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Preface

It is our great honor to hold The Twentieth International Workshop on Electromagnetic Non-
Destructive Evaluation, ENDE. The former ENDEs have been held in UK, Japan, France, USA,
Hungary, Germany, South Korea, Poland, India, Brazil, Slovakia, and China. It is not too much to say
that ENDE is regarded as one of the most important academic forums for exchanging ideas and
discussing recent developments of the application of electromagnetics to the non-destructive testing

and evaluation.

The Twentieth International Workshop on Electromagnetic Non-Destructive Evaluation, ENDE2015,
is held from September 21st to 23rd in Katahira Sakura Hall, Tohoku University, Sendai, Japan. The
major topics of the workshop include, but not limited to, advanced sensors, analytical and numerical
modelling, inverse problems and signal processing, material characterization, monitoring and
diagnoses of mechanical structure, biomedical applications, and innovative industrial applications.
Since this is the commemorable twentieth workshop, several special sessions are arranged with a

theme of ‘Origin, Legacy, and Future Directions of ENDE’.

There are two keynote lectures, one invited lecture, and 84 contributions to be presented in
ENDEZ2015. The contributions are categorized into and presented in seven oral sessions, one poster
session, and one special session named ‘Student Session’. The contributions presented will be peer-
reviewed for a possible publication in a volume of IOS book series “Studies in Applied

Electromagnetics and Mechanics”.

ENDE2015 is organized by ENDE2015 Organizing Committee, co-organized by School of Engineering,
Tohoku University, Institute of Fluid Science, Tohoku University, and Japan Society of Maintenology,
and sponsored by Intelligent Cosmos Research Institute, Sendai Tourism, Convention and
International Association, The Kajima Foundation. ENDE2015 Organizing Committee would like to
express sincere gratitude to all the members of the international standing committee members,

participants, and the sponsors for their contributions and supports.

Sendai, September, 2015
Co-chairmen of ENDE2015
Noritaka Yusa

Tetsuya Uchimoto

Hiroaki Kikuchi



Student Session (Chair: D. Zhou and J. Wang)
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ENHANCE THE FLAT oo COIL SENSIBILITY
BY MULTI-FREQUENCY CONVOLUTION STRATEGY
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Previously, we have developed a new flat eddy current testing sensor named the flat o
(infinity) coil whose operating principle is based on the following fact. A zero magnetic field
region between the two exciting coils composing the north and south magnetic poles becomes
not zero magnetic fields due to the detour eddy currents caused by defect of a target test
piece[1].

According to this operating principle, our flat ©© coil never depends on the operating
frequencies so that low frequency drive of the flat ©© coil is a very effective and useful to
detect the backside defect of a target test piece because of large skin depth [2].

In the present paper, we employ the multi-frequency excitations along with convolution
signal processing technology.

As shown in Fig.1, changing the exciting frequencies changes the penetration depth of the
eddy currents.
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Figure. 1 Magnetic fields and eddy currents distributions by the 3D FEM simulations.
Color bar denotes the magnitude of eddy currents. Magnitude and direction of the magnetic
field vectors are shown by the colors and triangular symbols, respectively

Even though the low frequency excitation is superior in sensibility of the backside defect
searching, amplitude of the detected signals becomes small in value, and is contaminated by
the environmental higher frequency noise signals. On the other side, higher frequency
excitation yields a low amplitude detected signal not contaminated by the environmental noise
signals. Therefore, selection of the excitation frequency is one of the difficult tasks when
carrying out the backside defect searching.

Principal purpose of this paper is to remove this frequency selection difficulty in the
backside defect searching by means of the combination approach of the multi-frequency
excitation and signal convolution strategy.

