose of system and original system matrices 
should be a positive definite square matrix. However, in the eigen pattern domain, this condition is not held.

Inverse[Transpose[systemMat].systemMat];

Inverse::sing  :  Matrix �1� is singular.

à 6.8.3 Vector GSPM

Vector GSPM solution

According to the previous inverse matrix check for the least squares, the system of eigen patterns is badly ill 
posed, so that we set a number of iterations 1000 to the vector GSPM method.

solution=Table[vectorGSPM[systemMat,testV[[i]],1000],{i,dimT[[1]]}];//Timin
g832.68 Second, Null <

After a few computation times, we classify the solutions into the solution and pattern matching figure parts.

sol = Table @Take@solution @@i DD, dimDB @@1DDD, 8i, dimT @@1DD<D;
matF = Table @Take@solution @@i DD, -1000D, 8i, dimT @@1DD<D;

Figure 26 shows the convergence processes to the test images. As described in Eq. (18), any solution vectors by 
the  vector  GSPM method have been converged to  the  fixed vectors.  The pattern-matching  figure  “Ganma”  in  Fig.  26
corresponds to the value of objective function of Eq. (12), so that the value near to 1 means a goodness of the solutions.

convG=Table[ListPlot[matF[[i]],
PlotRange->All,PlotJoined->True,AxesLabel->{"Itas.","Ganma"},
PlotLabel->StringForm["SPM`1`",i],DisplayFunction->Identity],
{i,dimT[[1]]}];
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Show[GraphicsArray[
Table[{convG[[i]],convG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],ImageSize->{400,500},
PlotLabel->"Fig.26. Convergence processes"];

Fig.26. Convergence processes
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Compute the image data of the vector GSP solutions.

solutionG=Table[ListPlot[sol[[i]],
PlotRange->All,PlotJoined->True,
PlotLabel->StringForm["SPM`1`",i],
DisplayFunction->Identity],
{i,dimT[[1]]}];
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Figure 27 shows the solution vectors by the vector GSPM method. The solution vectors are quite different 
compared with  all  of  the  previous  solutions.  The solutions  to  the  test  images “T1-T5”  are  not  the  one-peak solutions
shown in Figs. 5,9,13,16,20 and 23, but every solution vector is composed of the several peak elements. This means that
the eigen pattern system of equations has been established under the same conditions to the tested and database images.
Namely, the eigen pattern in each of the images represents the resolution and position independent characters.

Show[GraphicsArray[
Table[{solutionG[[i]],solutionG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],ImageSize->{400,500},
PlotLabel->"Fig.27. Vector GSPM solutions"];

Fig.27. Vector GSPM solutions
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Image identification

Taking the maximum elements in the solution vectors in Fig. 27 gives the identified images by the iterative 
means. Figure 28 shows the identified images. 

identified=Table[Position[sol[[i]],Max[sol[[i]]]],
{i,dimT[[1]]}]//Flatten855, 57, 59, 61, 54, 10, 12, 14, 16, 18 <

Surprisingly, all of the test images in Fig.1 were identified from the 63 database images in Fig. 2. Thus, we have 
confirmed that the concept of eigen pattern makes it possible to remove the effects of image resolution and position, and 
leads to a sophisticate image identification methodology.
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Show[GraphicsArray[
Table[{testG[[i]],dbColorG[[identified[[i]]]],

testG[[i+1]],dbColorG[[identified[[i+1]]]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.28. Test(T) and identified(DB) images",
ImageSize->{4*100,5*100}];

memoryUsed

Fig.28. TestHTL and identifiedHDBL images

T9 DB16 T10 DB18

T7 DB12 T8 DB14

T5 DB54 T6 DB10

T3 DB59 T4 DB61

T1 DB55 T2 DB57

18051K Bytes used

Image synthesize

According to Eq. (8), we synthesize the images by combining the solution vectors in Fig. 27 and the database 
image in Fig.2.
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comLS=Table[Sum[sol[[i,j]]*dbColor[[j]],
{j,dimDB[[1]]}],{i,dimT[[1]]}];

comLSN=Table[imageNormalize[comLS[[i,j]]],{i,dimT[[1]]},{j,dimT[[2]]}];

comLSG=Table[Show[convertRGB[comLSN[[i]]],
AspectRatio->Automatic,DisplayFunction->Identity,
PlotLabel->StringForm["SPM`1`",i]],{i,dimT[[1]]}];

Figure 29 shows the synthesized images. Fairly well images reflecting on their test images were obtained 
excepting the images “T2” and “T5”. This is as a matter of course fact because all of the test images have been exactly
identified.
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Show[GraphicsArray[
Table[{testG[[i]],comLSG[[i]],testG[[i+1]],comLSG[[i+1]]},
{i,1,dimT[[1]]-1,2}]],
PlotLabel->"Fig.29. Test(T) and sythesize(GSPM) images",
ImageSize->{4*100,5*100}];

Remove["systemMat","solution","solutionG",
"identified","comLS","comLSN","comLSG"];memoryUsed

Fig.29. TestHTL and sythesizeHGSPML images
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6.9 Summary

In this chapter, we have tried to identify the particular images in a large number of database images by means of 
the three different approaches. The first was a conventional correlation analysis. The other approaches were based on the
inverse analysis methodologies. The inverse analysis is essentially reduced into solving for the ill posed linear system of
equations.  Hence,  we  have  derived  the  image  system  of  equations.  To  obtain  the  solution  of  the  image  system  of
equations, we have employed two methodologies. On is the well known least squares, and the other is the vector GSPM
method. The former requires using a matrix inversion. This limits the application of  the least squares. The latter is  an
iterative  scheme to  solve  the  ill  posed system of  equations.  Iterative  solution strategy  can be applied  to  any  ill  posed
system,  but  always  gives  a  converged  solution.  To  overcome  this  difficulty,  we  have  introduced  the  vector  GSPM
method, which guarantees the converged solutions.

These identification methodologies have been implemented in the real, Fourier, wavelet and eigen pattern 
domains. As the results, it  has been clarified that the correlation approach is the distinguished methodology in the real
domain. This means that the correlation analysis has to take into account the resolution, position and background of  a
target  image. On the other  side,  the inverse approaches are superior methodologies in  the frequency and eigen pattern
domains. Particularly, iterative solution strategy is a powerful tool to identify the images.

Summarizing the implemented results is as follows:

Correlation analysis: 90% in real domain,

100% in Fourier spectrum domain,

90% in wavelet spectrum domain

60% in eigen pattern domain.

Least squares: 70% in real domain,

100% in Fourier spectrum domain,

70% in wavelet spectrum domain

Not available in eigen pattern domain.

vector GSPM 70% in real domain,

100% in Fourier spectrum domain,

70% in wavelet spectrum domain

100% in eigen pattern domain.
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