* Corresponding author. Phone & Fax: +81 42 387 6200, E-mail address: shunichi.hamanaka.jc@stu.hosei.ac.jp



Our strategy is composed of the four-steps. At first, to extract the exact signal frequency,
apply the Fourier transform to the detected signals makes it possible to extract only the same
frequency component to the exciting frequency as the exact detected signals. Figures 2(a) and
2(b) show the typical examples of the original and exact detected signal by Fourier transform.
Second, we arrange the peak maximum induced voltages (similar to the signals shown in
Fig.2(b)) along with the test piece positions as shown in Fig. 2(c). Third, the peak induced
voltage distribution along the target piece surface ( Fig.2(c)) is normalized between the values
of 0 to 1. The sequential processes from the 1st to 3rd steps are repeated to each of the entire
detected signals obtained by changing the exciting frequencies. Finally, an entire normalized
detected signals processed by st to 3rd steps to each of the different exciting frequencies is
convolved by the multiplications among the normalized values taking the same test piece
positions. Since the value in each of the normalized detected signals takes a value between 0
and 1, then this convolution extracts only the common signals over the entire signals.

Thus, it is possible to obtain the highly reliable defect signals even if the backside defect
searching. Figure 2(d) shows a typical result of our multi-frequency convolution strategy. The
reliable detected signal means the enhancement of the sensibility of ECT testing.
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Figure. 2 Explanation diagrams of the multi-frequency convolution strategy
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Eddy current testing (ECT) is one of the most representative nondestructive testing
methods for metallic materials, parts, structures and so on. Operating principle of ECT is
based on two major properties of the magnetic fields. One is that alternating magnetic field
induces eddy current in conducting materials. Thereby, an input impedance of the magnetic
field source, i.e., electric source, depends on the eddy current path. Second is that the
magnetic field distribution depends not only on the exciting current but also on the reactive
magnetic fields caused by the eddy currents in targets. Former and latter are the impedance
sensing and leakage magnetic flux sensing types, respectively [1].

Previously we have succeeded in exploiting a new high sensibility eddy current testing
sensor called the flat infinite (o) coil [2]. Operating principle of the flat oo coil is that two
adjacent coils constructing the north and south poles alternatively set a zero magnetic field
region and keep this zero magnetic fields situation when eddy currents are flowing along the
paths in parallel to the exciting coils. If the eddy currents could not flow the paths in parallel
to the exciting coil due to the defect of a specimen, then a zero magnetic field region between
the two exciting coil moves toward the other position. This means that a sensing coil located
at a mid point position of two exciting coil is possible to detect the disturbed magnetic fields,
i.e., the defect in the specimen could be detected by the sensing coil signal.

According to the intensive 3D FEM simulations as well as experiments, the two key design
policies are found. One is the shape of exciting coils, which enlarges the zero magnetic field
region between the two adjacent coils constructing the north and south poles alternatively.
The other is the shape of flat exciting coils whether each of the coils should be fully wound
until no space or not fully wound remaining some space, i.e., each of the exciting coil surfaces
does not has any area otherwise has a space enclosed by an exciting coil.

Principal purpose of this paper is to carry out the latter designing policy, i.e., how to design
the shape of flat exciting coils for some particular line defect.

At first, we have carried out the 3D FEM simulations as well as experiments to the 10 turns
coil (a) having a space and the 20 turns coil (b) having no space as shown in Fig. 1.

(a) 10 Turns l (b) 205Turns
Figure 1. The first prototype flat ©° coils

a
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Figure 2. Sensor output signals, where the green and red are denoting
the exact and noise signals, respectively

Even though the differences between the simulated and experimented values have been
observed, the output signals of 10 turns coil is much larger than that of 20 turns coil.
Fundamental difference between the simulated and experimented signals is the noise shown
by the red lines in Fig.2. This difference may be caused by the hand making of the coils so
that it is possible to reduce this difference by the skilful line constructing processes in the
factory.

Thus, it has been elucidated that increasing the number of turns never increases the output
signal and optimum number of turns concerning on the exciting coils of the flat c© coil design
should be decided depending on the shapes of target defect.

As described above, this paper has clarified the designing policy of the flat c© coil having
semi-circular exciting coils, i.e., how to design the shape of flat exciting coils for some
particular line defect, by means of the 3D FEM simulations along with the experimental
verifications.
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The eddy current sensor is classified into two major types. One is the coil impedance
sensing type without any sensing coils and the other is the magnetic flux sensing type
composed of the exciting as well as independent sensing coils to detect the leakage magnetic
flux caused by detour eddy currents due to the defect of target. Former coil impedance
sensing type is further classified into two types. One is the simple coil impedance sensing
type detecting an input impedance depending on the target whether no defect or defect. The
other is the impedance sensing type operating only at the resonant frequency.

Previously, we have proposed a new resonant type eddy current sensor by means of an
ingeniously coil connection [1]. This new sensor does not need any external capacitor for
keeping a stable resonant situation and has an extremely high sensibility, but it is suffered a
higher operating resonant frequency.

To overcome this higher operating resonant frequency problem, we have attached to an
external capacitor in parallel to the ingeniously coil connection [2]. Attach the external
capacitor in parallel to the original resonant type eddy current sensor makes it possible to
reduce the resonant frequency and to enhance the sensibility. Figure 1 shows an example of
coil twisting, an example of the resonant type eddy current sensor utilizing the ingeniously
coil connection using a ferrite bar as axis, and demonstrates the high sensible capability of the
resonant type eddy current sensor attaching an external capacitor to detect a H shape slits
artificially made by discharging machining.

e

(b) An example of the
resonant type eddy current
Sensor (c) A detected H shape defect
Figure 1. The coil twisting, an example of the resonant type eddy current sensor and a
detected H shape defect. (a) Show a typical two coils twisting. (b) An example the
resonant type eddy current sensor utilizing the ingeniously coil connection using a
ferrite bar as an axis. (c) A typical example of a H shape defect detection by the
resonant type eddy current sensor utilizing the ingeniously coil connection with
external capacitor, where X, y are denoting the positions in x-y plane, and ¢ 1is the
deflection percentage to the reference impedance measured at the resonant frequency

[2].

(a) Coil Twisting

* Corresponding author. Phone & Fax+81 42 387 6200, E-mail address: kazuya.okuda.2n@stu.hosei.ac.jp



In the present paper, we propose a new resonant frequency control methodology without
any external capacitor to the original resonant type eddy current sensor utilizing the
ingeniously coil connection. A key innovative idea to control the resonant frequency of the
eddy current sensor is an extremely simple procedure, i.e., only changing the twisting pitches.

Our resonant type eddy current sensor utilizing the ingeniously coil connection is
intrinsically based on the utilization of stray capacitance among the conductors so that the
control of stray capacitance by changing the twisting pitches may be considered as the best
methodology.

Figure 2 shows the concrete examples of the controlled resonant frequencies by changing
the twisting pitches.

tune-—>turn

400 40
— . — Tmm/tune
= E — 2mm/tune
5 300 — 7mm/tune 5 30
24 — =
Ny 2mm/tune =
8 200 g 20
5 £
= S
2 =1
g £
= 100 = 10

0 0

300 400 500 600 700 800 900 100 150 200 250 300
Frequency f [kHz] Frequency f [kHz]
(a) Single layer solenoid exciting coil (b) Double layer solenoid exciting coil

Figure 2. The concrete examples of the controlled resonant frequencies by changing the
twisting pitches. (a) Shows the controlled resonant frequencies of a single layer solenoid
exciting coil whose resonant frequency is reduced from 680 to 543kHz by changing the
twisting pitches from 7 to 2mm/turn. (b) Shows the controlled resonant frequencies of a
double layer solenoid exciting coil whose resonant frequency is reduced from 253 to
173kHz by changing the twisting pitches from 7 to 2mm/turn. Both coils (a) and (b) are
the cylindrical shape having the same dimensions 4.6cm length and 2cm diameter
without any ferrite bar as the coil axes.

Thus, it is possible to control the resonant frequency of the ingeniously coil connection
only by changing the twisting pitches. This means that the resonance type eddy current sensor
could be used in a similar exciting frequency to those of normal impedance sensing type
without any external capacitors.

Since a calculation of the stray capacitances among the multi-twisted conductors is an
extremely difficult task even if the computer use, then we are now exploiting an empirical
formula expressing the relations among the resonant frequency, twisting pitch, coil diameter,
coil length and diameter of the finite length solenoid coil wound around a ferrite bar as an
axis. Further details will be shown at the ENDE 2015 presentation and described in the full

paper.
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